mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-02 23:33:54 -06:00
Official QEMU mirror. Please see https://www.qemu.org/contribute/ for how to submit changes to QEMU. Pull Requests are ignored. Please only use release tarballs from the QEMU website.
http://www.qemu.org
![]() This change improves performance by moving the hot path of the trace_vhost_commit()(or any other trace function) logic to the header file. Previously, even when the trace event was disabled, the function call chain:- trace_vhost_commit()(Or any other trace function) → _nocheck__trace_vhost_commit() → _simple_trace_vhost_commit() incurred a significant function prologue overhead before checking the trace state. Disassembly of _simple_trace_vhost_commit() (from the .c file) showed that 11 out of the first 14 instructions were prologue-related, including: 0x10 stp x29, x30, [sp, #-64]! Prologue: allocates 64-byte frame and saves old FP (x29) & LR (x30) 0x14 adrp x3, trace_events_enabled_count Prologue: computes page-base of the trace-enable counter 0x18 adrp x2, __stack_chk_guard Important (maybe prolog don't know?)(stack-protector): starts up the stack-canary load 0x1c mov x29, sp Prologue: sets new frame pointer 0x20 ldr x3, [x3] Prologue: loads the actual trace-enabled count 0x24 stp x19, x20, [sp, #16] Prologue: spills callee-saved regs used by this function (x19, x20) 0x28 and w20, w0, #0xff Tracepoint setup: extracts the low-8 bits of arg0 as the “event boolean” 0x2c ldr x2, [x2] Prologue (cont’d): completes loading of the stack-canary value 0x30 and w19, w1, #0xff Tracepoint setup: extracts low-8 bits of arg1 0x34 ldr w0, [x3] Important: loads the current trace-enabled flag from memory 0x38 ldr x1, [x2] Prologue (cont’d): reads the canary 0x3c str x1, [sp, #56] Prologue (cont’d): writes the canary into the new frame 0x40 mov x1, #0 Prologue (cont’d): zeroes out x1 for the upcoming branch test 0x44 cbnz w0, 0x88 Important: if tracing is disabled (w0==0) skip the heavy path entirely The trace-enabled check happens after the prologue. This is wasteful when tracing is disabled, which is often the case in production. To optimize this: _nocheck__trace_vhost_commit() is now fully inlined in the .h file with the hot path.It checks trace_event_get_state() before calling into _simple_trace_vhost_commit(), which remains in .c. This avoids calling into the .c function altogether when the tracepoint is disabled, thereby skipping unnecessary prologue instructions. This results in better performance by removing redundant instructions in the tracing fast path. Signed-off-by: Tanish Desai <tanishdesai37@gmail.com> Message-id: 20250528192528.3968-1-tanishdesai37@gmail.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> |
||
---|---|---|
.github/workflows | ||
.gitlab/issue_templates | ||
.gitlab-ci.d | ||
accel | ||
audio | ||
authz | ||
backends | ||
block | ||
bsd-user | ||
chardev | ||
common-user | ||
configs | ||
contrib | ||
crypto | ||
disas | ||
docs | ||
dump | ||
ebpf | ||
fpu | ||
fsdev | ||
gdb-xml | ||
gdbstub | ||
host/include | ||
hw | ||
include | ||
io | ||
libdecnumber | ||
linux-headers | ||
linux-user | ||
migration | ||
monitor | ||
nbd | ||
net | ||
pc-bios | ||
plugins | ||
po | ||
python | ||
qapi | ||
qga | ||
qobject | ||
qom | ||
replay | ||
roms | ||
rust | ||
scripts | ||
scsi | ||
semihosting | ||
stats | ||
storage-daemon | ||
stubs | ||
subprojects | ||
system | ||
target | ||
tcg | ||
tests | ||
tools | ||
trace | ||
ui | ||
util | ||
.b4-config | ||
.dir-locals.el | ||
.editorconfig | ||
.exrc | ||
.gdbinit | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
.gitpublish | ||
.mailmap | ||
.patchew.yml | ||
.readthedocs.yml | ||
.travis.yml | ||
block.c | ||
blockdev-nbd.c | ||
blockdev.c | ||
blockjob.c | ||
configure | ||
COPYING | ||
COPYING.LIB | ||
cpu-common.c | ||
cpu-target.c | ||
event-loop-base.c | ||
gitdm.config | ||
hmp-commands-info.hx | ||
hmp-commands.hx | ||
iothread.c | ||
job-qmp.c | ||
job.c | ||
Kconfig | ||
Kconfig.host | ||
LICENSE | ||
MAINTAINERS | ||
Makefile | ||
meson.build | ||
meson_options.txt | ||
module-common.c | ||
os-posix.c | ||
os-wasm.c | ||
os-win32.c | ||
page-target.c | ||
page-vary-common.c | ||
page-vary-target.c | ||
pythondeps.toml | ||
qemu-bridge-helper.c | ||
qemu-edid.c | ||
qemu-img-cmds.hx | ||
qemu-img.c | ||
qemu-io-cmds.c | ||
qemu-io.c | ||
qemu-keymap.c | ||
qemu-nbd.c | ||
qemu-options.hx | ||
qemu.nsi | ||
qemu.sasl | ||
README.rst | ||
replication.c | ||
target-info-stub.c | ||
target-info.c | ||
trace-events | ||
VERSION | ||
version.rc |
=========== QEMU README =========== QEMU is a generic and open source machine & userspace emulator and virtualizer. QEMU is capable of emulating a complete machine in software without any need for hardware virtualization support. By using dynamic translation, it achieves very good performance. QEMU can also integrate with the Xen and KVM hypervisors to provide emulated hardware while allowing the hypervisor to manage the CPU. With hypervisor support, QEMU can achieve near native performance for CPUs. When QEMU emulates CPUs directly it is capable of running operating systems made for one machine (e.g. an ARMv7 board) on a different machine (e.g. an x86_64 PC board). QEMU is also capable of providing userspace API virtualization for Linux and BSD kernel interfaces. This allows binaries compiled against one architecture ABI (e.g. the Linux PPC64 ABI) to be run on a host using a different architecture ABI (e.g. the Linux x86_64 ABI). This does not involve any hardware emulation, simply CPU and syscall emulation. QEMU aims to fit into a variety of use cases. It can be invoked directly by users wishing to have full control over its behaviour and settings. It also aims to facilitate integration into higher level management layers, by providing a stable command line interface and monitor API. It is commonly invoked indirectly via the libvirt library when using open source applications such as oVirt, OpenStack and virt-manager. QEMU as a whole is released under the GNU General Public License, version 2. For full licensing details, consult the LICENSE file. Documentation ============= Documentation can be found hosted online at `<https://www.qemu.org/documentation/>`_. The documentation for the current development version that is available at `<https://www.qemu.org/docs/master/>`_ is generated from the ``docs/`` folder in the source tree, and is built by `Sphinx <https://www.sphinx-doc.org/en/master/>`_. Building ======== QEMU is multi-platform software intended to be buildable on all modern Linux platforms, OS-X, Win32 (via the Mingw64 toolchain) and a variety of other UNIX targets. The simple steps to build QEMU are: .. code-block:: shell mkdir build cd build ../configure make Additional information can also be found online via the QEMU website: * `<https://wiki.qemu.org/Hosts/Linux>`_ * `<https://wiki.qemu.org/Hosts/Mac>`_ * `<https://wiki.qemu.org/Hosts/W32>`_ Submitting patches ================== The QEMU source code is maintained under the GIT version control system. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu.git When submitting patches, one common approach is to use 'git format-patch' and/or 'git send-email' to format & send the mail to the qemu-devel@nongnu.org mailing list. All patches submitted must contain a 'Signed-off-by' line from the author. Patches should follow the guidelines set out in the `style section <https://www.qemu.org/docs/master/devel/style.html>`_ of the Developers Guide. Additional information on submitting patches can be found online via the QEMU website: * `<https://wiki.qemu.org/Contribute/SubmitAPatch>`_ * `<https://wiki.qemu.org/Contribute/TrivialPatches>`_ The QEMU website is also maintained under source control. .. code-block:: shell git clone https://gitlab.com/qemu-project/qemu-web.git * `<https://www.qemu.org/2017/02/04/the-new-qemu-website-is-up/>`_ A 'git-publish' utility was created to make above process less cumbersome, and is highly recommended for making regular contributions, or even just for sending consecutive patch series revisions. It also requires a working 'git send-email' setup, and by default doesn't automate everything, so you may want to go through the above steps manually for once. For installation instructions, please go to: * `<https://github.com/stefanha/git-publish>`_ The workflow with 'git-publish' is: .. code-block:: shell $ git checkout master -b my-feature $ # work on new commits, add your 'Signed-off-by' lines to each $ git publish Your patch series will be sent and tagged as my-feature-v1 if you need to refer back to it in the future. Sending v2: .. code-block:: shell $ git checkout my-feature # same topic branch $ # making changes to the commits (using 'git rebase', for example) $ git publish Your patch series will be sent with 'v2' tag in the subject and the git tip will be tagged as my-feature-v2. Bug reporting ============= The QEMU project uses GitLab issues to track bugs. Bugs found when running code built from QEMU git or upstream released sources should be reported via: * `<https://gitlab.com/qemu-project/qemu/-/issues>`_ If using QEMU via an operating system vendor pre-built binary package, it is preferable to report bugs to the vendor's own bug tracker first. If the bug is also known to affect latest upstream code, it can also be reported via GitLab. For additional information on bug reporting consult: * `<https://wiki.qemu.org/Contribute/ReportABug>`_ ChangeLog ========= For version history and release notes, please visit `<https://wiki.qemu.org/ChangeLog/>`_ or look at the git history for more detailed information. Contact ======= The QEMU community can be contacted in a number of ways, with the two main methods being email and IRC: * `<mailto:qemu-devel@nongnu.org>`_ * `<https://lists.nongnu.org/mailman/listinfo/qemu-devel>`_ * #qemu on irc.oftc.net Information on additional methods of contacting the community can be found online via the QEMU website: * `<https://wiki.qemu.org/Contribute/StartHere>`_