Deploying to gh-pages from @ Klipper3d/klipper@cba119db3a 🚀

This commit is contained in:
KevinOConnor 2023-04-17 00:03:38 +00:00
parent 13f13bf7d5
commit e172d515bc
108 changed files with 3049 additions and 1001 deletions

View file

@ -1552,7 +1552,7 @@
<h1 id="maillage-du-bed">Maillage du Bed<a class="headerlink" href="#maillage-du-bed" title="Permanent link">&para;</a></h1> <h1 id="maillage-du-bed">Maillage du Bed<a class="headerlink" href="#maillage-du-bed" title="Permanent link">&para;</a></h1>
<p>Le module Maillage du lit peut être utilisé pour compenser les irrégularités de la surface du lit afin d'obtenir une meilleure première couche sur l'ensemble du lit. Il convient de noter que la correction logicielle ne permet pas d'obtenir de résultats parfaits, elle ne peut qu'approximer la forme du lit. Le maillage du lit ne peut pas non plus compenser les problèmes mécaniques et électriques. Si un axe est de travers ou si un palpeur n'est pas précis, le module bed_mesh n'obtiendra pas de résultats précis lors du processus de palpage.</p> <p>The Bed Mesh module may be used to compensate for bed surface irregularities to achieve a better first layer across the entire bed. It should be noted that software based correction will not achieve perfect results, it can only approximate the shape of the bed. Bed Mesh also cannot compensate for mechanical and electrical issues. If an axis is skewed or a probe is not accurate then the bed_mesh module will not receive accurate results from the probing process.</p>
<p>Avant de procéder à l'étalonnage du maillage, vous devez vous assurer que l'offset Z de votre sonde est réglé. Si vous utilisez une butée de fin de course pour la mise à l'origine en Z, elle doit également être réglée. Voir <a href="Probe_Calibrate.html">Calibration de la sonde</a> et Z_ENDSTOP_CALIBRATE dans <a href="Manual_Level.html">Nivelage manuel</a> pour plus d'informations.</p> <p>Avant de procéder à l'étalonnage du maillage, vous devez vous assurer que l'offset Z de votre sonde est réglé. Si vous utilisez une butée de fin de course pour la mise à l'origine en Z, elle doit également être réglée. Voir <a href="Probe_Calibrate.html">Calibration de la sonde</a> et Z_ENDSTOP_CALIBRATE dans <a href="Manual_Level.html">Nivelage manuel</a> pour plus d'informations.</p>
<h2 id="configuration-de-base">Configuration de base<a class="headerlink" href="#configuration-de-base" title="Permanent link">&para;</a></h2> <h2 id="configuration-de-base">Configuration de base<a class="headerlink" href="#configuration-de-base" title="Permanent link">&para;</a></h2>
<h3 id="lits-rectangulaires">Lits rectangulaires<a class="headerlink" href="#lits-rectangulaires" title="Permanent link">&para;</a></h3> <h3 id="lits-rectangulaires">Lits rectangulaires<a class="headerlink" href="#lits-rectangulaires" title="Permanent link">&para;</a></h3>
@ -1569,7 +1569,7 @@ probe_count: 5, 3
<li><code>speed : 120</code> <em>Valeur par défaut : 50</em> La vitesse à laquelle l'outil se déplace entre les points palpés.</li> <li><code>speed : 120</code> <em>Valeur par défaut : 50</em> La vitesse à laquelle l'outil se déplace entre les points palpés.</li>
<li><code>horizontal_move_z : 5</code> <em>Valeur par défaut : 5</em> La coordonnée Z à laquelle la sonde s'élève avant de se déplacer entre les points.</li> <li><code>horizontal_move_z : 5</code> <em>Valeur par défaut : 5</em> La coordonnée Z à laquelle la sonde s'élève avant de se déplacer entre les points.</li>
<li><code>mesh_min : 35, 6</code> <em>Requis</em> La première coordonnée palpée, la plus proche de l'origine. Cette coordonnée est relative à l'emplacement de la sonde.</li> <li><code>mesh_min : 35, 6</code> <em>Requis</em> La première coordonnée palpée, la plus proche de l'origine. Cette coordonnée est relative à l'emplacement de la sonde.</li>
<li><code>mesh_max : 240, 198</code> <em>Requis</em> La coordonnée palpée la plus éloignée de l'origine. Ce n'est pas nécessairement le dernier point palpé, car le processus de palpage se déroule en zig-zag. Comme pour <code>mesh_min</code>, cette coordonnée est relative à l'emplacement de la sonde.</li> <li><code>mesh_max: 240, 198</code> <em>Required</em> The probed coordinate farthest farthest from the origin. This is not necessarily the last point probed, as the probing process occurs in a zig-zag fashion. As with <code>mesh_min</code>, this coordinate is relative to the probe's location.</li>
<li><code>probe_count : 5, 3</code> <em>Valeur par défaut : 3, 3</em> Le nombre de points à palper sur chaque axe, spécifié sous forme de valeurs entières X, Y. Dans cet exemple, 5 points seront palpés le long de l'axe X, avec 3 points le long de l'axe Y, pour un total de 15 points palpés. Notez que si vous voulez une grille carrée, par exemple 3x3, il est possible de n'utiliser qu'une seule valeur entière pour les deux axes, par exemple <code>probe_count : 3</code>. Notez qu'un maillage nécessite un nombre minimum de 3 points de sondage sur chaque axe.</li> <li><code>probe_count : 5, 3</code> <em>Valeur par défaut : 3, 3</em> Le nombre de points à palper sur chaque axe, spécifié sous forme de valeurs entières X, Y. Dans cet exemple, 5 points seront palpés le long de l'axe X, avec 3 points le long de l'axe Y, pour un total de 15 points palpés. Notez que si vous voulez une grille carrée, par exemple 3x3, il est possible de n'utiliser qu'une seule valeur entière pour les deux axes, par exemple <code>probe_count : 3</code>. Notez qu'un maillage nécessite un nombre minimum de 3 points de sondage sur chaque axe.</li>
</ul> </ul>
<p>L'illustration ci-dessous montre comment les options <code>mesh_min</code>, <code>mesh_max</code>, et <code>probe_count</code> sont utilisées pour générer des points de palpage. Les flèches indiquent la direction de la procédure de palpage, commençant en <code>mesh_min</code>. Pour référence, lorsque la sonde est à <code>mesh_min</code>, la buse sera à (11, 1), et lorsque la sonde est à <code>mesh_max</code>, la buse sera à (206, 193).</p> <p>L'illustration ci-dessous montre comment les options <code>mesh_min</code>, <code>mesh_max</code>, et <code>probe_count</code> sont utilisées pour générer des points de palpage. Les flèches indiquent la direction de la procédure de palpage, commençant en <code>mesh_min</code>. Pour référence, lorsque la sonde est à <code>mesh_min</code>, la buse sera à (11, 1), et lorsque la sonde est à <code>mesh_max</code>, la buse sera à (206, 193).</p>
@ -1589,12 +1589,12 @@ round_probe_count: 5
<li><code>mesh_origin : 0, 0</code> <em>Valeur par défaut : 0, 0</em> Le point central du maillage. Cette coordonnée est relative à l'emplacement de la sonde. Bien que la valeur par défaut soit 0, 0, il peut être utile d'ajuster l'origine dans le but de sonder une plus grande partie du lit. Voir l'illustration ci-dessous.</li> <li><code>mesh_origin : 0, 0</code> <em>Valeur par défaut : 0, 0</em> Le point central du maillage. Cette coordonnée est relative à l'emplacement de la sonde. Bien que la valeur par défaut soit 0, 0, il peut être utile d'ajuster l'origine dans le but de sonder une plus grande partie du lit. Voir l'illustration ci-dessous.</li>
<li><code>round_probe_count : 5</code> <em>Valeur par défaut : 5</em> C'est une valeur entière définissant le nombre maximum de points palpés le long des axes X et Y. Par "maximum", nous entendons le nombre de points palpés le long de l'origine du maillage. Cette valeur doit être un nombre impair, car il est nécessaire que le centre du maillage soit palpé.</li> <li><code>round_probe_count : 5</code> <em>Valeur par défaut : 5</em> C'est une valeur entière définissant le nombre maximum de points palpés le long des axes X et Y. Par "maximum", nous entendons le nombre de points palpés le long de l'origine du maillage. Cette valeur doit être un nombre impair, car il est nécessaire que le centre du maillage soit palpé.</li>
</ul> </ul>
<p>L'illustration ci-dessous montre comment les points palpés sont générés. Comme vous pouvez le voir, le réglage de <code>mesh_origin</code> à (-10, 0) nous permet de spécifier un rayon de maillage plus grand de 85.</p> <p>The illustration below shows how the probed points are generated. As you can see, setting the <code>mesh_origin</code> to (-10, 0) allows us to specify a larger mesh radius of 85.</p>
<p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p> <p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p>
<h2 id="configuration-avancee">Configuration avancée<a class="headerlink" href="#configuration-avancee" title="Permanent link">&para;</a></h2> <h2 id="configuration-avancee">Configuration avancée<a class="headerlink" href="#configuration-avancee" title="Permanent link">&para;</a></h2>
<p>Les options de configuration plus avancées sont expliquées en détail ci-dessous. Chaque exemple s'appuie sur la configuration de base du lit rectangulaire présentée ci-dessus. Chacune des options avancées s'applique de la même manière aux lits circulaires.</p> <p>Les options de configuration plus avancées sont expliquées en détail ci-dessous. Chaque exemple s'appuie sur la configuration de base du lit rectangulaire présentée ci-dessus. Chacune des options avancées s'applique de la même manière aux lits circulaires.</p>
<h3 id="interpolation-du-maillage">Interpolation du maillage<a class="headerlink" href="#interpolation-du-maillage" title="Permanent link">&para;</a></h3> <h3 id="interpolation-du-maillage">Interpolation du maillage<a class="headerlink" href="#interpolation-du-maillage" title="Permanent link">&para;</a></h3>
<p>Bien qu'il soit possible d'échantillonner directement la matrice palpée en utilisant une simple interpolation bilinéaire afin de déterminer les valeurs Z entre les points palpés, il est souvent utile d'interpoler des points supplémentaires en utilisant des algorithmes d'interpolation plus avancés pour augmenter la densité du maillage. Ces algorithmes ajoutent une courbure au maillage, en essayant de simuler les propriétés matérielles du lit. Le maillage du lit offre l'interpolation de lagrange et bicubique pour accomplir ceci.</p> <p>While its possible to sample the probed matrix directly using simple bi-linear interpolation to determine the Z-Values between probed points, it is often useful to interpolate extra points using more advanced interpolation algorithms to increase mesh density. These algorithms add curvature to the mesh, attempting to simulate the material properties of the bed. Bed Mesh offers lagrange and bicubic interpolation to accomplish this.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1629,7 +1629,7 @@ split_delta_z: .025
<li><code>move_check_distance : 5</code> <em>Valeur par défaut : 5</em> La distance minimale de vérification de changement de Z souhaité avant d'effectuer un fractionnemeny. Dans cet exemple, un mouvement de plus de 5mm sera traversé par l'algorithme. Tous les 5 mm, une recherche de maille Z sera effectuée, en la comparant à la valeur Z du mouvement précédent. Si le delta atteint le seuil fixé par <code>split_delta_z</code>, le mouvement sera divisé et la traversée continuera. Ce processus se répète jusqu'à ce que la fin du déplacement soit atteinte, où un ajustement final sera appliqué. Les déplacements plus courts que la <code>move_check_distance</code> ont l'ajustement Z correct appliqué directement au déplacement sans traversée ou division.</li> <li><code>move_check_distance : 5</code> <em>Valeur par défaut : 5</em> La distance minimale de vérification de changement de Z souhaité avant d'effectuer un fractionnemeny. Dans cet exemple, un mouvement de plus de 5mm sera traversé par l'algorithme. Tous les 5 mm, une recherche de maille Z sera effectuée, en la comparant à la valeur Z du mouvement précédent. Si le delta atteint le seuil fixé par <code>split_delta_z</code>, le mouvement sera divisé et la traversée continuera. Ce processus se répète jusqu'à ce que la fin du déplacement soit atteinte, où un ajustement final sera appliqué. Les déplacements plus courts que la <code>move_check_distance</code> ont l'ajustement Z correct appliqué directement au déplacement sans traversée ou division.</li>
<li><code>split_delta_z : .025</code> <em>Valeur par défaut : .025</em> Comme mentionné ci-dessus, il s'agit de l'écart minimum requis pour déclencher un fractionnement du mouvement. Dans cet exemple, toute valeur Z avec un écart de +/- 0,025 mm déclenchera un fractionnement.</li> <li><code>split_delta_z : .025</code> <em>Valeur par défaut : .025</em> Comme mentionné ci-dessus, il s'agit de l'écart minimum requis pour déclencher un fractionnement du mouvement. Dans cet exemple, toute valeur Z avec un écart de +/- 0,025 mm déclenchera un fractionnement.</li>
</ul> </ul>
<p>Généralement les valeurs par défaut de ces options sont suffisantes, en fait la valeur par défaut de 5mm pour la <code>move_check_distance</code> est probablement exagérée. Cependant, un utilisateur avancé peut souhaiter expérimenter avec ces options dans le but d'obtenir une première couche optimale.</p> <p>Generally the default values for these options are sufficient, in fact the default value of 5mm for the <code>move_check_distance</code> may be overkill. However an advanced user may wish to experiment with these options in an effort to squeeze out the optimal first layer.</p>
<h3 id="attenuation-du-maillage">Atténuation du maillage<a class="headerlink" href="#attenuation-du-maillage" title="Permanent link">&para;</a></h3> <h3 id="attenuation-du-maillage">Atténuation du maillage<a class="headerlink" href="#attenuation-du-maillage" title="Permanent link">&para;</a></h3>
<p>Lorsque l'option "fondu" est activée, l'ajustement du Z est réduit progressivement sur une distance définie par la configuration. Ceci est réalisé en appliquant de petits ajustements à la hauteur de la couche, en augmentant ou en diminuant selon la forme du lit. Lorsque le fondu est terminé, l'ajustement Z n'est plus appliqué, ce qui permet au sommet de l'impression d'être plat plutôt que de refléter la forme du lit. Le fondu peut également présenter quelques caractéristiques indésirables, si le fondu est effectué trop rapidement, il peut entraîner des artefacts visibles sur l'impression. De plus, si votre lit est sensiblement déformé, le fondu peut rétrécir ou étirer la hauteur Z de l'impression. C'est pourquoi le fondu est désactivé par défaut.</p> <p>Lorsque l'option "fondu" est activée, l'ajustement du Z est réduit progressivement sur une distance définie par la configuration. Ceci est réalisé en appliquant de petits ajustements à la hauteur de la couche, en augmentant ou en diminuant selon la forme du lit. Lorsque le fondu est terminé, l'ajustement Z n'est plus appliqué, ce qui permet au sommet de l'impression d'être plat plutôt que de refléter la forme du lit. Le fondu peut également présenter quelques caractéristiques indésirables, si le fondu est effectué trop rapidement, il peut entraîner des artefacts visibles sur l'impression. De plus, si votre lit est sensiblement déformé, le fondu peut rétrécir ou étirer la hauteur Z de l'impression. C'est pourquoi le fondu est désactivé par défaut.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
@ -1646,10 +1646,10 @@ fade_target: 0
<ul> <ul>
<li><code>fade_start: 1</code> <em>Valeur par défaut : 1</em> La hauteur Z à laquelle il faut commencer l'atténuation progressive de l'ajustement. C'est une bonne idée d'avoir quelques couches déjà déposées avant de commencer le processus de fondu.</li> <li><code>fade_start: 1</code> <em>Valeur par défaut : 1</em> La hauteur Z à laquelle il faut commencer l'atténuation progressive de l'ajustement. C'est une bonne idée d'avoir quelques couches déjà déposées avant de commencer le processus de fondu.</li>
<li><code>fade_end : 10</code> <em>Valeur par défaut : 0</em> La hauteur Z à laquelle le fondu doit s'arrêter. Si cette valeur est inférieure à <code>fade_start</code>, le fondu est désactivé. Cette valeur peut être ajustée en fonction de la déformation de la surface d'impression. Une surface fortement déformée devrait s'estomper sur une plus grande distance. Une surface presque plate peut être capable de réduire cette valeur pour s'estomper plus rapidement. 10mm est une valeur raisonnable pour commencer si vous utilisez la valeur par défaut de 1 pour <code>fade_start</code>.</li> <li><code>fade_end : 10</code> <em>Valeur par défaut : 0</em> La hauteur Z à laquelle le fondu doit s'arrêter. Si cette valeur est inférieure à <code>fade_start</code>, le fondu est désactivé. Cette valeur peut être ajustée en fonction de la déformation de la surface d'impression. Une surface fortement déformée devrait s'estomper sur une plus grande distance. Une surface presque plate peut être capable de réduire cette valeur pour s'estomper plus rapidement. 10mm est une valeur raisonnable pour commencer si vous utilisez la valeur par défaut de 1 pour <code>fade_start</code>.</li>
<li><code>fade_target : 0</code> <em>Valeur par défaut : La valeur Z moyenne du maillage</em> Le <code>fade_target</code> peut être considéré comme un décalage Z supplémentaire appliqué à l'ensemble du lit après la fin du fondu. En général, nous aimerions que cette valeur soit égale à 0, mais il y a des circonstances où elle ne devrait pas l'être. Par exemple, supposons que votre position d'origine sur le lit est aberrante, elle est inférieure de 0,2 mm à la hauteur moyenne palpée du lit. Si le <code>fade_target</code> est 0, le fondu va rétrécir l'impression d'une moyenne de 0,2 mm à travers le lit. En réglant la <code>fade_target</code> sur .2, la zone d'origine sera agrandie de .2 mm, mais le reste du lit aura une taille précise. En général, c'est une bonne idée de laisser <code>fade_target</code> en dehors de la configuration afin que la hauteur moyenne du maillage soit utilisée, cependant il peut être souhaitable d'ajuster manuellement la cible du fondu si l'on ne veut imprimer que sur une partie spécifique du lit.</li> <li><code>fade_target: 0</code> <em>Default Value: The average Z value of the mesh</em> The <code>fade_target</code> can be thought of as an additional Z offset applied to the entire bed after fade completes. Generally speaking we would like this value to be 0, however there are circumstances where it should not be. For example, lets assume your homing position on the bed is an outlier, its .2 mm lower than the average probed height of the bed. If the <code>fade_target</code> is 0, fade will shrink the print by an average of .2 mm across the bed. By setting the <code>fade_target</code> to .2, the homed area will expand by .2 mm, however, the rest of the bed will be accurately sized. Generally its a good idea to leave <code>fade_target</code> out of the configuration so the average height of the mesh is used, however it may be desirable to manually adjust the fade target if one wants to print on a specific portion of the bed.</li>
</ul> </ul>
<h3 id="lindice-de-reference-relatif">L'indice de référence relatif<a class="headerlink" href="#lindice-de-reference-relatif" title="Permanent link">&para;</a></h3> <h3 id="lindice-de-reference-relatif">L'indice de référence relatif<a class="headerlink" href="#lindice-de-reference-relatif" title="Permanent link">&para;</a></h3>
<p>La plupart des sondes sont sensibles à une dérive, c'est-à-dire à des inexactitudes dans le palpage introduites par la chaleur ou des interférences. Cela peut rendre difficile le calcul du décalage en Z de la sonde, en particulier à différentes températures du lit. C'est pourquoi certaines imprimantes utilisent à la fois une butée pour la mise à l'origine de l'axe Z et une sonde pour réaliser le maillage. Ces imprimantes peuvent bénéficier de la configuration de l'index de référence relatif.</p> <p>Most probes are susceptible to drift, ie: inaccuracies in probing introduced by heat or interference. This can make calculating the probe's z-offset challenging, particularly at different bed temperatures. As such, some printers use an endstop for homing the Z axis, and a probe for calibrating the mesh. These printers can benefit from configuring the relative reference index.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1717,7 +1717,7 @@ faulty_region_4_max: 45.0, 210.0
<p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p> <p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p>
<p>Après avoir réalisé un BED_MESH_CALIBRATE, il est possible de sauvegarder l'état actuel du maillage dans un profil nommé. Cela permet de charger un maillage sans re-palper le lit. Après qu'un profil ait été enregistré en utilisant <code>BED_MESH_PROFILE SAVE=&lt;name&gt;</code>, le gcode <code>SAVE_CONFIG</code> peut être exécuté pour écrire le profil dans printer.cfg.</p> <p>Après avoir réalisé un BED_MESH_CALIBRATE, il est possible de sauvegarder l'état actuel du maillage dans un profil nommé. Cela permet de charger un maillage sans re-palper le lit. Après qu'un profil ait été enregistré en utilisant <code>BED_MESH_PROFILE SAVE=&lt;name&gt;</code>, le gcode <code>SAVE_CONFIG</code> peut être exécuté pour écrire le profil dans printer.cfg.</p>
<p>Les profils peuvent être chargés en exécutant <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code>.</p> <p>Les profils peuvent être chargés en exécutant <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code>.</p>
<p>Il convient de noter que chaque fois qu'un BED_MESH_CALIBRATE est produit, l'état actuel est automatiquement enregistré dans le profil <em>par défaut</em>. Si ce profil existe, il est automatiquement chargé au démarrage de Klipper. Si ce comportement n'est pas souhaitable, le profil <em>par défaut</em> peut être supprimé comme suit :</p> <p>It should be noted that each time a BED_MESH_CALIBRATE occurs, the current state is automatically saved to the <em>default</em> profile. The <em>default</em> profile can be removed as follows:</p>
<p><code>BED_MESH_PROFILE REMOVE=default</code></p> <p><code>BED_MESH_PROFILE REMOVE=default</code></p>
<p>Tout autre profil enregistré peut être supprimé de la même manière, en remplaçant <em>default</em> par le nom du profil que vous souhaitez supprimer.</p> <p>Tout autre profil enregistré peut être supprimé de la même manière, en remplaçant <em>default</em> par le nom du profil que vous souhaitez supprimer.</p>
<h4 id="chargement-du-profil-par-defaut">Chargement du profil par défaut<a class="headerlink" href="#chargement-du-profil-par-defaut" title="Permanent link">&para;</a></h4> <h4 id="chargement-du-profil-par-defaut">Chargement du profil par défaut<a class="headerlink" href="#chargement-du-profil-par-defaut" title="Permanent link">&para;</a></h4>

View file

@ -1134,6 +1134,13 @@
Test du taux de pas sur SAMD51 Test du taux de pas sur SAMD51
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1503,6 +1510,13 @@
Test du taux de pas sur SAMD51 Test du taux de pas sur SAMD51
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2005,6 +2019,34 @@ finalize_config crc=0
</tr> </tr>
</tbody> </tbody>
</table> </table>
<h3 id="ar100-step-rate-benchmark">AR100 step rate benchmark<a class="headerlink" href="#ar100-step-rate-benchmark" title="Permanent link">&para;</a></h3>
<p>The following configuration sequence is used on AR100 CPU (Allwinner A64):</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3
config_stepper oid=0 step_pin=PL10 dir_pin=PE14 invert_step=-1 step_pulse_ticks=0
config_stepper oid=1 step_pin=PL11 dir_pin=PE15 invert_step=-1 step_pulse_ticks=0
config_stepper oid=2 step_pin=PL12 dir_pin=PE16 invert_step=-1 step_pulse_ticks=0
finalize_config crc=0
</code></pre></div>
<p>The test was last run on commit <code>08d037c6</code> with gcc version <code>or1k-linux-musl-gcc (GCC) 9.2.0</code> on an Allwinner A64-H micro-controller.</p>
<table>
<thead>
<tr>
<th>AR100 R_PIO</th>
<th>ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 moteur pas à pas</td>
<td>85</td>
</tr>
<tr>
<td>3 moteurs pas à pas</td>
<td>359</td>
</tr>
</tbody>
</table>
<h3 id="test-du-taux-de-pas-sur-rp2040">Test du taux de pas sur RP2040<a class="headerlink" href="#test-du-taux-de-pas-sur-rp2040" title="Permanent link">&para;</a></h3> <h3 id="test-du-taux-de-pas-sur-rp2040">Test du taux de pas sur RP2040<a class="headerlink" href="#test-du-taux-de-pas-sur-rp2040" title="Permanent link">&para;</a></h3>
<p>La séquence de configuration suivante est utilisée sur le RP2040 :</p> <p>La séquence de configuration suivante est utilisée sur le RP2040 :</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3 <div class="highlight"><pre><span></span><code>allocate_oids count=3
@ -2105,6 +2147,12 @@ get_uptime
<td>avr-gcc (GCC) 5.4.0</td> <td>avr-gcc (GCC) 5.4.0</td>
</tr> </tr>
<tr> <tr>
<td>ar100 (serial)</td>
<td>138K</td>
<td>08d037c6</td>
<td>or1k-linux-musl-gcc 9.3.0</td>
</tr>
<tr>
<td>samd21 (USB)</td> <td>samd21 (USB)</td>
<td>223K</td> <td>223K</td>
<td>01d2183f</td> <td>01d2183f</td>

View file

@ -1776,7 +1776,7 @@ stm32flash -w generic_boot20_pc13.bin -v -g 0 /dev/ttyAMA0
<p>Le chargeur de démarrage ne s'exécute généralement que pendant une courte période après le démarrage. Il peut être nécessaire de chronométrer la commande ci-dessus pour qu'elle s'exécute pendant que le chargeur de démarrage est toujours actif (le chargeur de démarrage fait clignoter une LED de la carte pendant son exécution). Vous pouvez également définir la broche "boot 0" sur low et la broche "boot 1" sur high pour rester en mode chargeur de démarrage après une réinitialisation.</p> <p>Le chargeur de démarrage ne s'exécute généralement que pendant une courte période après le démarrage. Il peut être nécessaire de chronométrer la commande ci-dessus pour qu'elle s'exécute pendant que le chargeur de démarrage est toujours actif (le chargeur de démarrage fait clignoter une LED de la carte pendant son exécution). Vous pouvez également définir la broche "boot 0" sur low et la broche "boot 1" sur high pour rester en mode chargeur de démarrage après une réinitialisation.</p>
<h3 id="stm32f103-avec-chargeur-de-demarrage-hid">STM32F103 avec chargeur de démarrage HID<a class="headerlink" href="#stm32f103-avec-chargeur-de-demarrage-hid" title="Permanent link">&para;</a></h3> <h3 id="stm32f103-avec-chargeur-de-demarrage-hid">STM32F103 avec chargeur de démarrage HID<a class="headerlink" href="#stm32f103-avec-chargeur-de-demarrage-hid" title="Permanent link">&para;</a></h3>
<p>Le <a href="https://github.com/Serasidis/STM32_HID_Bootloader">chargeur de démarrage HID</a> est un chargeur de démarrage compact et sans pilote capable de flasher via USB. Un <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork avec des builds spécifiques au SKR Mini E3 1.2</a> est également disponible.</p> <p>Le <a href="https://github.com/Serasidis/STM32_HID_Bootloader">chargeur de démarrage HID</a> est un chargeur de démarrage compact et sans pilote capable de flasher via USB. Un <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork avec des builds spécifiques au SKR Mini E3 1.2</a> est également disponible.</p>
<p>Pour les cartes STM32F103 génériques telles que la blue pill, il est possible de flasher le chargeur de démarrage via un port série 3.3v en utilisant stm32flash comme indiqué dans la section stm32duino ci-dessus, en remplaçant le nom de fichier par le binaire du chargeur de démarrage souhaité (c'est-à-dire: hid_generic_pc13.bin pour la blue pill).</p> <p>For generic STM32F103 boards such as the blue pill it is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired hid bootloader binary (ie: hid_generic_pc13.bin for the blue pill).</p>
<p>Il n'est pas possible d'utiliser stm32flash pour le SKR Mini E3 car la broche boot0 est directement liée à la terre et non connectée via des broches d'en-tête. Il est recommandé d'utiliser un STLink V2 avec le programmeur STM32Cube pour flasher le bootloader. Si vous n'avez pas accès à un STLink, il est également possible d'utiliser un <a href="#running-openocd-on-the-raspberry-pi">Raspberry Pi et OpenOCD</a> avec la configuration de puce suivante :</p> <p>Il n'est pas possible d'utiliser stm32flash pour le SKR Mini E3 car la broche boot0 est directement liée à la terre et non connectée via des broches d'en-tête. Il est recommandé d'utiliser un STLink V2 avec le programmeur STM32Cube pour flasher le bootloader. Si vous n'avez pas accès à un STLink, il est également possible d'utiliser un <a href="#running-openocd-on-the-raspberry-pi">Raspberry Pi et OpenOCD</a> avec la configuration de puce suivante :</p>
<div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg] <div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg]
</code></pre></div> </code></pre></div>
@ -1829,10 +1829,10 @@ make
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0 <div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0
</code></pre></div> </code></pre></div>
<p>Il peut être nécessaire d'entrer manuellement dans le chargeur de démarrage, cela peut être fait en définissant "boot 0" au niveau bas et "boot 1" au niveau haut. Sur le SKR Mini E3 "Boot 1" n'est pas disponible, vous pouvez donc le faire en mettant la broche PA2 au niveau bas si vous avez flashé "hid_btt_skr_mini_e3.bin". Cette broche est étiquetée "TX0" sur l'en-tête TFT dans le document "PIN" du SKR Mini E3. Il y a une broche de terre à côté de PA2 que vous pouvez utiliser pour mettre PA2 à 0.</p> <p>It may be necessary to manually enter the bootloader, this can be done by setting "boot 0" low and "boot 1" high. On the SKR Mini E3 "Boot 1" is not available, so it may be done by setting pin PA2 low if you flashed "hid_btt_skr_mini_e3.bin". This pin is labeled "TX0" on the TFT header in the SKR Mini E3's "PIN" document. There is a ground pin next to PA2 which you can use to pull PA2 low.</p>
<h3 id="stm32f103stm32f072-avec-chargeur-de-demarrage-msc">STM32F103/STM32F072 avec chargeur de démarrage MSC<a class="headerlink" href="#stm32f103stm32f072-avec-chargeur-de-demarrage-msc" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f072-avec-chargeur-de-demarrage-msc">STM32F103/STM32F072 avec chargeur de démarrage MSC<a class="headerlink" href="#stm32f103stm32f072-avec-chargeur-de-demarrage-msc" title="Permanent link">&para;</a></h3>
<p>Le <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">chargeur de démarrage MSC</a> est un chargeur de démarrage sans pilote capable de flasher via USB.</p> <p>Le <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">chargeur de démarrage MSC</a> est un chargeur de démarrage sans pilote capable de flasher via USB.</p>
<p>Il est possible de flasher le chargeur de démarrage via un port série 3.3v en utilisant stm32flash comme indiqué dans la section stm32duino ci-dessus, en remplaçant le nom de fichier par le binaire du chargeur de démarrage MSC souhaité (c'est-à-dire : MSCboot-Bluepill.bin pour la blue pill).</p> <p>It is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired MSC bootloader binary (ie: MSCboot-Bluepill.bin for the blue pill).</p>
<p>Pour les cartes STM32F072, il est également possible de flasher le bootloader via USB (via DFU) avec quelque chose comme :</p> <p>Pour les cartes STM32F072, il est également possible de flasher le bootloader via USB (via DFU) avec quelque chose comme :</p>
<div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave <div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave
</code></pre></div> </code></pre></div>
@ -1841,7 +1841,7 @@ make
<p>Le chargeur de démarrage peut être activé en appuyant deux fois sur le bouton de réinitialisation de la carte. Dès que le chargeur de démarrage est activé, la carte apparaît comme une clé USB sur laquelle le fichier klipper.bin peut être copié.</p> <p>Le chargeur de démarrage peut être activé en appuyant deux fois sur le bouton de réinitialisation de la carte. Dès que le chargeur de démarrage est activé, la carte apparaît comme une clé USB sur laquelle le fichier klipper.bin peut être copié.</p>
<h3 id="stm32f103stm32f0x2-avec-chargeur-de-demarrage-canboot">STM32F103/STM32F0x2 avec chargeur de démarrage CanBoot<a class="headerlink" href="#stm32f103stm32f0x2-avec-chargeur-de-demarrage-canboot" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f0x2-avec-chargeur-de-demarrage-canboot">STM32F103/STM32F0x2 avec chargeur de démarrage CanBoot<a class="headerlink" href="#stm32f103stm32f0x2-avec-chargeur-de-demarrage-canboot" title="Permanent link">&para;</a></h3>
<p>Le chargeur de démarrage <a href="https://github.com/Arksine/CanBoot">CanBoot</a> offre une option pour télécharger le micrologiciel Klipper via le CANBUS. Le chargeur de démarrage lui-même est dérivé du code source de Klipper. Actuellement, CanBoot prend en charge les modèles STM32F103, STM32F042 et STM32F072.</p> <p>Le chargeur de démarrage <a href="https://github.com/Arksine/CanBoot">CanBoot</a> offre une option pour télécharger le micrologiciel Klipper via le CANBUS. Le chargeur de démarrage lui-même est dérivé du code source de Klipper. Actuellement, CanBoot prend en charge les modèles STM32F103, STM32F042 et STM32F072.</p>
<p>Il est recommandé d'utiliser un programmeur ST-Link pour flasher CanBoot, mais il devrait être possible de flasher en utilisant <code>stm32flash</code> sur les appareils STM32F103 et <code>dfu-util</code> sur les appareils STM32F042/STM32F072. Consultez les sections précédentes de ce document pour obtenir des instructions sur ces méthodes de flash, en remplaçant <code>canboot.bin</code> par le nom de fichier, le cas échéant. Le lien CanBoot ci-dessus fournit des instructions pour créer le chargeur de démarrage.</p> <p>It is recommended to use a ST-Link Programmer to flash CanBoot, however it should be possible to flash using <code>stm32flash</code> on STM32F103 devices, and <code>dfu-util</code> on STM32F042/STM32F072 devices. See the previous sections in this document for instructions on these flashing methods, substituting <code>canboot.bin</code> for the file name where appropriate. The CanBoot repository linked above provides instructions for building the bootloader.</p>
<p>La première fois que CanBoot a été flashé, il devrait détecter qu'aucune application n'est présente et entrer dans le chargeur de démarrage. Si cela ne se produit pas, il est possible d'entrer dans le chargeur de démarrage en appuyant deux fois de suite sur le bouton de réinitialisation.</p> <p>La première fois que CanBoot a été flashé, il devrait détecter qu'aucune application n'est présente et entrer dans le chargeur de démarrage. Si cela ne se produit pas, il est possible d'entrer dans le chargeur de démarrage en appuyant deux fois de suite sur le bouton de réinitialisation.</p>
<p>L'utilitaire <code>flash_can.py</code> fourni dans le dossier <code>lib/canboot</code> peut être utilisé pour télécharger le firmware Klipper. L'UUID de l'appareil doit clignoter. Si vous n'avez pas d'UUID, il est possible d'interroger les nœuds exécutant actuellement le chargeur de démarrage :</p> <p>L'utilitaire <code>flash_can.py</code> fourni dans le dossier <code>lib/canboot</code> peut être utilisé pour télécharger le firmware Klipper. L'UUID de l'appareil doit clignoter. Si vous n'avez pas d'UUID, il est possible d'interroger les nœuds exécutant actuellement le chargeur de démarrage :</p>
<div class="highlight"><pre><span></span><code>python3 flash_can.py -q <div class="highlight"><pre><span></span><code>python3 flash_can.py -q
@ -1855,8 +1855,8 @@ make
<p><code>aabbccddeeff</code> est remplacé par votre UUID. Notez que les options <code>-i</code> et <code>-f</code> peuvent être omises, elles sont par défaut sur <code>can0</code> et <code>~/klipper/out/klipper.bin</code>.</p> <p><code>aabbccddeeff</code> est remplacé par votre UUID. Notez que les options <code>-i</code> et <code>-f</code> peuvent être omises, elles sont par défaut sur <code>can0</code> et <code>~/klipper/out/klipper.bin</code>.</p>
<p>Lors de la création de Klipper pour une utilisation avec CanBoot, sélectionnez l'option 8 KiB Bootloader.</p> <p>Lors de la création de Klipper pour une utilisation avec CanBoot, sélectionnez l'option 8 KiB Bootloader.</p>
<h2 id="micro-controleurs-stm32f4-skr-pro-11">Micro-contrôleurs STM32F4 (SKR Pro 1.1)<a class="headerlink" href="#micro-controleurs-stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2> <h2 id="micro-controleurs-stm32f4-skr-pro-11">Micro-contrôleurs STM32F4 (SKR Pro 1.1)<a class="headerlink" href="#micro-controleurs-stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2>
<p>Les microcontrôleurs STM32F4 sont équipés d'un chargeur de démarrage système intégré capable de flasher via USB (via DFU), série 3,3 V et diverses autres méthodes (voir le document STM AN2606 pour plus d'informations). Certaines cartes STM32F4, telles que le SKR Pro 1.1, ne peuvent pas entrer dans le chargeur de démarrage DFU. Le chargeur de démarrage HID est disponible pour les cartes basées sur STM32F405/407 si l'utilisateur préfère flasher sur USB plutôt que d'utiliser la carte SD. Notez que vous devrez peut-être configurer et construire une version spécifique à votre carte, une <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">version pour le SKR Pro 1.1 est disponible ici</a>.</p> <p>STM32F4 micro-controllers come equipped with a built-in system bootloader capable of flashing over USB (via DFU), 3.3V Serial, and various other methods (see STM Document AN2606 for more information). Some STM32F4 boards, such as the SKR Pro 1.1, are not able to enter the DFU bootloader. The HID bootloader is available for STM32F405/407 based boards should the user prefer flashing over USB over using the sdcard. Note that you may need to configure and build a version specific to your board, a <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">build for the SKR Pro 1.1 is available here</a>.</p>
<p>À moins que votre carte ne soit compatible DFU, la méthode de flash la plus accessible est probablement via un port série 3.3v, qui suit la même procédure que <a href="#stm32f103-micro-controllers-blue-pill-devices">flasher le STM32F103 avec stm32flash</a>. Par exemple:</p> <p>Unless your board is DFU capable the most accessible flashing method is likely via 3.3V serial, which follows the same procedure as <a href="#stm32f103-micro-controllers-blue-pill-devices">flashing the STM32F103 using stm32flash</a>. For example:</p>
<div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin <div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin
stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0 stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0

View file

@ -1466,15 +1466,15 @@
<td>Nivellement du lit, flashage du MCU</td> <td>Nivellement du lit, flashage du MCU</td>
</tr> </tr>
<tr> <tr>
<td>James Hartley</td>
<td>@JamesH1978</td>
<td>Configuration files</td>
</tr>
<tr>
<td>Kevin O'Connor</td> <td>Kevin O'Connor</td>
<td>@KevinOConnor</td> <td>@KevinOConnor</td>
<td>Système de mouvement de base, code du microcontrôleur</td> <td>Système de mouvement de base, code du microcontrôleur</td>
</tr> </tr>
<tr>
<td>Paul McGowan</td>
<td>@mental405</td>
<td>Fichiers de configuration, documentation</td>
</tr>
</tbody> </tbody>
</table> </table>
<p>Veuillez ne pas envoyer de "ping" à l'un des évaluateurs et ne pas leur adresser de soumissions. Tous les évaluateurs surveillent les forums et les PR, et prennent en charge les évaluations quand ils en ont le temps.</p> <p>Veuillez ne pas envoyer de "ping" à l'un des évaluateurs et ne pas leur adresser de soumissions. Tous les évaluateurs surveillent les forums et les PR, et prennent en charge les évaluations quand ils en ont le temps.</p>

View file

@ -1293,6 +1293,8 @@
<p>Ce document couvre les modifications logicielles apportées au fichier de configuration qui ne sont pas rétro compatibles. Il est conseillé de consulter ce document lors de la mise à jour du logiciel Klipper.</p> <p>Ce document couvre les modifications logicielles apportées au fichier de configuration qui ne sont pas rétro compatibles. Il est conseillé de consulter ce document lors de la mise à jour du logiciel Klipper.</p>
<p>Toutes les dates de ce document sont approximatives.</p> <p>Toutes les dates de ce document sont approximatives.</p>
<h2 id="changements">Changements<a class="headerlink" href="#changements" title="Permanent link">&para;</a></h2> <h2 id="changements">Changements<a class="headerlink" href="#changements" title="Permanent link">&para;</a></h2>
<p>20230304: The <code>SET_TMC_CURRENT</code> command now properly adjusts the globalscaler register for drivers that have it. This removes a limitation where on tmc5160, the currents could not be raised higher with <code>SET_TMC_CURRENT</code> than the <code>run_current</code> value set in the config file. However, this has a side effect: After running <code>SET_TMC_CURRENT</code>, the stepper must be held at standstill for &gt;130ms in case StealthChop2 is used so that the AT#1 calibration gets executed by the driver.</p>
<p>20230202: The format of the <code>printer.screws_tilt_adjust</code> status information has changed. The information is now stored as a dictionary of screws with the resulting measurements. See the <a href="Status_Reference.html#screws_tilt_adjust">status reference</a> for details.</p>
<p>20230201 : Le module <code>[bed_mesh]</code> ne charge plus le profil <code>default</code> au démarrage. Il est recommandé aux utilisateurs qui utilisent le profil <code>default</code> d'ajouter <code>BED_MESH_PROFILE LOAD=default</code> à leur macro <code>START_PRINT</code> (ou à la configuration "Start G-Code" de leur trancheur si applicable).</p> <p>20230201 : Le module <code>[bed_mesh]</code> ne charge plus le profil <code>default</code> au démarrage. Il est recommandé aux utilisateurs qui utilisent le profil <code>default</code> d'ajouter <code>BED_MESH_PROFILE LOAD=default</code> à leur macro <code>START_PRINT</code> (ou à la configuration "Start G-Code" de leur trancheur si applicable).</p>
<p>20230103 : Il est maintenant possible avec le script flash-sdcard.sh de flasher les deux variantes du Bigtreetech SKR-2, STM32F407 et STM32F429. Cela signifie que le tag originel de btt-skr2 a maintenant changé en btt-skr-2-f407 ou btt-skr-2-f429.</p> <p>20230103 : Il est maintenant possible avec le script flash-sdcard.sh de flasher les deux variantes du Bigtreetech SKR-2, STM32F407 et STM32F429. Cela signifie que le tag originel de btt-skr2 a maintenant changé en btt-skr-2-f407 ou btt-skr-2-f429.</p>
<p>20221128 : Sortie de Klipper v0.11.0.</p> <p>20221128 : Sortie de Klipper v0.11.0.</p>

View file

@ -1337,6 +1337,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3258,6 +3265,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3822,61 +3836,65 @@ radius:
<div class="highlight"><pre><span></span><code>[printer] <div class="highlight"><pre><span></span><code>[printer]
kinematics: deltesian kinematics: deltesian
max_z_velocity: max_z_velocity:
# Pour les imprimantes deltesiennes, ceci limite la vitesse maximale (en mm/s) des # For deltesian printers, this limits the maximum velocity (in mm/s) of
# déplacements avec un mouvement sur l&#39;axe z. Ce paramètre peut être utilisé pour # moves with z axis movement. This setting can be used to reduce the
# réduire la vitesse maximale des déplacements vers le haut/bas (qui nécessitent un # maximum speed of up/down moves (which require a higher step rate
# taux de pas plus élevé que les autres mouvements sur une imprimante deltesienne). # than other moves on a deltesian printer). The default is to use
# La valeur par défaut est d&#39;utiliser max_velocity pour max_z_velocity. # max_velocity for max_z_velocity.
#max_z_accel: #max_z_accel:
# Ceci définit l&#39;accélération maximale (en mm/s^2) du mouvement le long de l&#39;axe z. # This sets the maximum acceleration (in mm/s^2) of movement along
# Ce paramètre peut être utile si l&#39;imprimante peut atteindre une plus grande # the z axis. Setting this may be useful if the printer can reach higher
# accélération sur les mouvements XY que sur les mouvements Z (par exemple, lors # acceleration on XY moves than Z moves (eg, when using input shaper).
# de l&#39;utilisation de la compensation de la résonance). # The default is to use max_accel for max_z_accel.
# La valeur par défaut est d&#39;utiliser max_accel pour max_z_accel. #minimum_z_position: 0
#minimum_z_position : 0 # The minimum Z position that the user may command the head to move
# Position Z minimale à laquelle l&#39;utilisateur peut ordonner à la tête de se déplacer. # to. The default is 0.
# La valeur par défaut est 0.
#min_angle: 5 #min_angle: 5
# Ceci représente l&#39;angle minimum (en degrés) par rapport à l&#39;horizontale que les bras # This represents the minimum angle (in degrees) relative to horizontal
# deltesiens sont autorisés à atteindre. Ce paramètre est destiné à empêcher les bras de # that the deltesian arms are allowed to achieve. This parameter is
# devenir complètement horizontaux, ce qui risquerait de provoquer une inversion # intended to restrict the arms from becoming completely horizontal,
# accidentelle de l&#39;axe XZ. # which would risk accidental inversion of the XZ axis. The default is 5.
# La valeur par défaut est 5.
#print_width: #print_width:
# La distance (en mm) des coordonnées X valides de la tête de l&#39;outil. On peut utiliser ce # The distance (in mm) of valid toolhead X coordinates. One may use
# paramètre pour personnaliser la vérification de la plage des mouvements de la tête de # this setting to customize the range checking of toolhead moves. If
# l&#39;outil. Si une grande valeur est spécifiée ici, il peut être possible de faire entrer la tête # a large value is specified here then it may be possible to command
# de l&#39;outil en collision avec une colonne. Ce paramètre correspond généralement à la # the toolhead into a collision with a tower. This setting usually
# largeur du banc (en mm). # corresponds to bed width (in mm).
#slow_ratio: 3 #slow_ratio: 3
# Rapport utilisé pour limiter la vitesse et l&#39;accélération des mouvements proches des # The ratio used to limit velocity and acceleration on moves near the
# extrêmes de l&#39;axe X. Si la distance verticale divisée par la distance horizontale dépasse # extremes of the X axis. If vertical distance divided by horizontal
# la valeur de slow_ratio, la vitesse et l&#39;accélération sont limitées à la moitié de leur valeur # distance exceeds the value of slow_ratio, then velocity and
# nominale. Si la distance verticale divisée par la distance horizontale dépasse de deux fois # acceleration are limited to half their nominal values. If vertical
# la valeur de slow_ratio, alors la vitesse et l&#39;accélération sont limitées à un quart de leur # distance divided by horizontal distance exceeds twice the value of
# valeur nominale. La valeur par défaut est 3. # the slow_ratio, then velocity and acceleration are limited to one
# quarter of their nominal values. The default is 3.
# La section stepper_left est utilisée pour décrire le moteur pas à pas contrôlant la colonne # The stepper_left section is used to describe the stepper controlling
# gauche. Cette section contrôle également les paramètres d&#39;orientation (homing_speed, # the left tower. This section also controls the homing parameters
# homing_retract_dist) pour toutes les colonnes. # (homing_speed, homing_retract_dist) for all towers.
[stepper_left] [stepper_left]
position_endstop: position_endstop:
# Distance (en mm) entre la buse et le lit lorsque la buse se trouve au centre de la zone de # Distance (in mm) between the nozzle and the bed when the nozzle is
# construction. Ce paramètre doit être fourni pour stepper_left ; pour le paramètre stepper_right # in the center of the build area and the endstops are triggered. This
# ce paramètre prend par défaut la valeur spécifiée pour stepper_left. # parameter must be provided for stepper_left; for stepper_right this
# parameter defaults to the value specified for stepper_left.
arm_length: arm_length:
# Longueur (en mm) de la tige diagonale reliant le chariot de la colonne à la tête d&#39;impression. # Length (in mm) of the diagonal rod that connects the tower carriage to
# Ce paramètre doit être fourni pour stepper_left. Pour le paramètre stepper_right, ce paramètre # the print head. This parameter must be provided for stepper_left; for
# prend par défaut la valeur spécifiée pour stepper_left. # stepper_right, this parameter defaults to the value specified for
# stepper_left.
arm_x_length: arm_x_length:
# Distance horizontale entre la tête d&#39;impression et la colonne lorsque l&#39;imprimante est mise à # Horizontal distance between the print head and the tower when the
# l&#39;origine. Ce paramètre doit être fourni pour stepper_left ; pour stepper_right, ce paramètre # printers is homed. This parameter must be provided for stepper_left;
# prend par défaut la valeur spécifiée pour stepper_left. # for stepper_right, this parameter defaults to the value specified for
# stepper_left.
# La section stepper_right est utilisée pour décrire le moteur pas à pas contrôlant la colonne de droite. # The stepper_right section is used to describe the stepper controlling the
# right tower.
[stepper_right] [stepper_right]
# La section stepper_y est utilisée pour décrire le moteur pas à pas contrôlant l&#39;axe Y d&#39;un robot deltesien. # The stepper_y section is used to describe the stepper controlling
# the Y axis in a deltesian robot.
[stepper_y] [stepper_y]
</code></pre></div> </code></pre></div>
@ -4437,36 +4455,33 @@ max_temp:
<p>Voir le <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guide de nivelage</a> et la <a href="G-Codes.html#screws_tilt_adjust">référence des commandes</a> pour des informations supplémentaires.</p> <p>Voir le <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guide de nivelage</a> et la <a href="G-Codes.html#screws_tilt_adjust">référence des commandes</a> pour des informations supplémentaires.</p>
<div class="highlight"><pre><span></span><code>[screws_tilt_adjust] <div class="highlight"><pre><span></span><code>[screws_tilt_adjust]
#screw1: #screw1:
# Les coordonnées (X, Y) de la première vis de mise à niveau du lit. Il # The (X, Y) coordinate of the first bed leveling screw. This is a
# s&#39;agit d&#39;une position à laquelle déplacer la buse de manière à ce que # position to command the nozzle to so that the probe is directly
# la sonde soit directement au-dessus de la vis de mise à niveau du lit # above the bed screw (or as close as possible while still being
# (ou aussi près que possible tout en étant encore au-dessus du lit). # above the bed). This is the base screw used in calculations. This
# Il s&#39;agit de la vis de base utilisée dans les calculs. # parameter must be provided.
# Ce paramètre doit être fourni.
#screw1_name: #screw1_name:
# Un nom arbitraire pour la vis donnée. Ce nom est affiché lorsque le # An arbitrary name for the given screw. This name is displayed when
# script d&#39;aide s&#39;exécute. Par défaut, le nom utilisé est basé sur la # the helper script runs. The default is to use a name based upon
# position XY de la vis. # the screw XY location.
#screw2: #screw2:
#screw2_name: #screw2_name:
#... #...
# Vis supplémentaires de mise à niveau du lit. Au moins deux vis # Additional bed leveling screws. At least two screws must be
# doivent être définies. # defined.
#speed: 50 #speed: 50
# La vitesse (en mm/s) des déplacements sans palpage pendant # The speed (in mm/s) of non-probing moves during the calibration.
# l&#39;étalonnage. La valeur par défaut est 50. # The default is 50.
#horizontal_move_z: 5 #horizontal_move_z: 5
# La hauteur (en mm) à laquelle la tête doit être levée pour se # The height (in mm) that the head should be commanded to move to
# déplacer juste avant de lancer une opération de palpage. La # just prior to starting a probe operation. The default is 5.
# valeur par défaut est 5.
#screw_thread: CW-M3 #screw_thread: CW-M3
# Le type de vis utilisée pour le niveau du lit, M3, M4 ou M5 et la # The type of screw used for bed leveling, M3, M4, or M5, and the
# direction de la molette utilisée pour le nivelage du lit, diminution # rotation direction of the knob that is used to level the bed.
# dans le sens des aiguilles d&#39;une montre, augmentation dans le sens # Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5.
# inverse des aiguilles d&#39;une montre. Valeurs acceptées : CW-M3, # Default value is CW-M3 which most printers use. A clockwise
# CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5. La valeur par défaut est # rotation of the knob decreases the gap between the nozzle and the
# CW-M3. De nombreuses imprimantes utilisent une vis M3, un tour # bed. Conversely, a counter-clockwise rotation increases the gap.
# de molette dans le sens des aiguilles d&#39;une montre diminue la distance.
</code></pre></div> </code></pre></div>
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
@ -6197,6 +6212,120 @@ run_current:
# premier bit de HDEC est interprété comme le MSB de HSTRT dans ce cas). # premier bit de HDEC est interprété comme le MSB de HSTRT dans ce cas).
</code></pre></div> </code></pre></div>
<h3 id="tmc2240">[tmc2240]<a class="headerlink" href="#tmc2240" title="Permanent link">&para;</a></h3>
<p>Configure a TMC2240 stepper motor driver via SPI bus. To use this feature, define a config section with a "tmc2240" prefix followed by the name of the corresponding stepper config section (for example, "[tmc2240 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc2240 stepper_x]
cs_pin:
# The pin corresponding to the TMC2240 chip select line. This pin
# will be set to low at the start of SPI messages and raised to high
# after the message completes. This parameter must be provided.
#spi_speed:
#spi_bus:
#spi_software_sclk_pin:
#spi_software_mosi_pin:
#spi_software_miso_pin:
# See the &quot;common SPI settings&quot; section for a description of the
# above parameters.
#chain_position:
#chain_length:
# These parameters configure an SPI daisy chain. The two parameters
# define the stepper position in the chain and the total chain length.
# Position 1 corresponds to the stepper that connects to the MOSI signal.
# The default is to not use an SPI daisy chain.
#interpolate: True
# If true, enable step interpolation (the driver will internally
# step at a rate of 256 micro-steps). The default is True.
run_current:
# The amount of current (in amps RMS) to configure the driver to use
# during stepper movement. This parameter must be provided.
#hold_current:
# The amount of current (in amps RMS) to configure the driver to use
# when the stepper is not moving. Setting a hold_current is not
# recommended (see TMC_Drivers.md for details). The default is to
# not reduce the current.
#rref: 12000
# The resistance (in ohms) of the resistor between IREF and GND. The
# default is 12000.
#stealthchop_threshold: 0
# The velocity (in mm/s) to set the &quot;stealthChop&quot; threshold to. When
# set, &quot;stealthChop&quot; mode will be enabled if the stepper motor
# velocity is below this value. The default is 0, which disables
# &quot;stealthChop&quot; mode.
#driver_MSLUT0: 2863314260
#driver_MSLUT1: 1251300522
#driver_MSLUT2: 608774441
#driver_MSLUT3: 269500962
#driver_MSLUT4: 4227858431
#driver_MSLUT5: 3048961917
#driver_MSLUT6: 1227445590
#driver_MSLUT7: 4211234
#driver_W0: 2
#driver_W1: 1
#driver_W2: 1
#driver_W3: 1
#driver_X1: 128
#driver_X2: 255
#driver_X3: 255
#driver_START_SIN: 0
#driver_START_SIN90: 247
#driver_OFFSET_SIN90: 0
# These fields control the Microstep Table registers directly. The optimal
# wave table is specific to each motor and might vary with current. An
# optimal configuration will have minimal print artifacts caused by
# non-linear stepper movement. The values specified above are the default
# values used by the driver. The value must be specified as a decimal integer
# (hex form is not supported). In order to compute the wave table fields,
# see the tmc2130 &quot;Calculation Sheet&quot; from the Trinamic website.
# Additionally, this driver also has the OFFSET_SIN90 field which can be used
# to tune a motor with unbalanced coils. See the `Sine Wave Lookup Table`
# section in the datasheet for information about this field and how to tune
# it.
#driver_IHOLDDELAY: 6
#driver_IRUNDELAY: 4
#driver_TPOWERDOWN: 10
#driver_TBL: 2
#driver_TOFF: 3
#driver_HEND: 2
#driver_HSTRT: 5
#driver_FD3: 0
#driver_TPFD: 4
#driver_CHM: 0
#driver_VHIGHFS: 0
#driver_VHIGHCHM: 0
#driver_DISS2G: 0
#driver_DISS2VS: 0
#driver_PWM_AUTOSCALE: True
#driver_PWM_AUTOGRAD: True
#driver_PWM_FREQ: 0
#driver_FREEWHEEL: 0
#driver_PWM_GRAD: 0
#driver_PWM_OFS: 29
#driver_PWM_REG: 4
#driver_PWM_LIM: 12
#driver_SGT: 0
#driver_SEMIN: 0
#driver_SEUP: 0
#driver_SEMAX: 0
#driver_SEDN: 0
#driver_SEIMIN: 0
#driver_SFILT: 0
#driver_SG4_ANGLE_OFFSET: 1
# Set the given register during the configuration of the TMC2240
# chip. This may be used to set custom motor parameters. The
# defaults for each parameter are next to the parameter name in the
# above list.
#diag0_pin:
#diag1_pin:
# The micro-controller pin attached to one of the DIAG lines of the
# TMC2240 chip. Only a single diag pin should be specified. The pin
# is &quot;active low&quot; and is thus normally prefaced with &quot;^!&quot;. Setting
# this creates a &quot;tmc2240_stepper_x:virtual_endstop&quot; virtual pin
# which may be used as the stepper&#39;s endstop_pin. Doing this enables
# &quot;sensorless homing&quot;. (Be sure to also set driver_SGT to an
# appropriate sensitivity value.) The default is to not enable
# sensorless homing.
</code></pre></div>
<h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3> <h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3>
<p>Configuration d'un pilote de moteur pas à pas TMC5160 via le bus SPI. Pour utiliser cette fonctionnalité, définissez une section de configuration avec un préfixe "tmc5160" suivi du nom de la section de configuration du moteur pas à pas correspondant (par exemple, "[tmc5160 stepper_x]").</p> <p>Configuration d'un pilote de moteur pas à pas TMC5160 via le bus SPI. Pour utiliser cette fonctionnalité, définissez une section de configuration avec un préfixe "tmc5160" suivi du nom de la section de configuration du moteur pas à pas correspondant (par exemple, "[tmc5160 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc5160 stepper_x] <div class="highlight"><pre><span></span><code>[tmc5160 stepper_x]
@ -7003,17 +7132,17 @@ host_mcu :
<p>Si vous utilisez Octoprint et que vous diffusez du gcode sur le port série au lieu d'imprimer à partir de virtual_sd, alors supprimez <strong>M1</strong> et <strong>M0</strong> de <em>Commandes de pause</em> dans <em>Paramètres &gt; Connexion série &gt; Firmware &amp; protocole</em> évitera d'avoir à lancer l'impression sur la Palette 2 et de devoir lever la pause dans Octoprint pour que l'impression commence.</p> <p>Si vous utilisez Octoprint et que vous diffusez du gcode sur le port série au lieu d'imprimer à partir de virtual_sd, alors supprimez <strong>M1</strong> et <strong>M0</strong> de <em>Commandes de pause</em> dans <em>Paramètres &gt; Connexion série &gt; Firmware &amp; protocole</em> évitera d'avoir à lancer l'impression sur la Palette 2 et de devoir lever la pause dans Octoprint pour que l'impression commence.</p>
<div class="highlight"><pre><span></span><code>[palette2] <div class="highlight"><pre><span></span><code>[palette2]
serial: serial:
# Le port série à connecter à la Palette 2. # The serial port to connect to the Palette 2.
#baud: 115200 #baud: 115200
# Le débit en bauds à utiliser. La valeur par défaut est 115200. # The baud rate to use. The default is 115200.
#feedrate_splice: 0.8 #feedrate_splice: 0.8
# Le taux d&#39;avance à utiliser lors de l&#39;épissage, la valeur par défaut est 0.8. # The feedrate to use when splicing, default is 0.8
#feedrate_normal: 1.0 #feedrate_normal: 1.0
# L&#39;avance à utiliser après l&#39;épissage, la valeur par défaut est 1.0. # The feedrate to use after splicing, default is 1.0
#auto_load_speed: 2 #auto_load_speed: 2
# Vitesse d&#39;extrusion lors du chargement automatique, par défaut 2 (mm/s). # Extrude feedrate when autoloading, default is 2 (mm/s)
#auto_cancel_variation: 0.1 #auto_cancel_variation: 0.1
# Annulation automatique de l&#39;impression lorsque la variation du ping est supérieure à ce seuil. # Auto cancel print when ping variation is above this threshold
</code></pre></div> </code></pre></div>
<h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3> <h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3>
@ -7062,21 +7191,23 @@ cs_pin:
<h3 id="parametres-i2c-communs">Paramètres I2C communs<a class="headerlink" href="#parametres-i2c-communs" title="Permanent link">&para;</a></h3> <h3 id="parametres-i2c-communs">Paramètres I2C communs<a class="headerlink" href="#parametres-i2c-communs" title="Permanent link">&para;</a></h3>
<p>Les paramètres suivants sont généralement disponibles pour les dispositifs utilisant un bus I2C.</p> <p>Les paramètres suivants sont généralement disponibles pour les dispositifs utilisant un bus I2C.</p>
<p>Notez que le support actuel des micro-contrôleurs de Klipper pour i2c n'est généralement pas tolérant au bruit sur la ligne. Des erreurs inattendues sur les fils i2c peuvent entraîner une erreur d'exécution de Klipper. Le support de Klipper de récupération des erreurs varie selon le type de micro-contrôleur. Il est généralement recommandé de n'utiliser que des dispositifs i2c se trouvant sur la même carte de circuit imprimé que le microcontrôleur.</p> <p>Note that Klipper's current micro-controller support for I2C is generally not tolerant to line noise. Unexpected errors on the I2C wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use I2C devices that are on the same printed circuit board as the micro-controller.</p>
<p>La plupart des implémentations de micro-contrôleurs Klipper ne supportent qu'une <code>i2c_speed</code> de 100000. Le micro-contrôleur Klipper "linux" supporte une vitesse de 400000, mais elle doit être <a href="RPi_microcontroller.html#optional-enabling-i2c">définie dans le système d'exploitation</a> sinon le paramètre <code>i2c_speed</code> est ignoré. Le micro-contrôleur Klipper "rp2040" supporte un taux de 400000 via le paramètre <code>i2c_speed</code>. Tous les autres micro-contrôleurs Klipper utilisent un taux de 100000 et ignorent le paramètre <code>i2c_speed</code>.</p> <p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000 (<em>standard mode</em>, 100kbit/s). The Klipper "Linux" micro-controller supports a 400000 speed (<em>fast mode</em>, 400kbit/s), but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "RP2040" micro-controller and ATmega AVR family support a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p>
<div class="highlight"><pre><span></span><code>#i2c_address: <div class="highlight"><pre><span></span><code>#i2c_address:
# L&#39;adresse i2c du périphérique. Elle doit être spécifiée sous la forme d&#39;un nombre décimal # The i2c address of the device. This must specified as a decimal
# (pas en hexadécimal). La valeur par défaut dépend du type de périphérique. # number (not in hex). The default depends on the type of device.
#i2c_mcu: #i2c_mcu:
# Le nom du micro-contrôleur auquel la puce est connectée. # The name of the micro-controller that the chip is connected to.
# La valeur par défaut est &quot;mcu&quot;. # The default is &quot;mcu&quot;.
#i2c_bus: #i2c_bus:
# Si le micro-contrôleur supporte plusieurs bus I2C, on peut spécifier le bus du micro-contrôleur. # If the micro-controller supports multiple I2C busses then one may
# La valeur par défaut dépend du type de micro-contrôleur. # specify the micro-controller bus name here. The default depends on
# the type of micro-controller.
#i2c_speed: #i2c_speed:
# La vitesse I2C (en Hz) à utiliser lors de la communication avec le périphérique. # The I2C speed (in Hz) to use when communicating with the device.
# L&#39;implémentation de Klipper pour la plupart des micro-contrôleurs est codée en dur à 100000, # The Klipper implementation on most micro-controllers is hard-coded
# modifier cette valeur n&#39;a aucun effet. La valeur par défaut est 100000. # to 100000 and changing this value has no effect. The default is
# 100000. Linux, RP2040 and ATmega support 400000.
</code></pre></div> </code></pre></div>

View file

@ -1505,7 +1505,7 @@ make build
<div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so <div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so
</code></pre></div> </code></pre></div>
<p>Cette commande doit signaler un fichier spécifique (par exemple <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) et non une erreur.</p> <p>This command should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p>
<p>Si vous êtes sur un système basé sur Debian (Debian, Ubuntu, etc.), vous pouvez installer les packages suivants et générer des fichiers *.deb pour une installation de simulavr à l'échelle du système :</p> <p>Si vous êtes sur un système basé sur Debian (Debian, Ubuntu, etc.), vous pouvez installer les packages suivants et générer des fichiers *.deb pour une installation de simulavr à l'échelle du système :</p>
<div class="highlight"><pre><span></span><code>sudo apt update <div class="highlight"><pre><span></span><code>sudo apt update
sudo apt install g++ make cmake swig rst2pdf help2man texinfo sudo apt install g++ make cmake swig rst2pdf help2man texinfo

View file

@ -1307,7 +1307,7 @@
<p>Klipper propose plusieurs caractéristiques intéressantes :</p> <p>Klipper propose plusieurs caractéristiques intéressantes :</p>
<ul> <ul>
<li>Mouvements pas à pas de haute précision. Klipper utilise un processeur d'application (tel qu'un Raspberry Pi à bas prix) pour calculer les mouvements de l'imprimante. Ce processeur d'application détermine le moment où il faut faire marcher chaque moteur pas à pas, compresse ces événements, les transmet au microcontrôleur pour que celui-ci exécute chaque événement au moment demandé. Chaque événement du moteur pas à pas est programmé avec une précision de 25 microsecondes ou mieux. Le logiciel n'utilise pas d'estimations cinématiques (telles que l'algorithme de Bresenham), au lieu de cela, il calcule des durées de pas précises basées sur les physiques de l'accélération et de la cinématique de la machine. Un mouvement plus précis des pas permet un fonctionnement plus silencieux et plus stable de l'imprimante.</li> <li>Mouvements pas à pas de haute précision. Klipper utilise un processeur d'application (tel qu'un Raspberry Pi à bas prix) pour calculer les mouvements de l'imprimante. Ce processeur d'application détermine le moment où il faut faire marcher chaque moteur pas à pas, compresse ces événements, les transmet au microcontrôleur pour que celui-ci exécute chaque événement au moment demandé. Chaque événement du moteur pas à pas est programmé avec une précision de 25 microsecondes ou mieux. Le logiciel n'utilise pas d'estimations cinématiques (telles que l'algorithme de Bresenham), au lieu de cela, il calcule des durées de pas précises basées sur les physiques de l'accélération et de la cinématique de la machine. Un mouvement plus précis des pas permet un fonctionnement plus silencieux et plus stable de l'imprimante.</li>
<li>Meilleures performances de sa catégorie. Klipper est capable d'atteindre des taux de pas élevés sur les micro-contrôleurs nouveaux et anciens. Même les anciens microcontrôleurs 8 bits peuvent obtenir des taux supérieurs à 175 000 pas par seconde. Sur les micro-contrôleurs plus récents, plusieurs millions de pas par seconde sont possibles. Des taux de pas plus élevés permettent des vitesses d'impression plus élevées. La synchronisation des événements du pas à pas reste précise même à des vitesses élevées, ce qui améliore la stabilité globale.</li> <li>Best in class performance. Klipper is able to achieve high stepping rates on both new and old micro-controllers. Even old 8-bit micro-controllers can obtain rates over 175K steps per second. On more recent micro-controllers, several million steps per second are possible. Higher stepper rates enable higher print velocities. The stepper event timing remains precise even at high speeds which improves overall stability.</li>
<li>Klipper prend en charge les imprimantes dotées de plusieurs microcontrôleurs. Par exemple, un microcontrôleur peut être utilisé pour contrôler l'extrudeur, tandis qu'un autre contrôle les pièces chauffantes de l'imprimante, et un troisième s'occupe du reste de l'imprimante. Le logiciel Klipper met en œuvre la synchronisation de l'horloge pour tenir compte de la dérive entre les microcontrôleurs. Il n'y a pas besoin de code particulier pour activer plusieurs microcontrôleurs - il suffit de quelques lignes supplémentaires dans le fichier de configuration.</li> <li>Klipper prend en charge les imprimantes dotées de plusieurs microcontrôleurs. Par exemple, un microcontrôleur peut être utilisé pour contrôler l'extrudeur, tandis qu'un autre contrôle les pièces chauffantes de l'imprimante, et un troisième s'occupe du reste de l'imprimante. Le logiciel Klipper met en œuvre la synchronisation de l'horloge pour tenir compte de la dérive entre les microcontrôleurs. Il n'y a pas besoin de code particulier pour activer plusieurs microcontrôleurs - il suffit de quelques lignes supplémentaires dans le fichier de configuration.</li>
<li>Configuration grâce à un fichier de configuration unique. Il n'est pas nécessaire de reflasher le microcontrôleur pour modifier un paramètre. Toute la configuration de Klipper est stockée dans un fichier de configuration standard qui peut être facilement modifié. Cela facilite la configuration et la maintenance du matériel.</li> <li>Configuration grâce à un fichier de configuration unique. Il n'est pas nécessaire de reflasher le microcontrôleur pour modifier un paramètre. Toute la configuration de Klipper est stockée dans un fichier de configuration standard qui peut être facilement modifié. Cela facilite la configuration et la maintenance du matériel.</li>
<li>Klipper prend en charge la fonction "Smooth Pressure Advance", un mécanisme permettant de prendre en compte les effets de la pression dans un extrudeur. Cela réduit le "suintement" de l'extrudeur et améliore la qualité des d'impression des coins. L'implémentation de Klipper n'introduit pas de changements instantanés de la vitesse de l'extrudeur, ce qui améliore la stabilité et la robustesse générales.</li> <li>Klipper prend en charge la fonction "Smooth Pressure Advance", un mécanisme permettant de prendre en compte les effets de la pression dans un extrudeur. Cela réduit le "suintement" de l'extrudeur et améliore la qualité des d'impression des coins. L'implémentation de Klipper n'introduit pas de changements instantanés de la vitesse de l'extrudeur, ce qui améliore la stabilité et la robustesse générales.</li>
@ -1424,6 +1424,11 @@
<td>1885K</td> <td>1885K</td>
</tr> </tr>
<tr> <tr>
<td>AR100</td>
<td>3529K</td>
<td>2507K</td>
</tr>
<tr>
<td>STM32F407</td> <td>STM32F407</td>
<td>3652K</td> <td>3652K</td>
<td>2459K</td> <td>2459K</td>

View file

@ -4424,7 +4424,7 @@
<h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3> <h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#bed_mesh">configuration de bed_mesh</a> est activée (voir également le <a href="Bed_Mesh.html">guide de bed_mesh</a>).</p> <p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#bed_mesh">configuration de bed_mesh</a> est activée (voir également le <a href="Bed_Mesh.html">guide de bed_mesh</a>).</p>
<h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code> : Cette commande palpe le bed en utilisant des points générés spécifiés par les paramètres de la config. Après le test, un maillage est généré et le déplacement de l'axe Z est ajusté en fonction de celui-ci. Référez-vous à la commande PROBE pour plus de détails sur les paramètres optionnels. Si METHOD=manual est spécifié, l'outil de palpage manuel est activé - voir la commande MANUAL_PROBE ci-dessus pour plus de détails sur les possibilités supplémentaires disponibles lorsque cet outil est utilisé.</p> <p><code>BED_MESH_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: This command probes the bed using generated points specified by the parameters in the config. After probing, a mesh is generated and z-movement is adjusted according to the mesh. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code> : Cette commande écrit les valeurs z palpées actuelles et les valeurs de maillage actuelles sur le terminal. Si PGP=1 est spécifié, les coordonnées X, Y générées par bed_mesh, ainsi que leurs indices associés, seront envoyés au terminal.</p> <p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code> : Cette commande écrit les valeurs z palpées actuelles et les valeurs de maillage actuelles sur le terminal. Si PGP=1 est spécifié, les coordonnées X, Y générées par bed_mesh, ainsi que leurs indices associés, seront envoyés au terminal.</p>
<h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4>
@ -4442,7 +4442,7 @@
<h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3> <h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#bed_tilt">config bed_tilt</a> est activée.</p> <p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#bed_tilt">config bed_tilt</a> est activée.</p>
<h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_TILT_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code> : Cette commande teste les points spécifiés dans la configuration, puis recommande des ajustements d'inclinaison x et y mis à jour. Voir la commande PROBE pour plus de détails sur les paramètres de palpage optionnels. Si METHOD=manual est spécifié, l'outil de palpage manuel est activé - voir la commande MANUAL_PROBE ci-dessus pour plus de détails sur les commandes supplémentaires disponibles lorsque cet outil est actif.</p> <p><code>BED_TILT_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then recommend updated x and y tilt adjustments. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3> <h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3>
<p>La commande suivante est disponible lorsqu'une section <a href="Config_Reference.html#bltouch">bltouch config</a> est activée (voir également le <a href="BLTouch.html">Guide BL-Touch</a>).</p> <p>La commande suivante est disponible lorsqu'une section <a href="Config_Reference.html#bltouch">bltouch config</a> est activée (voir également le <a href="BLTouch.html">Guide BL-Touch</a>).</p>
<h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4> <h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4>
@ -4460,7 +4460,7 @@
<h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3> <h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config</a> est activée (voir également le <a href="Delta_Calibrate.html">guide delta calibrate</a>).</p> <p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config</a> est activée (voir également le <a href="Delta_Calibrate.html">guide delta calibrate</a>).</p>
<h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4> <h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4>
<p><code>DELTA_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code> : Cette commande teste sept points sur le lit et recommande des positions de butée, des angles de tour et des rayons mis à jour. Voir la commande PROBE pour plus de détails sur les paramètres de palpage optionnels. Si METHOD=manual est spécifié, l'outil de palpage manuel est activé - voir la commande MANUAL_PROBE ci-dessus pour plus de détails sur les commandes supplémentaires disponibles lorsque cet outil est actif.</p> <p><code>DELTA_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe seven points on the bed and recommend updated endstop positions, tower angles, and radius. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4> <h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4>
<p><code>DELTA_ANALYZE</code>: Cette commande est utilisée pendant l'étalonnage delta amélioré. Voir <a href="Delta_Calibrate.html">Calibrage delta</a> pour plus de détails.</p> <p><code>DELTA_ANALYZE</code>: Cette commande est utilisée pendant l'étalonnage delta amélioré. Voir <a href="Delta_Calibrate.html">Calibrage delta</a> pour plus de détails.</p>
<h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3> <h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3>
@ -4731,7 +4731,7 @@
<h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3> <h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque la section de configuration <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust</a> est activée (voir également le <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guide du nivelage manuel</a>).</p> <p>Les commandes suivantes sont disponibles lorsque la section de configuration <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust</a> est activée (voir également le <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guide du nivelage manuel</a>).</p>
<h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4> <h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4>
<p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;valeur&gt;] [&lt;probe_parameter&gt;=&lt;valeur&gt;]</code> : Cette commande invoquera l'outil de réglage des vis du lit. Elle déplacera la buse à différents endroits (tels que définis dans le fichier de configuration) en palpant la hauteur z et calculera le nombre de tours de la molette de réglage pour ajuster le niveau du lit. Si DIRECTION est spécifié, les tours de la molette seront tous dans la même direction, dans le sens des aiguilles d'une montre (CW) ou dans le sens inverse (CCW). Voir la commande PROBE pour plus de détails sur les paramètres optionnels de la sonde. IMPORTANT : Vous DEVEZ toujours effectuer un G28 avant d'utiliser cette commande. Si MAX_DEVIATION est spécifié, la commande déclenchera une erreur de gcode si une différence de hauteur de vis par rapport à la hauteur de vis de base est supérieure à la valeur fournie.</p> <p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3> <h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3>
<p>Lorsque la section de configuration <a href="Config_Reference.html#sdcard_loop">sdcard_loop</a> est activée, les commandes étendues suivantes sont disponibles.</p> <p>Lorsque la section de configuration <a href="Config_Reference.html#sdcard_loop">sdcard_loop</a> est activée, les commandes étendues suivantes sont disponibles.</p>
<h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4> <h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4>
@ -4771,13 +4771,13 @@
<h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3> <h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque l'une des sections <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config</a> est activée.</p> <p>Les commandes suivantes sont disponibles lorsque l'une des sections <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config</a> est activée.</p>
<h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4> <h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4>
<p><code>DUMP_TMC STEPPER=&lt;nom&gt;</code> : Cette commande lit les registres du pilote TMC et renvoie leurs valeurs.</p> <p><code>DUMP_TMC STEPPER=&lt;name&gt; [REGISTER=&lt;name&gt;]</code>: This command will read all TMC driver registers and report their values. If a REGISTER is provided, only the specified register will be dumped.</p>
<h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4> <h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4>
<p><code>INIT_TMC STEPPER=&lt;nom&gt;</code> : Cette commande initialise les registres de la puce TMC. Nécessaire pour réactiver le pilote si l'alimentation de la puce est coupée puis rétablie.</p> <p><code>INIT_TMC STEPPER=&lt;nom&gt;</code> : Cette commande initialise les registres de la puce TMC. Nécessaire pour réactiver le pilote si l'alimentation de la puce est coupée puis rétablie.</p>
<h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_CURRENT STEPPER=&lt;nom&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code> : Ceci ajustera les courants de marche et de maintien du pilote TMC. (HOLDCURRENT n'est pas applicable aux pilotes tmc2660).</p> <p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: This will adjust the run and hold currents of the TMC driver. <code>HOLDCURRENT</code> is not applicable to tmc2660 drivers. When used on a driver which has the <code>globalscaler</code> field (tmc5160 and tmc2240), if StealthChop2 is used, the stepper must be held at standstill for &gt;130ms so that the driver executes the AT#1 calibration.</p>
<h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_FIELD STEPPER=&lt;nom&gt; FIELD=&lt;champ&gt; VALUE=&lt;valeur&gt;</code> : Cette commande modifie la valeur du champ de registre spécifié du pilote TMC. Cette commande est destinée aux diagnostics de bas niveau et au débogage uniquement car la modification des champs pendant l'exécution peut entraîner un comportement indésirable et potentiellement dangereux de votre imprimante. Les modifications permanentes doivent être effectuées à l'aide du fichier de configuration de l'imprimante. Aucun contrôle d'intégrité n'est effectué pour les valeurs données.</p> <p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt; VELOCITY=&lt;value&gt;</code>: This will alter the value of the specified register field of the TMC driver. This command is intended for low-level diagnostics and debugging only because changing the fields during run-time can lead to undesired and potentially dangerous behavior of your printer. Permanent changes should be made using the printer configuration file instead. No sanity checks are performed for the given values. A VELOCITY can also be specified instead of a VALUE. This velocity is converted to the 20bit TSTEP based value representation. Only use the VELOCITY argument for fields that represent velocities.</p>
<h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3> <h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3>
<p>Le module de tête d'outil est automatiquement chargé.</p> <p>Le module de tête d'outil est automatiquement chargé.</p>
<h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4> <h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4>
@ -4814,7 +4814,7 @@
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
<p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#z_tilt">z_tilt config</a> est activée.</p> <p>Les commandes suivantes sont disponibles lorsque la section <a href="Config_Reference.html#z_tilt">z_tilt config</a> est activée.</p>
<h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4> <h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4>
<p><code>Z_TILT_ADJUST [&lt;probe_parameter&gt;=&lt;valeur&gt;]</code> : Cette commande palpe les points spécifiés dans la configuration et effectue ensuite des ajustements indépendants pour chaque moteur Z afin de compenser l'inclinaison. Reportez-vous à la commande PROBE pour plus de détails sur les paramètres de palpage optionnels.</p> <p><code>Z_TILT_ADJUST [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then make independent adjustments to each Z stepper to compensate for tilt. See the PROBE command for details on the optional probe parameters. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
</article> </article>

View file

@ -1348,11 +1348,11 @@
<h1 id="detecteur-de-largeur-de-filament-a-effet-hall">Détecteur de largeur de filament à effet hall<a class="headerlink" href="#detecteur-de-largeur-de-filament-a-effet-hall" title="Permanent link">&para;</a></h1> <h1 id="detecteur-de-largeur-de-filament-a-effet-hall">Détecteur de largeur de filament à effet hall<a class="headerlink" href="#detecteur-de-largeur-de-filament-a-effet-hall" title="Permanent link">&para;</a></h1>
<p>Ce document décrit le module hôte du capteur de largeur de filament. Le matériel utilisé pour développer ce module hôte est basé sur deux capteurs linéaires de type Hall (ss49e par exemple). Les capteurs dans le corps sont situés sur des côtés opposés. Principe de fonctionnement : deux capteurs Hall fonctionnent en mode différentiel, la dérive de température est la même pour tous les capteurs. Une compensation spéciale de la température n'est donc pas nécessaire.</p> <p>This document describes Filament Width Sensor host module. Hardware used for developing this host module is based on two Hall linear sensors (ss49e for example). Sensors in the body are located on opposite sides. Principle of operation: two hall sensors work in differential mode, temperature drift same for sensor. Special temperature compensation not needed.</p>
<p>Vous trouverez les modèles sur <a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>, une vidéo de montage est également disponible sur <a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a></p> <p>Vous trouverez les modèles sur <a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>, une vidéo de montage est également disponible sur <a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a></p>
<p>Pour utiliser le capteur de largeur de filament de Hall, consultez <a href="Config_Reference.html#hall_filament_width_sensor">Référence des configurations</a> et <a href="G-Codes.html#hall_filament_width_sensor">documentation G-Code</a>.</p> <p>Pour utiliser le capteur de largeur de filament de Hall, consultez <a href="Config_Reference.html#hall_filament_width_sensor">Référence des configurations</a> et <a href="G-Codes.html#hall_filament_width_sensor">documentation G-Code</a>.</p>
<h2 id="comment-cela-fonctionne-t-il">Comment cela fonctionne-t-il ?<a class="headerlink" href="#comment-cela-fonctionne-t-il" title="Permanent link">&para;</a></h2> <h2 id="comment-cela-fonctionne-t-il">Comment cela fonctionne-t-il ?<a class="headerlink" href="#comment-cela-fonctionne-t-il" title="Permanent link">&para;</a></h2>
<p>Le capteur génère deux sorties analogiques basées sur la largeur calculée du filament. La somme des tensions de sortie est toujours égale à la largeur de filament détectée. Le module hôte surveille les changements de tension et ajuste le multiplicateur d'extrusion. J'utilise le connecteur aux2 sur les broches analogiques 11 et 12 d'une carte genre Ramps. Vous pouvez utiliser des broches différentes et des cartes différentes.</p> <p>Sensor generates two analog output based on calculated filament width. Sum of output voltage always equals to detected filament width. Host module monitors voltage changes and adjusts extrusion multiplier. I use the aux2 connector on a ramps-like board with the analog11 and analog12 pins. You can use different pins and different boards.</p>
<h2 id="modele-pour-les-variables-du-menu">Modèle pour les variables du menu<a class="headerlink" href="#modele-pour-les-variables-du-menu" title="Permanent link">&para;</a></h2> <h2 id="modele-pour-les-variables-du-menu">Modèle pour les variables du menu<a class="headerlink" href="#modele-pour-les-variables-du-menu" title="Permanent link">&para;</a></h2>
<div class="highlight"><pre><span></span><code>[menu __main __filament __width_current] <div class="highlight"><pre><span></span><code>[menu __main __filament __width_current]
type: command type: command

View file

@ -735,6 +735,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -787,6 +807,33 @@
Configurer l'ADXL345 avec le RPi Configurer l'ADXL345 avec le RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1480,6 +1527,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -1532,6 +1599,33 @@
Configurer l'ADXL345 avec le RPi Configurer l'ADXL345 avec le RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1662,7 +1756,7 @@
<p>Lors de lapprovisionnement en ADXL345, sachez quil existe une variété de conceptions de cartes PCB différentes et différents clones. Assurez-vous que la carte prend en charge le mode SPI (un petit nombre de cartes semble être configurée en dur pour I2C avec SDO raccordé au GND) et, si elle doit être connectée à un microcontrôleur dimprimante 5V, quelle dispose dun régulateur de tension et dun décalage de niveau.</p> <p>Lors de lapprovisionnement en ADXL345, sachez quil existe une variété de conceptions de cartes PCB différentes et différents clones. Assurez-vous que la carte prend en charge le mode SPI (un petit nombre de cartes semble être configurée en dur pour I2C avec SDO raccordé au GND) et, si elle doit être connectée à un microcontrôleur dimprimante 5V, quelle dispose dun régulateur de tension et dun décalage de niveau.</p>
<h2 id="instructions-dinstallation">Instructions dinstallation<a class="headerlink" href="#instructions-dinstallation" title="Permanent link">&para;</a></h2> <h2 id="instructions-dinstallation">Instructions dinstallation<a class="headerlink" href="#instructions-dinstallation" title="Permanent link">&para;</a></h2>
<h3 id="cablage">Câblage<a class="headerlink" href="#cablage" title="Permanent link">&para;</a></h3> <h3 id="cablage">Câblage<a class="headerlink" href="#cablage" title="Permanent link">&para;</a></h3>
<p>Un câble Ethernet à paires torsadées blindées (cat5e ou supérieur) est recommandé pour la qualité du signal sur une longue distance. Si vous rencontrez toujours des problèmes de qualité du signal (erreurs SPI/I2C), raccourcissez le câble.</p> <p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrity over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p>
<p>Connectez le blindage du câble Ethernet à la terre de la carte contrôleur/RPI.</p> <p>Connectez le blindage du câble Ethernet à la terre de la carte contrôleur/RPI.</p>
<p><strong><em>Vérifiez votre câblage avant de mettre sous tension pour éviter d'endommager votre MCU/Raspberry Pi ou l'accéléromètre ou les deux.</em></strong></p> <p><strong><em>Vérifiez votre câblage avant de mettre sous tension pour éviter d'endommager votre MCU/Raspberry Pi ou l'accéléromètre ou les deux.</em></strong></p>
<h4 id="accelerometres-spi">Accéléromètres SPI<a class="headerlink" href="#accelerometres-spi" title="Permanent link">&para;</a></h4> <h4 id="accelerometres-spi">Accéléromètres SPI<a class="headerlink" href="#accelerometres-spi" title="Permanent link">&para;</a></h4>
@ -1673,7 +1767,8 @@ SCLK+CS
</code></pre></div> </code></pre></div>
<h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5> <h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5>
<p><strong>Remarque : de nombreux microcontrôleurs fonctionnent avec un ADXL345 en mode SPI (par exemple, Pi Pico), le câblage et la configuration varient en fonction de votre carte ADXL et des broches disponibles. sur votre MCU</strong></p> <h6 id="direct-to-raspberry-pi">Direct to Raspberry Pi<a class="headerlink" href="#direct-to-raspberry-pi" title="Permanent link">&para;</a></h6>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and available pins.</strong></p>
<p>Vous devez connecter votre ADXL345 à votre Raspberry Pi via SPI. Notez que la connexion I2C, suggérée par la documentation ADXL345, possède un débit trop faible et <strong> ne fonctionnera pas</strong>. Le schéma de connexion recommandé :</p> <p>Vous devez connecter votre ADXL345 à votre Raspberry Pi via SPI. Notez que la connexion I2C, suggérée par la documentation ADXL345, possède un débit trop faible et <strong> ne fonctionnera pas</strong>. Le schéma de connexion recommandé :</p>
<table> <table>
<thead> <thead>
@ -1687,7 +1782,7 @@ SCLK+CS
<tr> <tr>
<td align="center">3,3 V (ou VCC)</td> <td align="center">3,3 V (ou VCC)</td>
<td align="center">01</td> <td align="center">01</td>
<td align="center">Alimentation 3.3v continu</td> <td align="center">3.3V DC power</td>
</tr> </tr>
<tr> <tr>
<td align="center">GND</td> <td align="center">GND</td>
@ -1718,6 +1813,52 @@ SCLK+CS
</table> </table>
<p>Schémas de câblage de Fritzing pour certaines des cartes ADXL345 :</p> <p>Schémas de câblage de Fritzing pour certaines des cartes ADXL345 :</p>
<p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p> <p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p>
<h6 id="using-raspberry-pi-pico">Using Raspberry Pi Pico<a class="headerlink" href="#using-raspberry-pi-pico" title="Permanent link">&para;</a></h6>
<p>You may connect the ADXL345 to your Raspberry Pi Pico and then connect the Pico to your Raspberry Pi via USB. This makes it easy to reuse the accelerometer on other Klipper devices, as you can connect via USB instead of GPIO. The Pico does not have much processing power, so make sure it is only running the accelerometer and not performing any other duties.</p>
<p>In order to avoid damage to your RPi make sure to connect the ADXL345 to 3.3V only. Depending on the board's layout, a level shifter may be present, which makes 5V dangerous for your RPi.</p>
<table>
<thead>
<tr>
<th align="center">Brochage de l'ADXL345</th>
<th align="center">Pico pin</th>
<th align="center">Pico pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">3,3 V (ou VCC)</td>
<td align="center">36</td>
<td align="center">3.3V DC power</td>
</tr>
<tr>
<td align="center">GND</td>
<td align="center">38</td>
<td align="center">Terre</td>
</tr>
<tr>
<td align="center">CS</td>
<td align="center">2</td>
<td align="center">GP1 (SPI0_CSn)</td>
</tr>
<tr>
<td align="center">SDO</td>
<td align="center">1</td>
<td align="center">GP0 (SPI0_RX)</td>
</tr>
<tr>
<td align="center">SDA</td>
<td align="center">5</td>
<td align="center">GP3 (SPI0_TX)</td>
</tr>
<tr>
<td align="center">SCL</td>
<td align="center">4</td>
<td align="center">GP2 (SPI0_SCK)</td>
</tr>
</tbody>
</table>
<p>Wiring diagrams for some of the ADXL345 boards:</p>
<p><img alt="ADXL345-Pico" src="img/adxl345-pico.png" /></p>
<h4 id="accelerometres-i2c">Accéléromètres I2C<a class="headerlink" href="#accelerometres-i2c" title="Permanent link">&para;</a></h4> <h4 id="accelerometres-i2c">Accéléromètres I2C<a class="headerlink" href="#accelerometres-i2c" title="Permanent link">&para;</a></h4>
<p>Suggestions d'utilisation des paires torsadées :</p> <p>Suggestions d'utilisation des paires torsadées :</p>
<div class="highlight"><pre><span></span><code>3.3V+SDA <div class="highlight"><pre><span></span><code>3.3V+SDA
@ -1826,6 +1967,47 @@ probe_points:
</code></pre></div> </code></pre></div>
<p>Il est conseillé de commencer par 1 point de test, au milieu du lit dimpression, légèrement au-dessus.</p> <p>Il est conseillé de commencer par 1 point de test, au milieu du lit dimpression, légèrement au-dessus.</p>
<h4 id="configure-adxl345-with-pi-pico">Configure ADXL345 With Pi Pico<a class="headerlink" href="#configure-adxl345-with-pi-pico" title="Permanent link">&para;</a></h4>
<h5 id="flash-the-pico-firmware">Flash the Pico Firmware<a class="headerlink" href="#flash-the-pico-firmware" title="Permanent link">&para;</a></h5>
<p>On your Raspberry Pi, compile the firmware for the Pico.</p>
<div class="highlight"><pre><span></span><code>cd ~/klipper
make clean
make menuconfig
</code></pre></div>
<p><img alt="Pico menuconfig" src="img/klipper_pico_menuconfig.png" /></p>
<p>Now, while holding down the <code>BOOTSEL</code> button on the Pico, connect the Pico to the Raspberry Pi via USB. Compile and flash the firmware.</p>
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=first
</code></pre></div>
<p>If that fails, you will be told which <code>FLASH_DEVICE</code> to use. In this example, that's <code>make flash FLASH_DEVICE=2e8a:0003</code>. <img alt="Determine flash device" src="img/flash_rp2040_FLASH_DEVICE.png" /></p>
<h5 id="configure-the-connection">Configure the Connection<a class="headerlink" href="#configure-the-connection" title="Permanent link">&para;</a></h5>
<p>The Pico will now reboot with the new firmware and should show up as a serial device. Find the pico serial device with <code>ls /dev/serial/by-id/*</code>. You can now add an <code>adxl.cfg</code> file with the following settings:</p>
<div class="highlight"><pre><span></span><code>[mcu adxl]
# Change &lt;mySerial&gt; to whatever you found above. For example,
# usb-Klipper_rp2040_E661640843545B2E-if00
serial: /dev/serial/by-id/usb-Klipper_rp2040_&lt;mySerial&gt;
[adxl345]
cs_pin: adxl:gpio1
spi_bus: spi0a
axes_map: x,z,y
[resonance_tester]
accel_chip: adxl345
probe_points:
# Somewhere slightly above the middle of your print bed
147,154, 20
[output_pin power_mode] # Improve power stability
pin: adxl:gpio23
</code></pre></div>
<p>If setting up the ADXL345 configuration in a separate file, as shown above, you'll also want to modify your <code>printer.cfg</code> file to include this:</p>
<div class="highlight"><pre><span></span><code>[include adxl.cfg] # Comment this out when you disconnect the accelerometer
</code></pre></div>
<p>Redémarrez Klipper avec la commande <code>RESTART</code>.</p>
<h4 id="configurer-les-series-mpu-60009000-avec-le-rpi">Configurer les séries MPU-6000/9000 avec le RPi<a class="headerlink" href="#configurer-les-series-mpu-60009000-avec-le-rpi" title="Permanent link">&para;</a></h4> <h4 id="configurer-les-series-mpu-60009000-avec-le-rpi">Configurer les séries MPU-6000/9000 avec le RPi<a class="headerlink" href="#configurer-les-series-mpu-60009000-avec-le-rpi" title="Permanent link">&para;</a></h4>
<p>Assurez-vous que le pilote Linux I2C est activé et que le débit en bauds est défini sur 400 000 (voir la section <a href="RPi_microcontroller.html#optional-enabling-i2c">Activation d'I2C</a> pour plus de détails). Ensuite, ajoutez ce qui suit au fichier printer.cfg :</p> <p>Assurez-vous que le pilote Linux I2C est activé et que le débit en bauds est défini sur 400 000 (voir la section <a href="RPi_microcontroller.html#optional-enabling-i2c">Activation d'I2C</a> pour plus de détails). Ensuite, ajoutez ce qui suit au fichier printer.cfg :</p>
<div class="highlight"><pre><span></span><code>[mcu rpi] <div class="highlight"><pre><span></span><code>[mcu rpi]
@ -1844,19 +2026,19 @@ probe_points:
<h4 id="configurer-les-series-mpu-60009000-avec-le-pico">Configurer les séries MPU-6000/9000 avec le PICO<a class="headerlink" href="#configurer-les-series-mpu-60009000-avec-le-pico" title="Permanent link">&para;</a></h4> <h4 id="configurer-les-series-mpu-60009000-avec-le-pico">Configurer les séries MPU-6000/9000 avec le PICO<a class="headerlink" href="#configurer-les-series-mpu-60009000-avec-le-pico" title="Permanent link">&para;</a></h4>
<p>Sur le PICO I2C est réglé sur 400000 par défaut. Ajoutez simplement ce qui suit au fichier printer.cfg :</p> <p>Sur le PICO I2C est réglé sur 400000 par défaut. Ajoutez simplement ce qui suit au fichier printer.cfg :</p>
<div class="highlight"><pre><span></span><code>[mcu pico] <div class="highlight"><pre><span></span><code>[mcu pico]
serial: /dev/serial/by-id/&lt;le serial id du PICO&gt; serial: /dev/serial/by-id/&lt;your PICO&#39;s serial ID&gt;
[mpu9250] [mpu9250]
i2c_mcu: pico i2c_mcu: pico
i2c_bus: i2c1a i2c_bus: i2c0a
[resonance_tester] [resonance_tester]
accel_chip: mpu9250 accel_chip: mpu9250
probe_points: probe_points:
100, 100, 20 # un exemple 100, 100, 20 # an example
[static_digital_output pico_3V3pwm] # Amélioration de la stabilité de l&#39;alimentation [static_digital_output pico_3V3pwm] # Improve power stability
pin: pico:gpio23 pin: pico:gpio23
</code></pre></div> </code></pre></div>
<p>Redémarrez Klipper avec la commande <code>RESTART</code>.</p> <p>Redémarrez Klipper avec la commande <code>RESTART</code>.</p>
@ -1871,7 +2053,7 @@ pin: pico:gpio23
<div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800 <div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800
</code></pre></div> </code></pre></div>
<p>Si vous obtenez une erreur comme <code>Invalid adxl345 id (got xx vs e5)</code>, <code>xx</code> est un autre ID, cela indique un problème de connexion avec l'ADXL345, ou un capteur défectueux. Vérifiez lalimentation, le câblage (correspondance avec les schémas, aucun fil coupé ou desserré, etc.) et la qualité des soudures.</p> <p>If you get an error like <code>Invalid adxl345 id (got xx vs e5)</code>, where <code>xx</code> is some other ID, immediately try again. There's an issue with SPI initialization. If you still get an error, it is indicative of the connection problem with ADXL345, or the faulty sensor. Double-check the power, the wiring (that it matches the schematics, no wire is broken or loose, etc.), and soldering quality.</p>
<p><strong>Si vous utilisez un accéléromètre de la série MPU-6000/9000 et qu'il s'affiche comme "mpu-unknown", utilisez-le avec prudence ! Ce sont probablement des puces reconditionnées !</strong></p> <p><strong>Si vous utilisez un accéléromètre de la série MPU-6000/9000 et qu'il s'affiche comme "mpu-unknown", utilisez-le avec prudence ! Ce sont probablement des puces reconditionnées !</strong></p>
<p>Ensuite, essayez dexécuter <code>MEASURE_AXES_NOISE</code> dans Octoprint, vous devriez obtenir des chiffres de base pour le bruit de fond de laccéléromètre sur les axes (devraient se situer entre 1 et 100). Un bruit de fond daxe trop élevé (par exemple 1000 et plus) peut indiquer des problèmes de capteur, des problèmes de puissance ou des ventilateurs déséquilibrés entrainant trop de vibrations sur l'imprimante 3D.</p> <p>Ensuite, essayez dexécuter <code>MEASURE_AXES_NOISE</code> dans Octoprint, vous devriez obtenir des chiffres de base pour le bruit de fond de laccéléromètre sur les axes (devraient se situer entre 1 et 100). Un bruit de fond daxe trop élevé (par exemple 1000 et plus) peut indiquer des problèmes de capteur, des problèmes de puissance ou des ventilateurs déséquilibrés entrainant trop de vibrations sur l'imprimante 3D.</p>
<h3 id="mesurer-les-resonances_1">Mesurer les résonances<a class="headerlink" href="#mesurer-les-resonances_1" title="Permanent link">&para;</a></h3> <h3 id="mesurer-les-resonances_1">Mesurer les résonances<a class="headerlink" href="#mesurer-les-resonances_1" title="Permanent link">&para;</a></h3>
@ -1923,7 +2105,7 @@ max_accel: 3000 # Ne devrait pas dépasser les valeurs estimées d&#39;accélé
</code></pre></div> </code></pre></div>
<p>Ou vous pouvez choisir vous-même une autre configuration en fonction des graphiques générés: les pics de densité spectrale de puissance sur les graphiques correspondent aux fréquences de résonance de limprimante.</p> <p>Ou vous pouvez choisir vous-même une autre configuration en fonction des graphiques générés: les pics de densité spectrale de puissance sur les graphiques correspondent aux fréquences de résonance de limprimante.</p>
<p>Notez que vous pouvez également exécuter lauto-étalonnage du formateur d'entrée (input shapper) à partir de Klipper <a href="#input-shaper-auto-calibration">directement</a>, pratique, par exemple, pour la <a href="#input-shaper-re-calibration">recalibration</a> du formateur d'entrée.</p> <p>Note that alternatively you can run the input shaper auto-calibration from Klipper <a href="#input-shaper-auto-calibration">directly</a>, which can be convenient, for example, for the input shaper <a href="#input-shaper-re-calibration">re-calibration</a>.</p>
<h3 id="imprimantes-cartesiennes-a-lit-mobile">Imprimantes cartésiennes à lit mobile<a class="headerlink" href="#imprimantes-cartesiennes-a-lit-mobile" title="Permanent link">&para;</a></h3> <h3 id="imprimantes-cartesiennes-a-lit-mobile">Imprimantes cartésiennes à lit mobile<a class="headerlink" href="#imprimantes-cartesiennes-a-lit-mobile" title="Permanent link">&para;</a></h3>
<p>Si votre imprimante est une imprimante cartésienne dont le plateau est mobile sur l'axe Y, vous devrez changer lemplacement de laccéléromètre entre les mesures des axes X et Y : mesurez les résonances de laxe X avec laccéléromètre fixé à la tête et les résonances de laxe Y - au lit (la configuration habituelle des imprimantes cartésiennes).</p> <p>Si votre imprimante est une imprimante cartésienne dont le plateau est mobile sur l'axe Y, vous devrez changer lemplacement de laccéléromètre entre les mesures des axes X et Y : mesurez les résonances de laxe X avec laccéléromètre fixé à la tête et les résonances de laxe Y - au lit (la configuration habituelle des imprimantes cartésiennes).</p>
<p>Cependant, vous pouvez également connecter les deux accéléromètres simultanément, bien qu'ils doivent être connectés à des cartes différentes (par exemple, à une carte RPi et au MCU de l'imprimante), ou à deux interfaces SPI physiques différentes sur la même carte (rarement disponibles). Ensuite, ils peuvent être configurés de la manière suivante :</p> <p>Cependant, vous pouvez également connecter les deux accéléromètres simultanément, bien qu'ils doivent être connectés à des cartes différentes (par exemple, à une carte RPi et au MCU de l'imprimante), ou à deux interfaces SPI physiques différentes sur la même carte (rarement disponibles). Ensuite, ils peuvent être configurés de la manière suivante :</p>
@ -2050,7 +2232,7 @@ Recommended shaper_type_y = mzv, shaper_freq_y = 36.8 Hz
<div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X <div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X
</code></pre></div> </code></pre></div>
<p><strong>Attention !</strong> Il est déconseillé d'exécuter l'autocalibrage de l'input shaper très fréquemment (par exemple, avant chaque impression ou tous les jours). Afin de déterminer les fréquences de résonance, l'autocalibrage crée des vibrations intenses sur chacun des axes. Les imprimantes 3D ne sont pas conçues pour résister à une exposition prolongée à des vibrations proches des fréquences de résonance. Cela pourrait augmenter l'usure des composants de l'imprimante et réduire leur durée de vie. Il existe également un risque accru que certaines pièces se dévissent ou se desserrent. Vérifiez toujours que toutes les pièces de l'imprimante (y compris celles qui ne peuvent normalement pas bouger) sont solidement fixées en place après chaque réglage automatique.</p> <p><strong>Warning!</strong> It is not advisable to run the shaper auto-calibration very frequently (e.g. before every print, or every day). In order to determine resonance frequencies, auto-calibration creates intensive vibrations on each of the axes. Generally, 3D printers are not designed to withstand a prolonged exposure to vibrations near the resonance frequencies. Doing so may increase wear of the printer components and reduce their lifespan. There is also an increased risk of some parts unscrewing or becoming loose. Always check that all parts of the printer (including the ones that may normally not move) are securely fixed in place after each auto-tuning.</p>
<p>De plus, en raison d'un certain bruit dans les mesures, il est possible que les résultats de réglage soient légèrement différents d'un calibrage à l'autre. Ce bruit ne devrait pas trop affecter la qualité d'impression. Cependant, il est conseillé de revérifier les paramètres suggérés et d'imprimer des tests d'impression avant de les utiliser pour confirmer qu'ils sont corrects.</p> <p>De plus, en raison d'un certain bruit dans les mesures, il est possible que les résultats de réglage soient légèrement différents d'un calibrage à l'autre. Ce bruit ne devrait pas trop affecter la qualité d'impression. Cependant, il est conseillé de revérifier les paramètres suggérés et d'imprimer des tests d'impression avant de les utiliser pour confirmer qu'ils sont corrects.</p>
<h2 id="traitement-hors-ligne-des-donnees-de-laccelerometre">Traitement hors ligne des données de laccéléromètre<a class="headerlink" href="#traitement-hors-ligne-des-donnees-de-laccelerometre" title="Permanent link">&para;</a></h2> <h2 id="traitement-hors-ligne-des-donnees-de-laccelerometre">Traitement hors ligne des données de laccéléromètre<a class="headerlink" href="#traitement-hors-ligne-des-donnees-de-laccelerometre" title="Permanent link">&para;</a></h2>
<p>Il est possible de générer les données brutes de laccéléromètre et de les traiter hors ligne (par exemple sur une machine hôte), par exemple pour trouver des résonances. Pour ce faire, exécutez les commandes suivantes via le terminal Octoprint :</p> <p>Il est possible de générer les données brutes de laccéléromètre et de les traiter hors ligne (par exemple sur une machine hôte), par exemple pour trouver des résonances. Pour ce faire, exécutez les commandes suivantes via le terminal Octoprint :</p>

View file

@ -1373,7 +1373,7 @@
<li><a href="Slicers.html">Trancheurs</a> : Configuration d'un logiciel de "tranchage" pour Klipper.</li> <li><a href="Slicers.html">Trancheurs</a> : Configuration d'un logiciel de "tranchage" pour Klipper.</li>
<li><a href="Skew_Correction.html">Correction d'obliquité</a> : Ajustements des axes qui ne sont pas parfaitement d'équerre.</li> <li><a href="Skew_Correction.html">Correction d'obliquité</a> : Ajustements des axes qui ne sont pas parfaitement d'équerre.</li>
<li><a href="Using_PWM_Tools.html">Outils PWM</a> : Guide sur l'utilisation des outils contrôlés par PWM tels que les lasers ou les broches.</li> <li><a href="Using_PWM_Tools.html">Outils PWM</a> : Guide sur l'utilisation des outils contrôlés par PWM tels que les lasers ou les broches.</li>
<li><a href="Exclude_Object.html">Exclusion d'objets</a> : Le guide de l'implémentation de l'exclusion d'objets.</li> <li><a href="Exclude_Object.html">Exclude Object</a>: The guide to the Exclude Objects implementation.</li>
</ul> </ul>
<h2 id="documentation-pour-les-developpeurs">Documentation pour les développeurs<a class="headerlink" href="#documentation-pour-les-developpeurs" title="Permanent link">&para;</a></h2> <h2 id="documentation-pour-les-developpeurs">Documentation pour les développeurs<a class="headerlink" href="#documentation-pour-les-developpeurs" title="Permanent link">&para;</a></h2>
<ul> <ul>

View file

@ -1342,7 +1342,7 @@
<h2 id="versionnage">Versionnage<a class="headerlink" href="#versionnage" title="Permanent link">&para;</a></h2> <h2 id="versionnage">Versionnage<a class="headerlink" href="#versionnage" title="Permanent link">&para;</a></h2>
<p>Si vous construisez un paquet de Klipper à partir de git, il est d'usage de ne pas envoyer de répertoire .git, donc la gestion des versions doit être gérée sans git. Pour ce faire, utilisez le script fourni dans <code>scripts/make_version.py</code> qui doit être exécuté comme suit : <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p> <p>Si vous construisez un paquet de Klipper à partir de git, il est d'usage de ne pas envoyer de répertoire .git, donc la gestion des versions doit être gérée sans git. Pour ce faire, utilisez le script fourni dans <code>scripts/make_version.py</code> qui doit être exécuté comme suit : <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p>
<h2 id="exemple-de-script-de-precompilation">Exemple de script de précompilation<a class="headerlink" href="#exemple-de-script-de-precompilation" title="Permanent link">&para;</a></h2> <h2 id="exemple-de-script-de-precompilation">Exemple de script de précompilation<a class="headerlink" href="#exemple-de-script-de-precompilation" title="Permanent link">&para;</a></h2>
<p>klipper-git is packaged for Arch Linux, and has a PKGBUILD (package build script) available at <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repositiory</a>.</p> <p>klipper-git is packaged for Arch Linux, and has a PKGBUILD (package build script) available at <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repository</a>.</p>
</article> </article>

View file

@ -1471,9 +1471,9 @@ optional arguments:
<p>Les champs suivants peuvent être précisés :</p> <p>Les champs suivants peuvent être précisés :</p>
<ul> <ul>
<li><code>mcu</code> : Le type de mcu. On peut le retrouver après avoir configuré le build via <code>make menuconfig</code> en exécutant <code>cat .config | grep CONFIG_MCU</code>. Ce champ est obligatoire.</li> <li><code>mcu</code>: The mcu type. This can be retrieved after configuring the build via <code>make menuconfig</code> by running <code>cat .config | grep CONFIG_MCU</code>. This field is required.</li>
<li><code>spi_bus</code> : Le bus SPI connecté à la carte SD. Ceci doit être obtenu à partir du schéma de la carte. Ce champ est obligatoire.</li> <li><code>spi_bus</code>: The SPI bus connected to the SD Card. This should be retrieved from the board's schematic. This field is required.</li>
<li><code>cs_pin</code> : La broche de sélection de puce connectée à la carte SD. Ceci doit être obtenu à partir du schéma de la carte. Ce champ est obligatoire.</li> <li><code>cs_pin</code>: The Chip Select Pin connected to the SD Card. This should be retrieved from the board schematic. This field is required.</li>
<li><code>firmware_path</code> : Le chemin sur la carte SD où le firmware doit être transféré. La valeur par défaut est <code>firmware.bin</code>.</li> <li><code>firmware_path</code> : Le chemin sur la carte SD où le firmware doit être transféré. La valeur par défaut est <code>firmware.bin</code>.</li>
<li><code>current_firmware_path</code> : Le chemin sur la carte SD où le fichier du firmware renommé est situé après un flash réussi. La valeur par défaut est <code>firmware.cur</code>.</li> <li><code>current_firmware_path</code> : Le chemin sur la carte SD où le fichier du firmware renommé est situé après un flash réussi. La valeur par défaut est <code>firmware.cur</code>.</li>
<li><code>skip_verify</code> : définit une valeur booléenne indiquant aux scripts d'ignorer l'étape de vérification du firmware pendant le processus de flashage. La valeur par défaut est <code>False</code>. Peut être défini à <code>True</code> pour les cartes nécessitant un cycle d'alimentation manuel pour terminer le flashage. Pour vérifier le firmware par la suite, exécutez à nouveau le script avec l'option <code>-c</code> pour effectuer l'étape de vérification. <a href="#caveats">Voir les avertissements avec les cartes SDIO</a></li> <li><code>skip_verify</code> : définit une valeur booléenne indiquant aux scripts d'ignorer l'étape de vérification du firmware pendant le processus de flashage. La valeur par défaut est <code>False</code>. Peut être défini à <code>True</code> pour les cartes nécessitant un cycle d'alimentation manuel pour terminer le flashage. Pour vérifier le firmware par la suite, exécutez à nouveau le script avec l'option <code>-c</code> pour effectuer l'étape de vérification. <a href="#caveats">Voir les avertissements avec les cartes SDIO</a></li>

View file

@ -889,6 +889,13 @@
Désactivez tous les paramètres de "pression d'extrusion avancée" Désactivez tous les paramètres de "pression d'extrusion avancée"
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1356,6 +1363,13 @@
Désactivez tous les paramètres de "pression d'extrusion avancée" Désactivez tous les paramètres de "pression d'extrusion avancée"
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1398,6 +1412,21 @@
<p>Certains trancheurs présentent une fonction de "pression d'extrudeuse avancée". Il est recommandé de garder ces options désactivées lors de l'utilisation de Klipper car elles risquent d'entraîner des impressions de mauvaise qualité. Envisagez d'utiliser à la place la <a href="Pressure_Advance.html">Pressure Advance</a> de Klipper.</p> <p>Certains trancheurs présentent une fonction de "pression d'extrudeuse avancée". Il est recommandé de garder ces options désactivées lors de l'utilisation de Klipper car elles risquent d'entraîner des impressions de mauvaise qualité. Envisagez d'utiliser à la place la <a href="Pressure_Advance.html">Pressure Advance</a> de Klipper.</p>
<p>Ces paramètres de trancheur peuvent demander au micrologiciel d'apporter des modifications non contrôlées au taux d'extrusion dans l'espoir que le micrologiciel se rapprochera de ces demandes et que l'imprimante obtiendra approximativement une pression d'extrudeuse souhaitable. Klipper, utilise des calculs cinématiques et une synchronisation précise. Lorsque Klipper reçoit l'ordre d'apporter des modifications importantes au taux d'extrusion, il planifiera les modifications correspondantes de la vitesse, de l'accélération et du mouvement de l'extrudeuse - ce qui n'est pas prévu par le trancheur. Le trancheur peut même commander des taux d'extrusion excessifs au point de déclencher la limite d'extrusion maximale de Klipper.</p> <p>Ces paramètres de trancheur peuvent demander au micrologiciel d'apporter des modifications non contrôlées au taux d'extrusion dans l'espoir que le micrologiciel se rapprochera de ces demandes et que l'imprimante obtiendra approximativement une pression d'extrudeuse souhaitable. Klipper, utilise des calculs cinématiques et une synchronisation précise. Lorsque Klipper reçoit l'ordre d'apporter des modifications importantes au taux d'extrusion, il planifiera les modifications correspondantes de la vitesse, de l'accélération et du mouvement de l'extrudeuse - ce qui n'est pas prévu par le trancheur. Le trancheur peut même commander des taux d'extrusion excessifs au point de déclencher la limite d'extrusion maximale de Klipper.</p>
<p>En revanche, il est possible (et souvent utile) d'utiliser le réglage « rétracter », le réglage « essuyer » et/ou le réglage « essuyer lors de la rétractation » d'un trancheur.</p> <p>En revanche, il est possible (et souvent utile) d'utiliser le réglage « rétracter », le réglage « essuyer » et/ou le réglage « essuyer lors de la rétractation » d'un trancheur.</p>
<h2 id="start_print-macros">START_PRINT macros<a class="headerlink" href="#start_print-macros" title="Permanent link">&para;</a></h2>
<p>When using a START_PRINT macro or similar, it is useful to sometimes pass through parameters from the slicer variables to the macro.</p>
<p>In Cura, to pass through temperatures, the following start gcode would be used:</p>
<div class="highlight"><pre><span></span><code>START_PRINT BED_TEMP={material_bed_temperature_layer_0} EXTRUDER_TEMP={material_print_temperature_layer_0}
</code></pre></div>
<p>In slic3r derivatives such as PrusaSlicer and SuperSlicer, the following would be used:</p>
<p>START_PRINT EXTRUDER_TEMP=[first_layer_temperature] BED_TEMP=[first_layer_bed_temperature]</p>
<p>Also note that these slicers will insert their own heating codes when certain conditions are not met. In Cura, the existence of the <code>{material_bed_temperature_layer_0}</code> and <code>{material_print_temperature_layer_0}</code> variables is enough to mitigate this. In slic3r derivatives, you would use:</p>
<div class="highlight"><pre><span></span><code>M140 S0
M104 S0
</code></pre></div>
<p>before the macro call. Also note that SuperSlicer has a "custom gcode only" button option, which achieves the same outcome.</p>
<p>An example of a START_PRINT macro using these paramaters can be found in config/sample-macros.cfg</p>
</article> </article>

View file

@ -1010,6 +1010,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1771,6 +1778,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1949,6 +1963,7 @@
<ul> <ul>
<li><code>pressure_advance</code> : la valeur actuelle de <a href="Pressure_Advance.html">pressure advance</a>.</li> <li><code>pressure_advance</code> : la valeur actuelle de <a href="Pressure_Advance.html">pressure advance</a>.</li>
<li><code>smooth_time</code> : Le temps de lissage associé à la valeur de "pressure advance" courante.</li> <li><code>smooth_time</code> : Le temps de lissage associé à la valeur de "pressure advance" courante.</li>
<li><code>motion_queue</code>: The name of the extruder that this extruder stepper is currently synchronized to. This is reported as <code>None</code> if the extruder stepper is not currently associated with an extruder.</li>
</ul> </ul>
<h2 id="ventilateur">ventilateur<a class="headerlink" href="#ventilateur" title="Permanent link">&para;</a></h2> <h2 id="ventilateur">ventilateur<a class="headerlink" href="#ventilateur" title="Permanent link">&para;</a></h2>
<p>Les informations suivantes sont disponibles dans les objets <a href="Config_Reference.html#fan">fan</a>, <a href="Config_Reference.html#heater_fan">heater_fan nom_du_ventilateur</a> et <a href="Config_Reference.html#controller_fan">controller_fan nom_du_ventilateur</a> :</p> <p>Les informations suivantes sont disponibles dans les objets <a href="Config_Reference.html#fan">fan</a>, <a href="Config_Reference.html#heater_fan">heater_fan nom_du_ventilateur</a> et <a href="Config_Reference.html#controller_fan">controller_fan nom_du_ventilateur</a> :</p>
@ -2072,6 +2087,7 @@
<h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2> <h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2>
<p>Les informations suivantes sont disponibles dans l'objet <a href="Config_Reference.html#probe">probe</a> (cet objet est également disponible si une section de configuration <a href="Config_Reference.html#bltouch">bltouch</a> est définie) :</p> <p>Les informations suivantes sont disponibles dans l'objet <a href="Config_Reference.html#probe">probe</a> (cet objet est également disponible si une section de configuration <a href="Config_Reference.html#bltouch">bltouch</a> est définie) :</p>
<ul> <ul>
<li><code>name</code>: Returns the name of the probe in use.</li>
<li><code>last_query</code> : renvoie True si la sonde a été signalée comme "déclenchée" lors de la dernière commande QUERY_PROBE. Notez que si cela est utilisé dans une macro, en raison de l'ordre de développement du modèle, la commande QUERY_PROBE doit être exécutée avant la macro contenant cette demande.</li> <li><code>last_query</code> : renvoie True si la sonde a été signalée comme "déclenchée" lors de la dernière commande QUERY_PROBE. Notez que si cela est utilisé dans une macro, en raison de l'ordre de développement du modèle, la commande QUERY_PROBE doit être exécutée avant la macro contenant cette demande.</li>
<li><code>last_z_result</code> : Renvoie la valeur du Z de la dernière commande PROBE. Notez que si cela est utilisé dans une macro, en raison de l'ordre d'expansion du modèle, la commande PROBE (ou similaire) doit être exécutée avant la macro contenant cette demande.</li> <li><code>last_z_result</code> : Renvoie la valeur du Z de la dernière commande PROBE. Notez que si cela est utilisé dans une macro, en raison de l'ordre d'expansion du modèle, la commande PROBE (ou similaire) doit être exécutée avant la macro contenant cette demande.</li>
</ul> </ul>
@ -2089,13 +2105,11 @@
<p>Les informations suivantes sont disponibles dans l'objet <code>screws_tilt_adjust</code> :</p> <p>Les informations suivantes sont disponibles dans l'objet <code>screws_tilt_adjust</code> :</p>
<ul> <ul>
<li><code>error</code> : renvoie True si la commande <code>SCREWS_TILT_CALCULATE</code> la plus récente incluait le paramètre <code>MAX_DEVIATION</code> et que l'un des sondages au niveau des vis de lit dépassait la valeur <code>MAX_DEVIATION</code>.</li> <li><code>error</code> : renvoie True si la commande <code>SCREWS_TILT_CALCULATE</code> la plus récente incluait le paramètre <code>MAX_DEVIATION</code> et que l'un des sondages au niveau des vis de lit dépassait la valeur <code>MAX_DEVIATION</code>.</li>
<li><code>résultats</code> : une liste des emplacements des vis de lit sondées. Chaque entrée de la liste est un dictionnaire contenant les clés suivantes :<ul> <li><code>results["&lt;screw&gt;"]</code>: A dictionary containing the following keys:<ul>
<li><code>name</code> : le nom de la vis tel qu'il est spécifié dans le fichier de configuration.</li>
<li><code>x</code> : la coordonnée X de la vis telle que spécifiée dans le fichier de configuration.</li>
<li><code>y</code> : la coordonnée Y de la vis telle que spécifiée dans le fichier de configuration.</li>
<li><code>z</code> : La hauteur Z mesurée à l'emplacement de la vis.</li> <li><code>z</code> : La hauteur Z mesurée à l'emplacement de la vis.</li>
<li><code>sign</code> : Une chaîne spécifiant le sens de rotation à visser pour le réglage nécessaire. Soit "CW" pour le sens horaire ou "CCW" pour le sens antihoraire. La vis de base n'aura pas de clé <code>sign</code>.</li> <li><code>sign</code>: A string specifying the direction to turn to screw for the necessary adjustment. Either "CW" for clockwise or "CCW" for counterclockwise.</li>
<li><code>adjust</code> : le nombre de tours de vis pour ajuster la vis, donné au format "HH:MM", où "HH" est le nombre de tours de vis complets et "MM" est le nombre de "minutes d'un cadran d'horloge" représentant un tour de vis partiel. (Par exemple, "01:15" signifierait de tourner la vis d'un tour et quart.)</li> <li><code>adjust</code> : le nombre de tours de vis pour ajuster la vis, donné au format "HH:MM", où "HH" est le nombre de tours de vis complets et "MM" est le nombre de "minutes d'un cadran d'horloge" représentant un tour de vis partiel. (Par exemple, "01:15" signifierait de tourner la vis d'un tour et quart.)</li>
<li><code>is_base</code>: Returns True if this is the base screw.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -2104,6 +2118,11 @@
<ul> <ul>
<li><code>printer["servo &lt;config_name&gt;"].value</code> : le dernier réglage de la broche PWM (une valeur comprise entre 0,0 et 1,0) associée au servo.</li> <li><code>printer["servo &lt;config_name&gt;"].value</code> : le dernier réglage de la broche PWM (une valeur comprise entre 0,0 et 1,0) associée au servo.</li>
</ul> </ul>
<h2 id="stepper_enable">stepper_enable<a class="headerlink" href="#stepper_enable" title="Permanent link">&para;</a></h2>
<p>The following information is available in the <code>stepper_enable</code> object (this object is available if any stepper is defined):</p>
<ul>
<li><code>steppers["&lt;stepper&gt;"]</code>: Returns True if the given stepper is enabled.</li>
</ul>
<h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2> <h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2>
<p>Les informations suivantes sont disponibles dans l'objet <code>system_stats</code> (cet objet est toujours disponible) :</p> <p>Les informations suivantes sont disponibles dans l'objet <code>system_stats</code> (cet objet est toujours disponible) :</p>
<ul> <ul>

View file

@ -990,8 +990,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-signale-une-erreur-shorttognd-ou-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC signale une erreur : ... ShortToGND OU LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1649,8 +1649,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-signale-une-erreur-shorttognd-ou-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC signale une erreur : ... ShortToGND OU LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1897,7 +1897,7 @@ gcode:
<p>Quelques erreurs courantes et conseils pour les diagnostiquer :</p> <p>Quelques erreurs courantes et conseils pour les diagnostiquer :</p>
<h4 id="tmc-signale-une-erreur-ot1overtemperror">TMC signale une erreur : <code>... ot=1(OvertempError !)</code><a class="headerlink" href="#tmc-signale-une-erreur-ot1overtemperror" title="Permanent link">&para;</a></h4> <h4 id="tmc-signale-une-erreur-ot1overtemperror">TMC signale une erreur : <code>... ot=1(OvertempError !)</code><a class="headerlink" href="#tmc-signale-une-erreur-ot1overtemperror" title="Permanent link">&para;</a></h4>
<p>Cela indique que le pilote du moteur s'est désactivé car il est en surchauffe. Les solutions typiques consistent à diminuer le courant du pilote de moteur pas à pas, à augmenter le refroidissement du pilote du moteur pas à pas et/ou à augmenter le refroidissement du pilote du moteur pas à pas.</p> <p>Cela indique que le pilote du moteur s'est désactivé car il est en surchauffe. Les solutions typiques consistent à diminuer le courant du pilote de moteur pas à pas, à augmenter le refroidissement du pilote du moteur pas à pas et/ou à augmenter le refroidissement du pilote du moteur pas à pas.</p>
<h4 id="tmc-signale-une-erreur-shorttognd-ou-lowsideshort">TMC signale une erreur : <code>... ShortToGND</code> OU <code>LowSideShort</code><a class="headerlink" href="#tmc-signale-une-erreur-shorttognd-ou-lowsideshort" title="Permanent link">&para;</a></h4> <h4 id="tmc-reports-error-shorttognd-or-shorttosupply">TMC reports error: <code>... ShortToGND</code> OR <code>ShortToSupply</code><a class="headerlink" href="#tmc-reports-error-shorttognd-or-shorttosupply" title="Permanent link">&para;</a></h4>
<p>Cela indique que le pilote s'est désactivé car il a détecté un courant très élevé le traversant. Cela peut indiquer un fil desserré ou court-circuité vers le moteur pas à pas ou dans le moteur pas à pas lui-même.</p> <p>Cela indique que le pilote s'est désactivé car il a détecté un courant très élevé le traversant. Cela peut indiquer un fil desserré ou court-circuité vers le moteur pas à pas ou dans le moteur pas à pas lui-même.</p>
<p>Cette erreur peut également se produire si vous utilisez le mode StealthChop et que le pilote TMC n'est pas en mesure de prédire avec précision la charge mécanique du moteur. (Si le pilote fait une mauvaise prédiction, il peut envoyer trop de courant à travers le moteur et déclencher sa propre détection de surintensité.) Pour tester cela, désactivez le mode StealthChop et vérifiez si les erreurs continuent de se produire.</p> <p>Cette erreur peut également se produire si vous utilisez le mode StealthChop et que le pilote TMC n'est pas en mesure de prédire avec précision la charge mécanique du moteur. (Si le pilote fait une mauvaise prédiction, il peut envoyer trop de courant à travers le moteur et déclencher sa propre détection de surintensité.) Pour tester cela, désactivez le mode StealthChop et vérifiez si les erreurs continuent de se produire.</p>
<h4 id="tmc-signale-une-erreur-reset1reset-or-cs_actual0reset-or-se0reset">TMC signale une erreur : <code>... reset=1(Reset)</code> OR <code>CS_ACTUAL=0(Reset ?)</code> OR <code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-signale-une-erreur-reset1reset-or-cs_actual0reset-or-se0reset" title="Permanent link">&para;</a></h4> <h4 id="tmc-signale-une-erreur-reset1reset-or-cs_actual0reset-or-se0reset">TMC signale une erreur : <code>... reset=1(Reset)</code> OR <code>CS_ACTUAL=0(Reset ?)</code> OR <code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-signale-une-erreur-reset1reset-or-cs_actual0reset-or-se0reset" title="Permanent link">&para;</a></h4>

File diff suppressed because one or more lines are too long

View file

@ -2,252 +2,252 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
</urlset> </urlset>

Binary file not shown.

View file

@ -1552,7 +1552,7 @@
<h1 id="targyasztal-halo">Tárgyasztal háló<a class="headerlink" href="#targyasztal-halo" title="Permanent link">&para;</a></h1> <h1 id="targyasztal-halo">Tárgyasztal háló<a class="headerlink" href="#targyasztal-halo" title="Permanent link">&para;</a></h1>
<p>A tárgyasztal háló modul használható a tárgyasztal felület egyenetlenségeinek kiegyenlítésére, hogy jobb első réteget kapj az egész tárgyasztalon. Meg kell jegyezni, hogy a szoftveralapú korrekció nem fog tökéletes eredményt elérni, csak megközelítő értékekkel tudatja a tárgyasztal alakját. A tárgyasztal háló szintén nem tudja kompenzálni a mechanikai és elektromos problémákat. Ha egy tengely ferde vagy egy szonda nem pontos, akkor a bed_mesh modul nem fog pontos eredményeket kapni a szintezésről.</p> <p>The Bed Mesh module may be used to compensate for bed surface irregularities to achieve a better first layer across the entire bed. It should be noted that software based correction will not achieve perfect results, it can only approximate the shape of the bed. Bed Mesh also cannot compensate for mechanical and electrical issues. If an axis is skewed or a probe is not accurate then the bed_mesh module will not receive accurate results from the probing process.</p>
<p>A hálókalibrálás előtt meg kell győződnöd arról, hogy a szonda Z-eltolása kalibrálva van. Ha végállást használsz a Z-kezdőponthoz, akkor azt is kalibrálni kell. További információkért lásd a <a href="Probe_Calibrate.html">Szonda Kalibrálás</a> és a Z_ENDSTOP_CALIBRATE című fejezetben a <a href="Manual_Level.html">Kézi Szintezést</a>.</p> <p>A hálókalibrálás előtt meg kell győződnöd arról, hogy a szonda Z-eltolása kalibrálva van. Ha végállást használsz a Z-kezdőponthoz, akkor azt is kalibrálni kell. További információkért lásd a <a href="Probe_Calibrate.html">Szonda Kalibrálás</a> és a Z_ENDSTOP_CALIBRATE című fejezetben a <a href="Manual_Level.html">Kézi Szintezést</a>.</p>
<h2 id="alapveto-konfiguracio">Alapvető konfiguráció<a class="headerlink" href="#alapveto-konfiguracio" title="Permanent link">&para;</a></h2> <h2 id="alapveto-konfiguracio">Alapvető konfiguráció<a class="headerlink" href="#alapveto-konfiguracio" title="Permanent link">&para;</a></h2>
<h3 id="teglalap-alaku-targyasztalok">Téglalap alakú tárgyasztalok<a class="headerlink" href="#teglalap-alaku-targyasztalok" title="Permanent link">&para;</a></h3> <h3 id="teglalap-alaku-targyasztalok">Téglalap alakú tárgyasztalok<a class="headerlink" href="#teglalap-alaku-targyasztalok" title="Permanent link">&para;</a></h3>
@ -1569,7 +1569,7 @@ probe_count: 5, 3
<li><code>speed: 120</code> * Alapértelmezett érték: 50* A sebesség, amellyel a fej a pontok között mozog.</li> <li><code>speed: 120</code> * Alapértelmezett érték: 50* A sebesség, amellyel a fej a pontok között mozog.</li>
<li><code>horizontal_move_z: 5</code> <em>Alapértelmezett érték: 5</em> A Z koordináta, amelyre a szonda a mérőpontok közötti utazás előtt emelkedik.</li> <li><code>horizontal_move_z: 5</code> <em>Alapértelmezett érték: 5</em> A Z koordináta, amelyre a szonda a mérőpontok közötti utazás előtt emelkedik.</li>
<li><code>mesh_min: 35, 6</code> <em>Ajánlott</em> Az első, az origóhoz legközelebbi koordináta. Ez a koordináta a szonda helyéhez képest relatív.</li> <li><code>mesh_min: 35, 6</code> <em>Ajánlott</em> Az első, az origóhoz legközelebbi koordináta. Ez a koordináta a szonda helyéhez képest relatív.</li>
<li><code>mesh_max: 240, 198</code> <em>Ajánlott</em> Az origótól legtávolabb eső mért koordináta. Ez nem feltétlenül az utolsó mért pont, mivel a mérés cikcakkos módon történik. A <code>mesh_min</code> koordinátához hasonlóan ez a koordináta is a szonda helyéhez van viszonyítva.</li> <li><code>mesh_max: 240, 198</code> <em>Required</em> The probed coordinate farthest farthest from the origin. This is not necessarily the last point probed, as the probing process occurs in a zig-zag fashion. As with <code>mesh_min</code>, this coordinate is relative to the probe's location.</li>
<li><code>probe_count: 5, 3</code> <em>Alapértelmezett érték: 3,3</em> Az egyes tengelyeken mérendő pontok száma, X, Y egész értékben megadva. Ebben a példában az X tengely mentén 5 pont lesz mérve, az Y tengely mentén 3 pont, összesen 15 mért pont. Vedd figyelembe, hogy ha négyzetrácsot szeretnél, például 3x3, akkor ezt egyetlen egész számértékként is megadhatod, amelyet mindkét tengelyre használsz, azaz <code>probe_count: 3</code>. Vedd figyelembe, hogy egy hálóhoz mindkét tengely mentén legalább 3 darab mérési számra van szükség.</li> <li><code>probe_count: 5, 3</code> <em>Alapértelmezett érték: 3,3</em> Az egyes tengelyeken mérendő pontok száma, X, Y egész értékben megadva. Ebben a példában az X tengely mentén 5 pont lesz mérve, az Y tengely mentén 3 pont, összesen 15 mért pont. Vedd figyelembe, hogy ha négyzetrácsot szeretnél, például 3x3, akkor ezt egyetlen egész számértékként is megadhatod, amelyet mindkét tengelyre használsz, azaz <code>probe_count: 3</code>. Vedd figyelembe, hogy egy hálóhoz mindkét tengely mentén legalább 3 darab mérési számra van szükség.</li>
</ul> </ul>
<p>Az alábbi ábra azt mutatja, hogy a <code>mesh_min</code>, <code>mesh_max</code> és <code>probe_count</code> opciók hogyan használhatók a mérőpontok létrehozására. A nyilak jelzik a mérési eljárás irányát, kezdve a <code>mesh_min</code> ponttól. Hivatkozásképpen, amikor a szonda a <code>mesh_min</code> pontnál van, a fúvóka a (11, 1) pontnál lesz, és amikor a szonda a <code>mesh_max</code> pontnál van, a fúvóka a (206, 193) pontnál lesz.</p> <p>Az alábbi ábra azt mutatja, hogy a <code>mesh_min</code>, <code>mesh_max</code> és <code>probe_count</code> opciók hogyan használhatók a mérőpontok létrehozására. A nyilak jelzik a mérési eljárás irányát, kezdve a <code>mesh_min</code> ponttól. Hivatkozásképpen, amikor a szonda a <code>mesh_min</code> pontnál van, a fúvóka a (11, 1) pontnál lesz, és amikor a szonda a <code>mesh_max</code> pontnál van, a fúvóka a (206, 193) pontnál lesz.</p>
@ -1589,12 +1589,12 @@ round_probe_count: 5
<li><code>mesh_origin: 0, 0</code> <em>Alapértelmezett érték: 0, 0</em> A háló középpontja. Ez a koordináta a szonda helyéhez képest relatív. Bár az alapértelmezett érték 0, 0 hasznos lehet az origó beállítása, ha a tárgyasztal nagyobb részét szeretnéd megmérni. Lásd az alábbi ábrát.</li> <li><code>mesh_origin: 0, 0</code> <em>Alapértelmezett érték: 0, 0</em> A háló középpontja. Ez a koordináta a szonda helyéhez képest relatív. Bár az alapértelmezett érték 0, 0 hasznos lehet az origó beállítása, ha a tárgyasztal nagyobb részét szeretnéd megmérni. Lásd az alábbi ábrát.</li>
<li><code>round_probe_count: 5</code> <em>Alapértelmezett érték: 5</em> Ez egy egész szám, amely meghatározza az X és Y tengely mentén mért pontok maximális számát. A "maximális" alatt a háló origója mentén mért pontok számát értjük. Ennek az értéknek páratlan számnak kell lennie, mivel a háló középpontját kell megvizsgálni.</li> <li><code>round_probe_count: 5</code> <em>Alapértelmezett érték: 5</em> Ez egy egész szám, amely meghatározza az X és Y tengely mentén mért pontok maximális számát. A "maximális" alatt a háló origója mentén mért pontok számát értjük. Ennek az értéknek páratlan számnak kell lennie, mivel a háló középpontját kell megvizsgálni.</li>
</ul> </ul>
<p>Az alábbi ábra mutatja, hogyan generálódnak a mért pontok. Mint látható, a <code>mesh_origin</code> (-10, 0) értékre állítása lehetővé teszi, hogy nagyobb, 85-ös hálósugarat adjunk meg.</p> <p>The illustration below shows how the probed points are generated. As you can see, setting the <code>mesh_origin</code> to (-10, 0) allows us to specify a larger mesh radius of 85.</p>
<p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p> <p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p>
<h2 id="specialis-konfiguracio">Speciális konfiguráció<a class="headerlink" href="#specialis-konfiguracio" title="Permanent link">&para;</a></h2> <h2 id="specialis-konfiguracio">Speciális konfiguráció<a class="headerlink" href="#specialis-konfiguracio" title="Permanent link">&para;</a></h2>
<p>Az alábbiakban részletesen ismertetjük a fejlettebb konfigurációs lehetőségeket. Minden példa a fent bemutatott téglalap alakú alapkonfigurációra épül. A speciális lehetőségek mindegyike ugyanúgy alkalmazható a kerek tárgyasztalokra is.</p> <p>Az alábbiakban részletesen ismertetjük a fejlettebb konfigurációs lehetőségeket. Minden példa a fent bemutatott téglalap alakú alapkonfigurációra épül. A speciális lehetőségek mindegyike ugyanúgy alkalmazható a kerek tárgyasztalokra is.</p>
<h3 id="halo-interpolacio">Háló interpoláció<a class="headerlink" href="#halo-interpolacio" title="Permanent link">&para;</a></h3> <h3 id="halo-interpolacio">Háló interpoláció<a class="headerlink" href="#halo-interpolacio" title="Permanent link">&para;</a></h3>
<p>Bár a mért mátrixot közvetlenül egyszerű bilineáris interpolációval lehet mintavételezni a mért pontok közötti Z-értékek meghatározásához, a háló sűrűségének növelése érdekében gyakran hasznos a további pontok interpolálása fejlettebb interpolációs algoritmusok segítségével. Ezek az algoritmusok görbületet adnak a hálóhoz, megkísérelve szimulálni a meder anyagi tulajdonságait. A Bed Mesh ehhez Lagrange és bikubik interpolációt kínál.</p> <p>While its possible to sample the probed matrix directly using simple bi-linear interpolation to determine the Z-Values between probed points, it is often useful to interpolate extra points using more advanced interpolation algorithms to increase mesh density. These algorithms add curvature to the mesh, attempting to simulate the material properties of the bed. Bed Mesh offers lagrange and bicubic interpolation to accomplish this.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1629,7 +1629,7 @@ split_delta_z: .025
<li><code>move_check_distance: 5</code> <em>Alapértelmezett érték: 5</em> A minimális távolság, amellyel a kívánt Z-változást ellenőrizni kell a felosztás végrehajtása előtt. Ebben a példában az 5 mm-nél hosszabb mozgást fog az algoritmus végigjárni. Minden 5 mm-enként egy háló Z mérés történik, összehasonlítva azt az előző lépés Z értékével. Ha a delta eléri a <code>split_delta_z</code> által beállított küszöbértéket, akkor a mozgás felosztásra kerül, és a bejárás folytatódik. Ez a folyamat addig ismétlődik, amíg a lépés végére nem érünk, ahol egy végső kiigazítás történik. A <code>move_check_distance</code> értéknél rövidebb mozgásoknál a helyes Z kiigazítást közvetlenül a mozgásra alkalmazzák, áthaladás vagy felosztás nélkül.</li> <li><code>move_check_distance: 5</code> <em>Alapértelmezett érték: 5</em> A minimális távolság, amellyel a kívánt Z-változást ellenőrizni kell a felosztás végrehajtása előtt. Ebben a példában az 5 mm-nél hosszabb mozgást fog az algoritmus végigjárni. Minden 5 mm-enként egy háló Z mérés történik, összehasonlítva azt az előző lépés Z értékével. Ha a delta eléri a <code>split_delta_z</code> által beállított küszöbértéket, akkor a mozgás felosztásra kerül, és a bejárás folytatódik. Ez a folyamat addig ismétlődik, amíg a lépés végére nem érünk, ahol egy végső kiigazítás történik. A <code>move_check_distance</code> értéknél rövidebb mozgásoknál a helyes Z kiigazítást közvetlenül a mozgásra alkalmazzák, áthaladás vagy felosztás nélkül.</li>
<li><code>split_delta_z: .025</code> <em>Alapértelmezett érték: .025</em> Mint fentebb említettük, ez a minimális eltérés szükséges a mozgás felosztásának elindításához. Ebben a példában bármely Z-érték +/- .025 mm eltérés kiváltja a felosztást.</li> <li><code>split_delta_z: .025</code> <em>Alapértelmezett érték: .025</em> Mint fentebb említettük, ez a minimális eltérés szükséges a mozgás felosztásának elindításához. Ebben a példában bármely Z-érték +/- .025 mm eltérés kiváltja a felosztást.</li>
</ul> </ul>
<p>Általában az alapértelmezett értékek elegendőek ezekhez az opciókhoz, sőt, a <code>move_check_distance</code> alapértelmezett 5 mm-es értéke túlzás lehet. Egy haladó felhasználó azonban kísérletezhet ezekkel az opciókkal, hogy megpróbálja kiszorítani az optimális első réteget.</p> <p>Generally the default values for these options are sufficient, in fact the default value of 5mm for the <code>move_check_distance</code> may be overkill. However an advanced user may wish to experiment with these options in an effort to squeeze out the optimal first layer.</p>
<h3 id="halo-elhalvanyulas">Háló elhalványulás<a class="headerlink" href="#halo-elhalvanyulas" title="Permanent link">&para;</a></h3> <h3 id="halo-elhalvanyulas">Háló elhalványulás<a class="headerlink" href="#halo-elhalvanyulas" title="Permanent link">&para;</a></h3>
<p>Ha a "fade" engedélyezve van, a Z-beállítás a konfiguráció által meghatározott távolságon belül fokozatosan megszűnik. Ez a rétegmagasság kis kiigazításával érhető el, a tárgyasztal alakjától függően növelve vagy csökkentve. Ha a fade befejeződött, a Z-beállítás már nem kerül alkalmazásra, így a nyomtatás teteje sík lesz, nem pedig a tárgyasztal alakját tükrözi. A fakításnak lehetnek nemkívánatos tulajdonságai is, ha túl gyorsan fakít, akkor látható leleteket eredményezhet a nyomaton. Továbbá, ha a tárgyasztal jelentősen megvetemedett, a fade zsugoríthatja vagy megnyújthatja a nyomat Z magasságát. Ezért a fade alapértelmezés szerint ki van kapcsolva.</p> <p>Ha a "fade" engedélyezve van, a Z-beállítás a konfiguráció által meghatározott távolságon belül fokozatosan megszűnik. Ez a rétegmagasság kis kiigazításával érhető el, a tárgyasztal alakjától függően növelve vagy csökkentve. Ha a fade befejeződött, a Z-beállítás már nem kerül alkalmazásra, így a nyomtatás teteje sík lesz, nem pedig a tárgyasztal alakját tükrözi. A fakításnak lehetnek nemkívánatos tulajdonságai is, ha túl gyorsan fakít, akkor látható leleteket eredményezhet a nyomaton. Továbbá, ha a tárgyasztal jelentősen megvetemedett, a fade zsugoríthatja vagy megnyújthatja a nyomat Z magasságát. Ezért a fade alapértelmezés szerint ki van kapcsolva.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
@ -1646,10 +1646,10 @@ fade_target: 0
<ul> <ul>
<li><code>fade_start: 1</code> <em>Alapértelmezett érték: 1</em> A Z magasság, amelyben a fokozatos kiigazítást el kell kezdeni. Jó ötlet, ha a fade folyamat megkezdése előtt néhány réteggel lejjebb kerül.</li> <li><code>fade_start: 1</code> <em>Alapértelmezett érték: 1</em> A Z magasság, amelyben a fokozatos kiigazítást el kell kezdeni. Jó ötlet, ha a fade folyamat megkezdése előtt néhány réteggel lejjebb kerül.</li>
<li><code>fade_end: 10</code> <em>Alapértelmezett érték: 0</em> A Z magasság, amelyben a fade-nek be kell fejeződnie. Ha ez az érték kisebb, mint <code>fade_start</code> akkor a fade le van tiltva. Ezt az értéket a nyomtatási felület torzulásától függően lehet módosítani. Egy jelentősen görbült felületnek hosszabb távon kell elhalványulnia. Egy közel sík felület esetében ez az érték csökkenthető, hogy gyorsabban fakuljon ki. A 10 mm egy ésszerű érték, ha a <code>fade_start</code> alapértelmezett 1 értékét használjuk.</li> <li><code>fade_end: 10</code> <em>Alapértelmezett érték: 0</em> A Z magasság, amelyben a fade-nek be kell fejeződnie. Ha ez az érték kisebb, mint <code>fade_start</code> akkor a fade le van tiltva. Ezt az értéket a nyomtatási felület torzulásától függően lehet módosítani. Egy jelentősen görbült felületnek hosszabb távon kell elhalványulnia. Egy közel sík felület esetében ez az érték csökkenthető, hogy gyorsabban fakuljon ki. A 10 mm egy ésszerű érték, ha a <code>fade_start</code> alapértelmezett 1 értékét használjuk.</li>
<li><code>fade_target: 0</code> <em>Alapértelmezett érték: A háló átlagos Z értéke</em> A <code>fade_target</code> úgy képzelhető el, mint egy további Z eltolás, amelyet a fade befejezése után a teljes tárgyasztalra alkalmaznak. Általánosságban azt szeretnénk, ha ez az érték 0 lenne, azonban vannak olyan körülmények, amikor nem kell, hogy így legyen. Tegyük fel például, hogy a tárgyasztalon a kezdőpont pozíciója egy kiugró érték, amely 0,2 mm-rel alacsonyabb, mint a tárgyasztal átlagos mért magassága. Ha a <code>fade_target</code> értéke 0, akkor a fade átlagosan 0,2 mm-rel zsugorítja a nyomtatást a tárgyasztalon. Ha a <code>fade_target</code> értékét .2-re állítod, akkor a kezdőponti terület .2 mm-rel fog tágulni, azonban a tárgyasztal többi része pontosan méretezett lesz. Általában jó ötlet a <code>fade_target</code> elhagyása a konfigurációból, így a háló átlagos magassága kerül felhasználásra, azonban kívánatos lehet a fade target kézi beállítása, ha a tárgyasztal egy adott részére szeretnénk nyomtatni.</li> <li><code>fade_target: 0</code> <em>Default Value: The average Z value of the mesh</em> The <code>fade_target</code> can be thought of as an additional Z offset applied to the entire bed after fade completes. Generally speaking we would like this value to be 0, however there are circumstances where it should not be. For example, lets assume your homing position on the bed is an outlier, its .2 mm lower than the average probed height of the bed. If the <code>fade_target</code> is 0, fade will shrink the print by an average of .2 mm across the bed. By setting the <code>fade_target</code> to .2, the homed area will expand by .2 mm, however, the rest of the bed will be accurately sized. Generally its a good idea to leave <code>fade_target</code> out of the configuration so the average height of the mesh is used, however it may be desirable to manually adjust the fade target if one wants to print on a specific portion of the bed.</li>
</ul> </ul>
<h3 id="a-relativ-referenciaindex">A relatív referenciaindex<a class="headerlink" href="#a-relativ-referenciaindex" title="Permanent link">&para;</a></h3> <h3 id="a-relativ-referenciaindex">A relatív referenciaindex<a class="headerlink" href="#a-relativ-referenciaindex" title="Permanent link">&para;</a></h3>
<p>A legtöbb szonda hajlamos a driftre, azaz: a hő vagy interferencia által okozott pontatlanságokra. Ez kihívássá teheti a szonda Z-eltolásának kiszámítását, különösen különböző tárgyasztal hőmérsékleteken. Ezért egyes nyomtatók a Z tengely beállításához végállást, a háló kalibrálásához pedig szondát használnak. Ezeknek a nyomtatóknak előnyös lehet a relatív referenciaindex konfigurálása.</p> <p>Most probes are susceptible to drift, ie: inaccuracies in probing introduced by heat or interference. This can make calculating the probe's z-offset challenging, particularly at different bed temperatures. As such, some printers use an endstop for homing the Z axis, and a probe for calibrating the mesh. These printers can benefit from configuring the relative reference index.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1717,7 +1717,7 @@ faulty_region_4_max: 45.0, 210.0
<p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p> <p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p>
<p>A BED_MESH_CALIBRATE elvégzése után lehetőség van a háló aktuális állapotának elmentésére egy megnevezett profilba. Ez lehetővé teszi a háló betöltését a tárgyasztal újbóli mérése nélkül. Miután egy profilt a <code>BED_MESH_PROFILE SAVE=&lt;name&gt;</code> segítségével elmentettünk, a <code>SAVE_CONFIG</code> G-kód végrehajtható a profil printer.cfg fájlba való írásához.</p> <p>A BED_MESH_CALIBRATE elvégzése után lehetőség van a háló aktuális állapotának elmentésére egy megnevezett profilba. Ez lehetővé teszi a háló betöltését a tárgyasztal újbóli mérése nélkül. Miután egy profilt a <code>BED_MESH_PROFILE SAVE=&lt;name&gt;</code> segítségével elmentettünk, a <code>SAVE_CONFIG</code> G-kód végrehajtható a profil printer.cfg fájlba való írásához.</p>
<p>A profilok a <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code> parancs végrehajtásával tölthetők be.</p> <p>A profilok a <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code> parancs végrehajtásával tölthetők be.</p>
<p>Meg kell jegyezni, hogy minden alkalommal, amikor a BED_MESH_CALIBRATE használatba kerül, az aktuális állapot automatikusan az <em>alapértelmezett</em> profilba kerül mentésre. Ha ez a profil létezik, akkor a Klipper indításakor automatikusan betöltődik. Ha ez a viselkedés nem kívánatos, a <em>default</em> profil a következőképpen távolítható el:</p> <p>It should be noted that each time a BED_MESH_CALIBRATE occurs, the current state is automatically saved to the <em>default</em> profile. The <em>default</em> profile can be removed as follows:</p>
<p><code>BED_MESH_PROFILE REMOVE=default</code></p> <p><code>BED_MESH_PROFILE REMOVE=default</code></p>
<p>Bármely más elmentett profil ugyanígy eltávolítható, a <em>default</em> helyettesítve az eltávolítani kívánt névvel.</p> <p>Bármely más elmentett profil ugyanígy eltávolítható, a <em>default</em> helyettesítve az eltávolítani kívánt névvel.</p>
<h4 id="az-alapertelmezett-profil-betoltese">Az alapértelmezett profil betöltése<a class="headerlink" href="#az-alapertelmezett-profil-betoltese" title="Permanent link">&para;</a></h4> <h4 id="az-alapertelmezett-profil-betoltese">Az alapértelmezett profil betöltése<a class="headerlink" href="#az-alapertelmezett-profil-betoltese" title="Permanent link">&para;</a></h4>

View file

@ -1134,6 +1134,13 @@
SAMD51 lépési sebesség referencia SAMD51 lépési sebesség referencia
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1503,6 +1510,13 @@
SAMD51 lépési sebesség referencia SAMD51 lépési sebesség referencia
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2005,6 +2019,34 @@ finalize_config crc=0
</tr> </tr>
</tbody> </tbody>
</table> </table>
<h3 id="ar100-step-rate-benchmark">AR100 step rate benchmark<a class="headerlink" href="#ar100-step-rate-benchmark" title="Permanent link">&para;</a></h3>
<p>The following configuration sequence is used on AR100 CPU (Allwinner A64):</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3
config_stepper oid=0 step_pin=PL10 dir_pin=PE14 invert_step=-1 step_pulse_ticks=0
config_stepper oid=1 step_pin=PL11 dir_pin=PE15 invert_step=-1 step_pulse_ticks=0
config_stepper oid=2 step_pin=PL12 dir_pin=PE16 invert_step=-1 step_pulse_ticks=0
finalize_config crc=0
</code></pre></div>
<p>The test was last run on commit <code>08d037c6</code> with gcc version <code>or1k-linux-musl-gcc (GCC) 9.2.0</code> on an Allwinner A64-H micro-controller.</p>
<table>
<thead>
<tr>
<th>AR100 R_PIO</th>
<th>trükkök</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 léptető</td>
<td>85</td>
</tr>
<tr>
<td>3 léptető</td>
<td>359</td>
</tr>
</tbody>
</table>
<h3 id="rp2040-leptetesi-referencia">RP2040 léptetési referencia<a class="headerlink" href="#rp2040-leptetesi-referencia" title="Permanent link">&para;</a></h3> <h3 id="rp2040-leptetesi-referencia">RP2040 léptetési referencia<a class="headerlink" href="#rp2040-leptetesi-referencia" title="Permanent link">&para;</a></h3>
<p>Az RP2040 esetében a következő konfigurációs sorrendet kell alkalmazni:</p> <p>Az RP2040 esetében a következő konfigurációs sorrendet kell alkalmazni:</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3 <div class="highlight"><pre><span></span><code>allocate_oids count=3
@ -2105,6 +2147,12 @@ get_uptime
<td>avr-gcc (GCC) 5.4.0</td> <td>avr-gcc (GCC) 5.4.0</td>
</tr> </tr>
<tr> <tr>
<td>ar100 (serial)</td>
<td>138K</td>
<td>08d037c6</td>
<td>or1k-linux-musl-gcc 9.3.0</td>
</tr>
<tr>
<td>samd21 (USB)</td> <td>samd21 (USB)</td>
<td>223K</td> <td>223K</td>
<td>01d2183f</td> <td>01d2183f</td>

View file

@ -1776,7 +1776,7 @@ stm32flash -w generic_boot20_pc13.bin -v -g 0 /dev/ttyAMA0
<p>A bootloader általában csak rövid ideig fut a rendszerindítás után. Szükség lehet arra, hogy a fenti parancsot úgy időzítsük, hogy az akkor fusson le, amikor a bootloader még aktív (a bootloader üzem közben villogtat egy a lapon lévő ledet). Alternatív megoldásként a "boot 0" csapot állítsd alacsonyra, a "boot 1" csapot pedig magasra, hogy a bootloaderben maradj a reset után.</p> <p>A bootloader általában csak rövid ideig fut a rendszerindítás után. Szükség lehet arra, hogy a fenti parancsot úgy időzítsük, hogy az akkor fusson le, amikor a bootloader még aktív (a bootloader üzem közben villogtat egy a lapon lévő ledet). Alternatív megoldásként a "boot 0" csapot állítsd alacsonyra, a "boot 1" csapot pedig magasra, hogy a bootloaderben maradj a reset után.</p>
<h3 id="stm32f103-hid-bootloaderrel">STM32F103 HID bootloaderrel<a class="headerlink" href="#stm32f103-hid-bootloaderrel" title="Permanent link">&para;</a></h3> <h3 id="stm32f103-hid-bootloaderrel">STM32F103 HID bootloaderrel<a class="headerlink" href="#stm32f103-hid-bootloaderrel" title="Permanent link">&para;</a></h3>
<p>A <a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a> egy kompakt, driver nélküli bootloader, amely képes USB-n keresztül égetni. Szintén elérhető egy <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork az SKR Mini E3 1.2 specifikus buildekkel</a>.</p> <p>A <a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a> egy kompakt, driver nélküli bootloader, amely képes USB-n keresztül égetni. Szintén elérhető egy <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork az SKR Mini E3 1.2 specifikus buildekkel</a>.</p>
<p>Az általános STM32F103 alaplapok, mint például a blue pill esetében a bootloader 3,3V-os soros égetése lehetséges az stm32flash használatával, amint azt a fenti stm32duino szakaszban említettük, a kívánt hid bootloader bináris fájlnevének behelyettesítésével (azaz: hid_generic_pc13.bin a blue pillhez).</p> <p>For generic STM32F103 boards such as the blue pill it is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired hid bootloader binary (ie: hid_generic_pc13.bin for the blue pill).</p>
<p>Az SKR Mini E3 esetében nem lehet stm32flash-t használni, mivel a boot0 láb közvetlenül a földre van kötve, és nincs alaplapi tűkiállása. A bootloader égetéséhez ajánlott STLink V2-t használni STM32Cube programozóval. Ha nincs vagy nem fér hozzá egy STLink-hez, akkor lehetséges egy <a href="#az-openocd-futtatasa-a-raspberry-pi-n">OpenOCD futtatása a Raspberry PI-n</a> használata is a következő chip konfigurációval:</p> <p>Az SKR Mini E3 esetében nem lehet stm32flash-t használni, mivel a boot0 láb közvetlenül a földre van kötve, és nincs alaplapi tűkiállása. A bootloader égetéséhez ajánlott STLink V2-t használni STM32Cube programozóval. Ha nincs vagy nem fér hozzá egy STLink-hez, akkor lehetséges egy <a href="#az-openocd-futtatasa-a-raspberry-pi-n">OpenOCD futtatása a Raspberry PI-n</a> használata is a következő chip konfigurációval:</p>
<div class="highlight"><pre><span></span><code>forrás [find target/stm32f1x.cfg] <div class="highlight"><pre><span></span><code>forrás [find target/stm32f1x.cfg]
</code></pre></div> </code></pre></div>
@ -1829,10 +1829,10 @@ make
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0 <div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0
</code></pre></div> </code></pre></div>
<p>Szükség lehet a bootloader manuális belépésére, ezt a "boot 0" alacsony és "boot 1" magas értékek beállításával lehet megtenni. Az SKR Mini E3 esetében a "Boot 1" nem áll rendelkezésre, ezért a PA2 tű alacsonyra állításával lehet elvégezni, ha a "hid_btt_skr_mini_e3.bin" fájlt égetjük. Ez a tű az SKR Mini E3 "PIN" dokumentumban "TX0"-ként van jelölve a TFT fejlécen. A PA2 mellett van egy földelt tű, amellyel a PA2 alacsonyra húzhatja.</p> <p>It may be necessary to manually enter the bootloader, this can be done by setting "boot 0" low and "boot 1" high. On the SKR Mini E3 "Boot 1" is not available, so it may be done by setting pin PA2 low if you flashed "hid_btt_skr_mini_e3.bin". This pin is labeled "TX0" on the TFT header in the SKR Mini E3's "PIN" document. There is a ground pin next to PA2 which you can use to pull PA2 low.</p>
<h3 id="stm32f103stm32f072-msc-bootloaderrel">STM32F103/STM32F072 MSC bootloaderrel<a class="headerlink" href="#stm32f103stm32f072-msc-bootloaderrel" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f072-msc-bootloaderrel">STM32F103/STM32F072 MSC bootloaderrel<a class="headerlink" href="#stm32f103stm32f072-msc-bootloaderrel" title="Permanent link">&para;</a></h3>
<p>Az <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC bootloader</a> egy USB-n keresztül égethető, driver nélküli bootloader.</p> <p>Az <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC bootloader</a> egy USB-n keresztül égethető, driver nélküli bootloader.</p>
<p>Lehetőség van a bootloader 3,3V-os soros égetésére az stm32flash használatával, ahogyan azt a fenti stm32duino szakaszban említettük, a kívánt MSC bootloader bináris fájlnevének behelyettesítésével (azaz: MSCboot-Bluepill.bin a Bluepill-hez).</p> <p>It is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired MSC bootloader binary (ie: MSCboot-Bluepill.bin for the blue pill).</p>
<p>Az STM32F072 lapok esetében a bootloader USB-n keresztül (DFU-n keresztül) is égethető, például a következőkkel:</p> <p>Az STM32F072 lapok esetében a bootloader USB-n keresztül (DFU-n keresztül) is égethető, például a következőkkel:</p>
<div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave <div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave
</code></pre></div> </code></pre></div>
@ -1841,7 +1841,7 @@ make
<p>A bootloader a kártya reset gombjának kétszeri megnyomásával aktiválható. Amint a bootloader aktiválódik, a kártya USB flash meghajtóként jelenik meg, amelyre a klipper.bin fájl másolható.</p> <p>A bootloader a kártya reset gombjának kétszeri megnyomásával aktiválható. Amint a bootloader aktiválódik, a kártya USB flash meghajtóként jelenik meg, amelyre a klipper.bin fájl másolható.</p>
<h3 id="stm32f103stm32f0x2-canboot-bootloaderrel">STM32F103/STM32F0x2 CanBoot bootloaderrel<a class="headerlink" href="#stm32f103stm32f0x2-canboot-bootloaderrel" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f0x2-canboot-bootloaderrel">STM32F103/STM32F0x2 CanBoot bootloaderrel<a class="headerlink" href="#stm32f103stm32f0x2-canboot-bootloaderrel" title="Permanent link">&para;</a></h3>
<p>A <a href="https://github.com/Arksine/CanBoot">CanBoot</a> bootloader lehetőséget biztosít a Klipper firmware feltöltésére CANBUS-on keresztül. Maga a bootloader a Klipper forráskódjából származik. A CanBoot jelenleg az STM32F103, STM32F042 és STM32F072 modelleket támogatja.</p> <p>A <a href="https://github.com/Arksine/CanBoot">CanBoot</a> bootloader lehetőséget biztosít a Klipper firmware feltöltésére CANBUS-on keresztül. Maga a bootloader a Klipper forráskódjából származik. A CanBoot jelenleg az STM32F103, STM32F042 és STM32F072 modelleket támogatja.</p>
<p>A CanBoot égetéséhez ajánlott ST-Link programozót használni, azonban STM32F103 eszközökön az <code>stm32flash</code>, STM32F103 eszközökön pedig a <code>dfu-util</code> használatával is lehet égetni. A dokumentum korábbi szakaszaiban találhatók az utasítások ezekre az égetési módszerekre vonatkozóan, adott esetben a fájlnevet <code>canboot.bin</code>-el helyettesítve. A fentebb linkelt CanBoot repo tartalmaz utasításokat a bootloader elkészítéséhez.</p> <p>It is recommended to use a ST-Link Programmer to flash CanBoot, however it should be possible to flash using <code>stm32flash</code> on STM32F103 devices, and <code>dfu-util</code> on STM32F042/STM32F072 devices. See the previous sections in this document for instructions on these flashing methods, substituting <code>canboot.bin</code> for the file name where appropriate. The CanBoot repository linked above provides instructions for building the bootloader.</p>
<p>A CanBoot első égetésénél észlelned kell, hogy nincs jelen alkalmazás, és be kell lépned a bootloaderbe. Ha ez nem történik meg, akkor a reset gomb kétszer egymás utáni megnyomásával lehet belépni a bootloaderbe.</p> <p>A CanBoot első égetésénél észlelned kell, hogy nincs jelen alkalmazás, és be kell lépned a bootloaderbe. Ha ez nem történik meg, akkor a reset gomb kétszer egymás utáni megnyomásával lehet belépni a bootloaderbe.</p>
<p>A Klipper firmware feltöltéséhez a <code>flash_can.py</code> segédprogram használható, amely a <code>lib/canboot</code> mappában található. Az égetéshez szükséges az eszköz UUID azonosítója. Ha nincs meg az UUID, akkor a bootloadert jelenleg futtató csomópontok lekérdezése lehetséges:</p> <p>A Klipper firmware feltöltéséhez a <code>flash_can.py</code> segédprogram használható, amely a <code>lib/canboot</code> mappában található. Az égetéshez szükséges az eszköz UUID azonosítója. Ha nincs meg az UUID, akkor a bootloadert jelenleg futtató csomópontok lekérdezése lehetséges:</p>
<div class="highlight"><pre><span></span><code>python3 flash_can.py -q <div class="highlight"><pre><span></span><code>python3 flash_can.py -q
@ -1855,8 +1855,8 @@ make
<p>Ahol <code>aabbccddeeff</code> helyébe az Ön UUID-je lép. Vedd figyelembe, hogy a <code>-i</code> és <code>-f</code> opciók elhagyhatók, ezek alapértelmezett értéke <code>can0</code> és <code>~/klipper/out/klipper.bin</code>.</p> <p>Ahol <code>aabbccddeeff</code> helyébe az Ön UUID-je lép. Vedd figyelembe, hogy a <code>-i</code> és <code>-f</code> opciók elhagyhatók, ezek alapértelmezett értéke <code>can0</code> és <code>~/klipper/out/klipper.bin</code>.</p>
<p>Amikor a Klippert a CanBoot-al való használatra készíted, válaszd a 8 KiB-os bootloader opciót.</p> <p>Amikor a Klippert a CanBoot-al való használatra készíted, válaszd a 8 KiB-os bootloader opciót.</p>
<h2 id="stm32f4-mikrovezerlok-skr-pro-11">STM32F4 mikrovezérlők (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-mikrovezerlok-skr-pro-11" title="Permanent link">&para;</a></h2> <h2 id="stm32f4-mikrovezerlok-skr-pro-11">STM32F4 mikrovezérlők (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-mikrovezerlok-skr-pro-11" title="Permanent link">&para;</a></h2>
<p>Az STM32F4 mikrokontrollerek beépített rendszerbetöltővel rendelkeznek, amely képes USB-n keresztül (DFU-n keresztül), 3,3V-os soros és különböző más módszerekkel is égetni (további információkért lásd az STM AN2606 dokumentumát). Egyes STM32F4 lapok, mint például az SKR Pro 1.1, nem képesek belépni a DFU bootloaderbe. A HID bootloader elérhető az STM32F405/407 alapú lapokhoz, amennyiben a felhasználó az USB-n keresztül történő égetést részesíti előnyben az SD-kártya használatával szemben. Ne feledd, hogy szükség lehet egy, az alaplapodnak specifikus verzió konfigurálására és szerkesztésére, egy <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">az SKR Pro 1.1-es lapra vonatkozó verzió elérhető itt</a>.</p> <p>STM32F4 micro-controllers come equipped with a built-in system bootloader capable of flashing over USB (via DFU), 3.3V Serial, and various other methods (see STM Document AN2606 for more information). Some STM32F4 boards, such as the SKR Pro 1.1, are not able to enter the DFU bootloader. The HID bootloader is available for STM32F405/407 based boards should the user prefer flashing over USB over using the sdcard. Note that you may need to configure and build a version specific to your board, a <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">build for the SKR Pro 1.1 is available here</a>.</p>
<p>Hacsak a lapod nem DFU-képes, a legkönnyebben elérhető égetési módszer valószínűleg a 3,3V-os soros, amely ugyanazt az eljárást követi, mint [az STM32F103 égetése az stm32flash segítségével](#stm32f103-mikrovezerlok-(blue-pill-eszkozok). Például:</p> <p>Unless your board is DFU capable the most accessible flashing method is likely via 3.3V serial, which follows the same procedure as <a href="#stm32f103-micro-controllers-blue-pill-devices">flashing the STM32F103 using stm32flash</a>. For example:</p>
<div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin <div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin
stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0 stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0

View file

@ -1466,15 +1466,15 @@
<td>Tárgyasztal szintezése, MCU égetés</td> <td>Tárgyasztal szintezése, MCU égetés</td>
</tr> </tr>
<tr> <tr>
<td>James Hartley</td>
<td>@JamesH1978</td>
<td>Configuration files</td>
</tr>
<tr>
<td>Kevin O'Connor</td> <td>Kevin O'Connor</td>
<td>@KevinOConnor</td> <td>@KevinOConnor</td>
<td>Mag mozgási rendszer, mikrokontroller kód</td> <td>Mag mozgási rendszer, mikrokontroller kód</td>
</tr> </tr>
<tr>
<td>Paul McGowan</td>
<td>@mental405</td>
<td>Konfigurációs fájlok, dokumentáció</td>
</tr>
</tbody> </tbody>
</table> </table>
<p>Kérjük, ne "pingelje" a bírálókat, és ne küldjön beadványokat nekik. Az összes bíráló figyelemmel kíséri a fórumokat és a PR-eket, és ha van idejük, akkor vállalják a bírálatokat.</p> <p>Kérjük, ne "pingelje" a bírálókat, és ne küldjön beadványokat nekik. Az összes bíráló figyelemmel kíséri a fórumokat és a PR-eket, és ha van idejük, akkor vállalják a bírálatokat.</p>

View file

@ -1293,6 +1293,8 @@
<p>Ez a dokumentum a konfigurációs fájl legújabb szoftveres változtatásait tartalmazza, amelyek nem kompatibilisek visszafelé. A Klipper szoftver frissítésekor érdemes áttanulmányozni ezt a dokumentumot.</p> <p>Ez a dokumentum a konfigurációs fájl legújabb szoftveres változtatásait tartalmazza, amelyek nem kompatibilisek visszafelé. A Klipper szoftver frissítésekor érdemes áttanulmányozni ezt a dokumentumot.</p>
<p>A dokumentumban szereplő valamennyi dátum hozzávetőleges.</p> <p>A dokumentumban szereplő valamennyi dátum hozzávetőleges.</p>
<h2 id="valtozasok">Változások<a class="headerlink" href="#valtozasok" title="Permanent link">&para;</a></h2> <h2 id="valtozasok">Változások<a class="headerlink" href="#valtozasok" title="Permanent link">&para;</a></h2>
<p>20230304: The <code>SET_TMC_CURRENT</code> command now properly adjusts the globalscaler register for drivers that have it. This removes a limitation where on tmc5160, the currents could not be raised higher with <code>SET_TMC_CURRENT</code> than the <code>run_current</code> value set in the config file. However, this has a side effect: After running <code>SET_TMC_CURRENT</code>, the stepper must be held at standstill for &gt;130ms in case StealthChop2 is used so that the AT#1 calibration gets executed by the driver.</p>
<p>20230202: The format of the <code>printer.screws_tilt_adjust</code> status information has changed. The information is now stored as a dictionary of screws with the resulting measurements. See the <a href="Status_Reference.html#screws_tilt_adjust">status reference</a> for details.</p>
<p>20230201: A <code>[bed_mesh]</code> modul már nem tölti be az <code>alapértelmezett</code> profilt indításkor. Az <code>alapértelmezett</code> profilt használó felhasználóknak ajánlott a <code>BED_MESH_PROFILE LOAD=default</code> hozzáadni a <code>START_PRINT</code> makróhoz (vagy adott esetben a szeletelő "Start G-Code" konfigurációjához).</p> <p>20230201: A <code>[bed_mesh]</code> modul már nem tölti be az <code>alapértelmezett</code> profilt indításkor. Az <code>alapértelmezett</code> profilt használó felhasználóknak ajánlott a <code>BED_MESH_PROFILE LOAD=default</code> hozzáadni a <code>START_PRINT</code> makróhoz (vagy adott esetben a szeletelő "Start G-Code" konfigurációjához).</p>
<p>20230103: A flash-sdcard.sh szkript segítségével mostantól a Bigtreetech SKR-2 mindkét változata, az STM32F407 és az STM32F429 is égethető. Ez azt jelenti, hogy az eredeti btt-skr2 címke mostantól vagy btt-skr-2-f407-re, vagy btt-skr-2-f429-re változik.</p> <p>20230103: A flash-sdcard.sh szkript segítségével mostantól a Bigtreetech SKR-2 mindkét változata, az STM32F407 és az STM32F429 is égethető. Ez azt jelenti, hogy az eredeti btt-skr2 címke mostantól vagy btt-skr-2-f407-re, vagy btt-skr-2-f429-re változik.</p>
<p>20221128: Klipper v0.11.0 megjelent.</p> <p>20221128: Klipper v0.11.0 megjelent.</p>

View file

@ -1337,6 +1337,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3258,6 +3265,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3837,64 +3851,65 @@ radius:
<div class="highlight"><pre><span></span><code>[printer] <div class="highlight"><pre><span></span><code>[printer]
kinematics: deltesian kinematics: deltesian
max_z_velocity: max_z_velocity:
# Deltesian nyomtatóknál ez korlátozza a Z tengely mozgásának maximális # For deltesian printers, this limits the maximum velocity (in mm/s) of
# sebességét (mm/s-ban). Ezzel a beállítással csökkenthető a fel/le # moves with z axis movement. This setting can be used to reduce the
# mozgások maximális sebessége (amelyek nagyobb lépésszámot # maximum speed of up/down moves (which require a higher step rate
# igényelnek, mint egy deltesian nyomtató egyéb lépései). # than other moves on a deltesian printer). The default is to use
# Az alapértelmezett a max_velocity a max_z_velocity értékhez. # max_velocity for max_z_velocity.
#max_z_accel: #max_z_accel:
# Ez beállítja a Z tengely mentén történő mozgás maximális gyorsulását # This sets the maximum acceleration (in mm/s^2) of movement along
# (mm/s^2-ben). Ennek beállítása akkor lehet hasznos, ha a nyomtató # the z axis. Setting this may be useful if the printer can reach higher
# nagyobb gyorsulást tud elérni XY mozgásnál, mint Z mozgásnál # acceleration on XY moves than Z moves (eg, when using input shaper).
# (pl. bemeneti alakformáló használatakor). # The default is to use max_accel for max_z_accel.
# Az alapértelmezett a max_accel a max_z_accel értékhez. #minimum_z_position: 0
#minimális_z_pozíció: 0 # The minimum Z position that the user may command the head to move
# Az a minimális Z pozíció, amelybe a felhasználó utasíthatja a fejet, hogy # to. The default is 0.
# mozogjon. Az alapértelmezett érték 0.
#min_angle: 5 #min_angle: 5
# Ez azt a minimális szöget (fokban) jelenti a vízszinteshez képest, amelyet # This represents the minimum angle (in degrees) relative to horizontal
# a deltesian karok elérhetnek. Ennek a paraméternek az a célja, hogy # that the deltesian arms are allowed to achieve. This parameter is
# megakadályozza, a karok teljesen vízszintesbe mozgatását, ami az XZ # intended to restrict the arms from becoming completely horizontal,
# tengely véletlen megfordulását kockáztatná. Az alapértelmezett érték 5. # which would risk accidental inversion of the XZ axis. The default is 5.
#print_width: #print_width:
# Az érvényes nyomtatófej X koordináták távolsága (mm-ben). Ezzel a # The distance (in mm) of valid toolhead X coordinates. One may use
# beállítással testreszabható a nyomtatófej mozgások tartományellenőrzése. # this setting to customize the range checking of toolhead moves. If
# Ha itt nagy értéket adunk meg, akkor előfordulhat, hogy a nyomtatófejet a # a large value is specified here then it may be possible to command
# toronnyal való ütközésre utasíthatjuk. # the toolhead into a collision with a tower. This setting usually
# Ez a beállítás általában a tárgyasztal szélességnek felel meg (mm-ben). # corresponds to bed width (in mm).
#slow_ratio: 3 #slow_ratio: 3
# Az az arány, amely korlátozza a sebességet és a gyorsulást az X tengely # The ratio used to limit velocity and acceleration on moves near the
# szélső pontjaihoz közeli mozgásoknál. Ha a függőleges távolság osztva a # extremes of the X axis. If vertical distance divided by horizontal
# vízszintes távolsággal meghaladja a slow_ratio értékét, akkor a sebesség és # distance exceeds the value of slow_ratio, then velocity and
# a gyorsulás a névleges értékük felére korlátozódik. Ha a függőleges távolság # acceleration are limited to half their nominal values. If vertical
# osztva a vízszintes távolsággal meghaladja a slow_ratio értékének # distance divided by horizontal distance exceeds twice the value of
# kétszeresét, akkor a sebesség és a gyorsulás a névleges értékük # the slow_ratio, then velocity and acceleration are limited to one
# egynegyedére korlátozódik. Az alapértelmezett érték a 3. # quarter of their nominal values. The default is 3.
# A stepper_left szakasz a bal tornyot vezérlő léptető leírására szolgál. # The stepper_left section is used to describe the stepper controlling
# Ez a szakasz az összes toronyhoz tartozó homing paramétereket # the left tower. This section also controls the homing parameters
# (homing_speed, homing_retract_dist) is szabályozza. # (homing_speed, homing_retract_dist) for all towers.
[stepper_left] [stepper_left]
position_endstop: position_endstop:
# Távolság (mm-ben) a fúvóka és a tárgyasztal között, ha a fúvóka az építési terület # Distance (in mm) between the nozzle and the bed when the nozzle is
# közepén van, és a végütközők kioldódnak. Ezt a paramétert meg kell adni a # in the center of the build area and the endstops are triggered. This
# stepper_left; a stepper_right esetén ez a paraméter alapértelmezett értéke # parameter must be provided for stepper_left; for stepper_right this
# a stepper_left paraméterben megadott érték. # parameter defaults to the value specified for stepper_left.
arm_length: arm_length:
# A toronykocsit a nyomtatófejjel összekötő átlós rúd hossza (mm-ben). # Length (in mm) of the diagonal rod that connects the tower carriage to
# Ezt a paramétert meg kell adni a stepper_left; a stepper_right esetén ez a # the print head. This parameter must be provided for stepper_left; for
# paraméter alapértelmezett értéke a stepper_left paraméter megadott értéke. # stepper_right, this parameter defaults to the value specified for
# stepper_left.
arm_x_length: arm_x_length:
# Vízszintes távolság a nyomtatófej és a torony között, ha minden # Horizontal distance between the print head and the tower when the
# kezdőponton van. Ezt a paramétert meg kell adni a stepper_left; a # printers is homed. This parameter must be provided for stepper_left;
# stepper_right esetén ez a paraméter alapértelmezett értéke a # for stepper_right, this parameter defaults to the value specified for
# stepper_left paraméterben megadott érték. # stepper_left.
# A stepper_right szekció a jobb oldali tornyot vezérlő léptető leírására szolgál. # The stepper_right section is used to describe the stepper controlling the
# right tower.
[stepper_right] [stepper_right]
# A stepper_y szakasz az Y tengelyt vezérlő léptető leírására szolgál # The stepper_y section is used to describe the stepper controlling
# egy deltesian gépen. # the Y axis in a deltesian robot.
[stepper_y] [stepper_y]
</code></pre></div> </code></pre></div>
@ -4459,35 +4474,33 @@ max_temp:
<p>További információkért lásd a <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">szintezési útmutató</a> és a <a href="G-Codes.html#screws_tilt_adjust">parancs hivatkozás</a> dokumentumot.</p> <p>További információkért lásd a <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">szintezési útmutató</a> és a <a href="G-Codes.html#screws_tilt_adjust">parancs hivatkozás</a> dokumentumot.</p>
<div class="highlight"><pre><span></span><code>[screws_tilt_adjust] <div class="highlight"><pre><span></span><code>[screws_tilt_adjust]
#screw1: #screw1:
# Az első tárgyasztal kiegyenlítő csavar (X, Y) koordinátája. Ez a helyzet a fúvóka # The (X, Y) coordinate of the first bed leveling screw. This is a
# utasításához úgy, hogy a szonda közvetlenül a tárgyasztal csavar felett # position to command the nozzle to so that the probe is directly
# legyen (vagy a lehető legközelebb, miközben továbbra is a tárgyasztal felett # above the bed screw (or as close as possible while still being
# van). Ez a számításoknál használt alapcsavar. # above the bed). This is the base screw used in calculations. This
# Ezt a paramétert meg kell adni. # parameter must be provided.
#screw1_name: #screw1_name:
# Az adott csavar tetszőleges neve. Ez a név jelenik meg a segédszkript # An arbitrary name for the given screw. This name is displayed when
# futtatásakor. Az alapértelmezés szerint a név a a csavar X-Y # the helper script runs. The default is to use a name based upon
# helyére épül. # the screw XY location.
#screw2: #screw2:
#screw2_name: #screw2_name:
#... #...
# További tárgyasztal kiegyenlítő csavarok. # Additional bed leveling screws. At least two screws must be
# Legalább két csavart kell meghatározott. # defined.
#speed: 50 #speed: 50
# A kalibrálás során a nem mérő mozgások sebessége (mm/sec-ben). # The speed (in mm/s) of non-probing moves during the calibration.
# Az alapértelmezett érték 50. # The default is 50.
#horizontal_move_z: 5 #horizontal_move_z: 5
# A magasság (mm-ben), ahová a fejnek el kell mozdulnia. # The height (in mm) that the head should be commanded to move to
# Közvetlenül a szondaművelet megkezdése előtt. # just prior to starting a probe operation. The default is 5.
# Az alapértelmezett érték 5.
#screw_thread: CW-M3 #screw_thread: CW-M3
# A tárgyasztal szintjéhez használt csavar típusa, M3, M4 vagy M5, valamint a # The type of screw used for bed leveling, M3, M4, or M5, and the
# tárgyasztal szintbeállításához használt gomb iránya, az óramutató járásával # rotation direction of the knob that is used to level the bed.
# megegyező irányú csökkenés az óramutató járásával ellentétes irányú # Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5.
# csökkenés. Elfogadott értékek: CW-M3, CCW-M3, CW-M4, CCW-M4, # Default value is CW-M3 which most printers use. A clockwise
# CW-M5, CCW-M5. Az alapértelmezett érték CW-M3, a legtöbb nyomtató # rotation of the knob decreases the gap between the nozzle and the
# M3-as csavart és a gombot az óramutató járásával megegyező irányba # bed. Conversely, a counter-clockwise rotation increases the gap.
# forgatva csökken a távolság.
</code></pre></div> </code></pre></div>
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
@ -6289,6 +6302,120 @@ run_current:
# a HSTRT MSB-jeként értelmeződik). # a HSTRT MSB-jeként értelmeződik).
</code></pre></div> </code></pre></div>
<h3 id="tmc2240">[tmc2240]<a class="headerlink" href="#tmc2240" title="Permanent link">&para;</a></h3>
<p>Configure a TMC2240 stepper motor driver via SPI bus. To use this feature, define a config section with a "tmc2240" prefix followed by the name of the corresponding stepper config section (for example, "[tmc2240 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc2240 stepper_x]
cs_pin:
# The pin corresponding to the TMC2240 chip select line. This pin
# will be set to low at the start of SPI messages and raised to high
# after the message completes. This parameter must be provided.
#spi_speed:
#spi_bus:
#spi_software_sclk_pin:
#spi_software_mosi_pin:
#spi_software_miso_pin:
# See the &quot;common SPI settings&quot; section for a description of the
# above parameters.
#chain_position:
#chain_length:
# These parameters configure an SPI daisy chain. The two parameters
# define the stepper position in the chain and the total chain length.
# Position 1 corresponds to the stepper that connects to the MOSI signal.
# The default is to not use an SPI daisy chain.
#interpolate: True
# If true, enable step interpolation (the driver will internally
# step at a rate of 256 micro-steps). The default is True.
run_current:
# The amount of current (in amps RMS) to configure the driver to use
# during stepper movement. This parameter must be provided.
#hold_current:
# The amount of current (in amps RMS) to configure the driver to use
# when the stepper is not moving. Setting a hold_current is not
# recommended (see TMC_Drivers.md for details). The default is to
# not reduce the current.
#rref: 12000
# The resistance (in ohms) of the resistor between IREF and GND. The
# default is 12000.
#stealthchop_threshold: 0
# The velocity (in mm/s) to set the &quot;stealthChop&quot; threshold to. When
# set, &quot;stealthChop&quot; mode will be enabled if the stepper motor
# velocity is below this value. The default is 0, which disables
# &quot;stealthChop&quot; mode.
#driver_MSLUT0: 2863314260
#driver_MSLUT1: 1251300522
#driver_MSLUT2: 608774441
#driver_MSLUT3: 269500962
#driver_MSLUT4: 4227858431
#driver_MSLUT5: 3048961917
#driver_MSLUT6: 1227445590
#driver_MSLUT7: 4211234
#driver_W0: 2
#driver_W1: 1
#driver_W2: 1
#driver_W3: 1
#driver_X1: 128
#driver_X2: 255
#driver_X3: 255
#driver_START_SIN: 0
#driver_START_SIN90: 247
#driver_OFFSET_SIN90: 0
# These fields control the Microstep Table registers directly. The optimal
# wave table is specific to each motor and might vary with current. An
# optimal configuration will have minimal print artifacts caused by
# non-linear stepper movement. The values specified above are the default
# values used by the driver. The value must be specified as a decimal integer
# (hex form is not supported). In order to compute the wave table fields,
# see the tmc2130 &quot;Calculation Sheet&quot; from the Trinamic website.
# Additionally, this driver also has the OFFSET_SIN90 field which can be used
# to tune a motor with unbalanced coils. See the `Sine Wave Lookup Table`
# section in the datasheet for information about this field and how to tune
# it.
#driver_IHOLDDELAY: 6
#driver_IRUNDELAY: 4
#driver_TPOWERDOWN: 10
#driver_TBL: 2
#driver_TOFF: 3
#driver_HEND: 2
#driver_HSTRT: 5
#driver_FD3: 0
#driver_TPFD: 4
#driver_CHM: 0
#driver_VHIGHFS: 0
#driver_VHIGHCHM: 0
#driver_DISS2G: 0
#driver_DISS2VS: 0
#driver_PWM_AUTOSCALE: True
#driver_PWM_AUTOGRAD: True
#driver_PWM_FREQ: 0
#driver_FREEWHEEL: 0
#driver_PWM_GRAD: 0
#driver_PWM_OFS: 29
#driver_PWM_REG: 4
#driver_PWM_LIM: 12
#driver_SGT: 0
#driver_SEMIN: 0
#driver_SEUP: 0
#driver_SEMAX: 0
#driver_SEDN: 0
#driver_SEIMIN: 0
#driver_SFILT: 0
#driver_SG4_ANGLE_OFFSET: 1
# Set the given register during the configuration of the TMC2240
# chip. This may be used to set custom motor parameters. The
# defaults for each parameter are next to the parameter name in the
# above list.
#diag0_pin:
#diag1_pin:
# The micro-controller pin attached to one of the DIAG lines of the
# TMC2240 chip. Only a single diag pin should be specified. The pin
# is &quot;active low&quot; and is thus normally prefaced with &quot;^!&quot;. Setting
# this creates a &quot;tmc2240_stepper_x:virtual_endstop&quot; virtual pin
# which may be used as the stepper&#39;s endstop_pin. Doing this enables
# &quot;sensorless homing&quot;. (Be sure to also set driver_SGT to an
# appropriate sensitivity value.) The default is to not enable
# sensorless homing.
</code></pre></div>
<h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3> <h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3>
<p>TMC5160 motorvezérlő konfigurálása SPI-buszon keresztül. A funkció használatához definiáljon egy konfigurációs szekciót "tmc5160" előtaggal, amelyet a megfelelő léptető konfigurációs szekció neve követ (például "[tmc5160 stepper_x]").</p> <p>TMC5160 motorvezérlő konfigurálása SPI-buszon keresztül. A funkció használatához definiáljon egy konfigurációs szekciót "tmc5160" előtaggal, amelyet a megfelelő léptető konfigurációs szekció neve követ (például "[tmc5160 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc5160 stepper_x] <div class="highlight"><pre><span></span><code>[tmc5160 stepper_x]
@ -7135,19 +7262,19 @@ host_mcu:
<p>Ez a modul a teljes funkcionalitáshoz a <code>[virtual_sdcard]</code> és <code>[pause_resume]</code> modulokat is igényli.</p> <p>Ez a modul a teljes funkcionalitáshoz a <code>[virtual_sdcard]</code> és <code>[pause_resume]</code> modulokat is igényli.</p>
<p>Ha ezt a modult használod, ne használd a Palette 2 plugint az Octoprinthez, mivel ezek ütközni fognak, és az egyik nem fog megfelelően inicializálódni, ami valószínűleg megszakítja a nyomtatást.</p> <p>Ha ezt a modult használod, ne használd a Palette 2 plugint az Octoprinthez, mivel ezek ütközni fognak, és az egyik nem fog megfelelően inicializálódni, ami valószínűleg megszakítja a nyomtatást.</p>
<p>Ha az Octoprintet használod és a G-kódot a soros porton keresztül streameli a virtual_sd-ről való nyomtatás helyett, akkor a <strong>M1</strong> és <strong>M0</strong> parancsok <em>Pausing parancsok</em> a <em>Settings &gt;. alatt remo; Serial Connection &gt; Firmware &amp; protocol</em> megakadályozzák, hogy a nyomtatás megkezdéséhez a Paletta 2-n el kelljen indítani a nyomtatást, és az Octoprintben fel kelljen oldani a szünetet.</p> <p>Ha az Octoprintet használod és a G-kódot a soros porton keresztül streameli a virtual_sd-ről való nyomtatás helyett, akkor a <strong>M1</strong> és <strong>M0</strong> parancsok <em>Pausing parancsok</em> a <em>Settings &gt;. alatt remo; Serial Connection &gt; Firmware &amp; protocol</em> megakadályozzák, hogy a nyomtatás megkezdéséhez a Paletta 2-n el kelljen indítani a nyomtatást, és az Octoprintben fel kelljen oldani a szünetet.</p>
<div class="highlight"><pre><span></span><code>[paletta2] <div class="highlight"><pre><span></span><code>[palette2]
serial: serial:
# A soros port, amelyhez a Palette 2 csatlakozik. # The serial port to connect to the Palette 2.
#baud: 115200 #baud: 115200
# A használandó baud-ráta. Az alapértelmezett érték 115200. # The baud rate to use. The default is 115200.
#feedrate_splice: 0.8 #feedrate_splice: 0.8
# A toldáskor használandó feedrate, alapértelmezett 0.8. # The feedrate to use when splicing, default is 0.8
#feedrate_normal: 1.0 #feedrate_normal: 1.0
# A toldás után használandó feedrate, alapértelmezett értéke 1.0. # The feedrate to use after splicing, default is 1.0
#auto_load_speed: 2 #auto_load_speed: 2
# Extrudálási előtolási sebesség automatikus betöltéskor, alapértelmezett 2 (mm/sec) # Extrude feedrate when autoloading, default is 2 (mm/s)
#auto_cancel_variation: 0.1 #auto_cancel_variation: 0.1
# Automatikusan törli a nyomtatást, ha a ping meghaladja ezt a küszöbértéket. # Auto cancel print when ping variation is above this threshold
</code></pre></div> </code></pre></div>
<h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3> <h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3>
@ -7199,24 +7326,23 @@ cs_pin:
<h3 id="gyakori-i2c-beallitasok">Gyakori I2C beállítások<a class="headerlink" href="#gyakori-i2c-beallitasok" title="Permanent link">&para;</a></h3> <h3 id="gyakori-i2c-beallitasok">Gyakori I2C beállítások<a class="headerlink" href="#gyakori-i2c-beallitasok" title="Permanent link">&para;</a></h3>
<p>A következő paraméterek általában az I2C-buszt használó eszközökhöz állnak rendelkezésre.</p> <p>A következő paraméterek általában az I2C-buszt használó eszközökhöz állnak rendelkezésre.</p>
<p>Vedd figyelembe, hogy a Klipper jelenlegi mikrokontrollerek i2c támogatása nem tolerálja a hálózati zajt. Az i2c vezetékek nem várt hibái a Klipper futásidejű hibaüzenetét eredményezhetik. A Klipper hibaelhárítás támogatása az egyes mikrokontroller-típusok között változik. Általában csak olyan i2c eszközök használata ajánlott, amelyek ugyanazon a nyomtatott áramköri lapon vannak, mint a mikrokontroller.</p> <p>Note that Klipper's current micro-controller support for I2C is generally not tolerant to line noise. Unexpected errors on the I2C wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use I2C devices that are on the same printed circuit board as the micro-controller.</p>
<p>A legtöbb Klipper mikrokontroller implementáció csak 100000 <code>i2c_speed</code> értéket támogat. A Klipper "linux" mikrokontroller támogatja a 400000-es sebességet, de ezt <a href="RPi_microcontroller.html#optional-enabling-i2c">az operációs rendszerben kell beállítani</a>, és az <code>i2c_speed</code> paramétert egyébként figyelmen kívül hagyja. A Klipper "rp2040" mikrokontroller az <code>i2c_speed</code> paraméteren keresztül 400000-es sebességet támogat. Az összes többi Klipper mikrovezérlő 100000-es sebességet használ, és figyelmen kívül hagyja az <code>i2c_speed</code> paramétert.</p> <p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000 (<em>standard mode</em>, 100kbit/s). The Klipper "Linux" micro-controller supports a 400000 speed (<em>fast mode</em>, 400kbit/s), but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "RP2040" micro-controller and ATmega AVR family support a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p>
<div class="highlight"><pre><span></span><code>#i2c_address: <div class="highlight"><pre><span></span><code>#i2c_address:
# Az eszköz i2c címe. Ezt decimális számként kell megadni # The i2c address of the device. This must specified as a decimal
# (nem hexadecimális formában). # number (not in hex). The default depends on the type of device.
# Az alapértelmezett érték az eszköz típusától függ.
#i2c_mcu: #i2c_mcu:
# Annak a mikrovezérlőnek a neve, amelyhez a chip csatlakozik. # The name of the micro-controller that the chip is connected to.
# Az alapértelmezett az &quot;mcu&quot;. # The default is &quot;mcu&quot;.
#i2c_bus: #i2c_bus:
# Ha a mikrovezérlő több I2C buszt támogat, akkor itt megadhatod a # If the micro-controller supports multiple I2C busses then one may
# mikrovezérlő busz nevét. # specify the micro-controller bus name here. The default depends on
# Az alapértelmezett érték a mikrovezérlő típusától függ. # the type of micro-controller.
#i2c_speed: #i2c_speed:
# Az eszközzel való kommunikáció során használandó I2C sebesség # The I2C speed (in Hz) to use when communicating with the device.
# (Hz-ben). A Klipper implementációja a legtöbb mikrovezérlőn kódolt # The Klipper implementation on most micro-controllers is hard-coded
# értéke 100000, és ennek az értéknek nincs hatása. # to 100000 and changing this value has no effect. The default is
# Az alapértelmezett érték 100 000. # 100000. Linux, RP2040 and ATmega support 400000.
</code></pre></div> </code></pre></div>

View file

@ -1505,7 +1505,7 @@ make build
<div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so <div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so
</code></pre></div> </code></pre></div>
<p>Ennek a parancsnak egy adott fájlt kell jelentenie (pl. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>), nem pedig hibát.</p> <p>This command should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p>
<p>Ha Debian-alapú rendszert használsz (Debian, Ubuntu, stb.), akkor telepítheted a következő csomagokat, és *.deb fájlokat generálhatsz a simulavr rendszerszintű telepítéséhez:</p> <p>Ha Debian-alapú rendszert használsz (Debian, Ubuntu, stb.), akkor telepítheted a következő csomagokat, és *.deb fájlokat generálhatsz a simulavr rendszerszintű telepítéséhez:</p>
<div class="highlight"><pre><span></span><code>sudo apt update <div class="highlight"><pre><span></span><code>sudo apt update
sudo apt install g++ make cmake swig rst2pdf help2man texinfo sudo apt install g++ make cmake swig rst2pdf help2man texinfo

View file

@ -1307,7 +1307,7 @@
<p>A Klipper számos lenyűgöző tulajdonsággal rendelkezik:</p> <p>A Klipper számos lenyűgöző tulajdonsággal rendelkezik:</p>
<ul> <ul>
<li>Nagy pontosságú léptető mozgás. A Klipper egy alkalmazásprocesszort (például egy olcsó Raspberry Pi-t) használ a nyomtató mozgásának kiszámításához. Az alkalmazásprocesszor határozza meg, hogy mikor lépjen a léptetőmotor, tömöríti ezeket az eseményeket, továbbítja őket a mikrokontrollerhez, majd a mikrokontroller végrehajtja az eseményeket a kért időpontban. Minden egyes léptető eseményt 25 mikroszekundum vagy annál jobb pontossággal ütemezünk. A szoftver nem használ kinematikai becsléseket (mint például a Bresenham-algoritmus) - ehelyett a gyorsulás fizikája és a gép kinematikájának fizikája alapján számítja ki a pontos lépésidőket. A pontosabb léptetőmozgás csendesebb és stabilabb nyomtató működést biztosít.</li> <li>Nagy pontosságú léptető mozgás. A Klipper egy alkalmazásprocesszort (például egy olcsó Raspberry Pi-t) használ a nyomtató mozgásának kiszámításához. Az alkalmazásprocesszor határozza meg, hogy mikor lépjen a léptetőmotor, tömöríti ezeket az eseményeket, továbbítja őket a mikrokontrollerhez, majd a mikrokontroller végrehajtja az eseményeket a kért időpontban. Minden egyes léptető eseményt 25 mikroszekundum vagy annál jobb pontossággal ütemezünk. A szoftver nem használ kinematikai becsléseket (mint például a Bresenham-algoritmus) - ehelyett a gyorsulás fizikája és a gép kinematikájának fizikája alapján számítja ki a pontos lépésidőket. A pontosabb léptetőmozgás csendesebb és stabilabb nyomtató működést biztosít.</li>
<li>Kategóriájában legjobb teljesítmény. A Klipper képes magas léptetési sebességet elérni mind az új, mind a régi mikrokontrollereken. Még a régi 8 bites mikrovezérlők is képesek 175 000 lépés/másodperc feletti sebességet elérni. Az újabb mikrokontrollereken másodpercenként több millió lépés is lehetséges. A nagyobb léptetési sebesség nagyobb nyomtatási sebességet tesz lehetővé. A léptetések időzítése még nagy sebességnél is pontos marad, ami javítja az általános stabilitást.</li> <li>Best in class performance. Klipper is able to achieve high stepping rates on both new and old micro-controllers. Even old 8-bit micro-controllers can obtain rates over 175K steps per second. On more recent micro-controllers, several million steps per second are possible. Higher stepper rates enable higher print velocities. The stepper event timing remains precise even at high speeds which improves overall stability.</li>
<li>A Klipper támogatja a több mikrovezérlővel rendelkező nyomtatókat. Például egy mikrokontroller használható az extruder vezérlésére, míg egy másik a nyomtató fűtőberendezését, míg egy harmadik a nyomtató többi részét vezérli. A Klipper gazdaszoftver órajel-szinkronizációt valósít meg a mikrovezérlők közötti órajel-eltolódás figyelembevétele érdekében. A több mikrovezérlő engedélyezéséhez nincs szükség külön kódra, csak néhány extra sorra a konfigurációs fájlban.</li> <li>A Klipper támogatja a több mikrovezérlővel rendelkező nyomtatókat. Például egy mikrokontroller használható az extruder vezérlésére, míg egy másik a nyomtató fűtőberendezését, míg egy harmadik a nyomtató többi részét vezérli. A Klipper gazdaszoftver órajel-szinkronizációt valósít meg a mikrovezérlők közötti órajel-eltolódás figyelembevétele érdekében. A több mikrovezérlő engedélyezéséhez nincs szükség külön kódra, csak néhány extra sorra a konfigurációs fájlban.</li>
<li>Konfiguráció egyszerű konfigurációs fájlon keresztül. Nincs szükség a mikrokontroller újrafrissítésére a beállítások megváltoztatásához. Az összes Klipper konfiguráció egy szabványos konfigurációs fájlban van tárolva, amely könnyen szerkeszthető. Ez megkönnyíti a hardver beállítását és karbantartását.</li> <li>Konfiguráció egyszerű konfigurációs fájlon keresztül. Nincs szükség a mikrokontroller újrafrissítésére a beállítások megváltoztatásához. Az összes Klipper konfiguráció egy szabványos konfigurációs fájlban van tárolva, amely könnyen szerkeszthető. Ez megkönnyíti a hardver beállítását és karbantartását.</li>
<li>A Klipper támogatja a "Smooth Pressure Advance" - egy olyan mechanizmust, amely figyelembe veszi a nyomást az extruderben. Ez csökkenti az extruder "szivárgását" és javítja a nyomtatási sarkok minőségét. A Klipper beavatkozása nem vezet be pillanatnyi extruder sebességváltozást, ami javítja az általános stabilitást és robusztusságot.</li> <li>A Klipper támogatja a "Smooth Pressure Advance" - egy olyan mechanizmust, amely figyelembe veszi a nyomást az extruderben. Ez csökkenti az extruder "szivárgását" és javítja a nyomtatási sarkok minőségét. A Klipper beavatkozása nem vezet be pillanatnyi extruder sebességváltozást, ami javítja az általános stabilitást és robusztusságot.</li>
@ -1424,6 +1424,11 @@
<td>1885K</td> <td>1885K</td>
</tr> </tr>
<tr> <tr>
<td>AR100</td>
<td>3529K</td>
<td>2507K</td>
</tr>
<tr>
<td>STM32F407</td> <td>STM32F407</td>
<td>3652K</td> <td>3652K</td>
<td>2459K</td> <td>2459K</td>

View file

@ -4424,7 +4424,7 @@
<h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3> <h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#bed_mesh">bed_mesh konfigurációs szakasz</a> engedélyezve van (lásd még az <a href="Bed_Mesh.html">tárgyasztal háló útmutatót</a>).</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#bed_mesh">bed_mesh konfigurációs szakasz</a> engedélyezve van (lásd még az <a href="Bed_Mesh.html">tárgyasztal háló útmutatót</a>).</p>
<h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: Ez a parancs a tárgyasztalt a konfigurációban megadott paraméterek által generált pontok segítségével szintezi. A szintezés után egy háló generálódik, és a Z elmozdulás a hálónak megfelelően kerül beállításra. Az opcionális szintező paraméterekkel kapcsolatos részletekért lásd a PROBE parancsot. Ha a METHOD=manual parancsot adtad meg, akkor a kézi szintező eszköz aktiválódik. Az eszköz aktiválása közben elérhető további parancsok részleteit lásd a fenti MANUAL_PROBE parancsban.</p> <p><code>BED_MESH_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: This command probes the bed using generated points specified by the parameters in the config. After probing, a mesh is generated and z-movement is adjusted according to the mesh. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>: Ez a parancs az aktuális mért Z értékeket és az aktuális hálóértékeket adja ki a terminálra. A PGP=1 megadása esetén a bed_mesh által generált X, Y koordináták és a hozzájuk tartozó indexek kerülnek a terminálra.</p> <p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>: Ez a parancs az aktuális mért Z értékeket és az aktuális hálóértékeket adja ki a terminálra. A PGP=1 megadása esetén a bed_mesh által generált X, Y koordináták és a hozzájuk tartozó indexek kerülnek a terminálra.</p>
<h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4>
@ -4442,7 +4442,7 @@
<h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3> <h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#bed_tilt">bed_tilt konfigurációs szakasz</a> engedélyezve van.</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#bed_tilt">bed_tilt konfigurációs szakasz</a> engedélyezve van.</p>
<h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_TILT_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Ez a parancs a konfigurációban megadott pontokat vizsgálja, majd frissített X és Y dőlésbeállításokat javasol. Az opcionális mérési paraméterekkel kapcsolatos részletekért lásd a PROBE parancsot. Ha a METHOD=manual van megadva, akkor a kézi szintező aktiválódik. Az ezen eszköz aktiválásakor elérhető további parancsok részleteit lásd a fenti MANUAL_PROBE parancsban.</p> <p><code>BED_TILT_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then recommend updated x and y tilt adjustments. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3> <h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3>
<p>A következő parancs akkor érhető el, ha a <a href="Config_Reference.html#bltouch">bltouch konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="BLTouch.html">BL-Touch útmutatót</a>).</p> <p>A következő parancs akkor érhető el, ha a <a href="Config_Reference.html#bltouch">bltouch konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="BLTouch.html">BL-Touch útmutatót</a>).</p>
<h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4> <h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4>
@ -4460,7 +4460,7 @@
<h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3> <h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#linear-delta-kinematics">delta_kalibrate konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="Delta_Calibrate.html">delta kalibrációs útmutatót</a>).</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#linear-delta-kinematics">delta_kalibrate konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="Delta_Calibrate.html">delta kalibrációs útmutatót</a>).</p>
<h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4> <h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4>
<p><code>DELTA_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Ez a parancs a tárgyasztal hét pontját vizsgálja meg, és frissített végállások, toronyszögek és sugarak ajánlására szolgál. Az opcionális mérési paraméterekkel kapcsolatos részletekért lásd a PROBE parancsot. Ha a METHOD=manual érték van megadva, akkor a kézi szintezés aktiválódik. Lásd a fenti MANUAL_PROBE parancsot a további parancsok részleteiért, amelyek akkor állnak rendelkezésre, amikor ez az eszköz aktív.</p> <p><code>DELTA_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe seven points on the bed and recommend updated endstop positions, tower angles, and radius. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4> <h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4>
<p><code>DELTA_ANALYZE</code>: Ez a parancs a fokozott delta-kalibrálás során használatos. A részletekért lásd a <a href="Delta_Calibrate.html">Delta kalibrálás</a> című dokumentumot.</p> <p><code>DELTA_ANALYZE</code>: Ez a parancs a fokozott delta-kalibrálás során használatos. A részletekért lásd a <a href="Delta_Calibrate.html">Delta kalibrálás</a> című dokumentumot.</p>
<h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3> <h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3>
@ -4731,7 +4731,7 @@
<h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3> <h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">kézi szintbeállítási útmutatót</a>).</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust konfigurációs szakasz</a> engedélyezve van (lásd még a <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">kézi szintbeállítási útmutatót</a>).</p>
<h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4> <h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4>
<p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Ez a parancs a tárgyasztal csavarjainak beállítási eszközét hívja elő. A fúvókát különböző helyekre (a konfigurációs fájlban meghatározottak szerint) parancsolja a Z magasságot mérve, és kiszámítja a tárgyasztal szintjének beállításához szükséges gombfordulatok számát. Ha DIRECTION van megadva, akkor a gombfordulások mind ugyanabba az irányba, az óramutató járásával megegyező vagy az óramutató járásával ellentétes irányba fognak történni. Az opcionális szondaparaméterekkel kapcsolatos részletekért lásd a PROBE parancsot. FONTOS: A parancs használata előtt mindig ki kell adni egy G28 parancsot. Ha MAX_DEVIATION van megadva, a parancs G-kód hibát fog adni, ha a csavar magasságának az alapcsavar magasságához viszonyított bármilyen különbsége nagyobb, mint a megadott érték.</p> <p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3> <h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3>
<p>Ha az <a href="Config_Reference.html#sdcard_loop">sdcard_loop konfigurációs szakasz</a> engedélyezve van, a következő kiterjesztett parancsok állnak rendelkezésre.</p> <p>Ha az <a href="Config_Reference.html#sdcard_loop">sdcard_loop konfigurációs szakasz</a> engedélyezve van, a következő kiterjesztett parancsok állnak rendelkezésre.</p>
<h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4> <h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4>
@ -4771,13 +4771,13 @@
<h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3> <h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#tmc-motorvezerlo-konfiguracioja">tmcXXXXXX konfigurációs szakaszok</a> bármelyike engedélyezve van.</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#tmc-motorvezerlo-konfiguracioja">tmcXXXXXX konfigurációs szakaszok</a> bármelyike engedélyezve van.</p>
<h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4> <h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4>
<p><code>DUMP_TMC STEPPER=&lt;name&gt;</code>: Ez a parancs kiolvassa a TMC-motorvezérlő regisztereit és jelenti azok értékeit.</p> <p><code>DUMP_TMC STEPPER=&lt;name&gt; [REGISTER=&lt;name&gt;]</code>: This command will read all TMC driver registers and report their values. If a REGISTER is provided, only the specified register will be dumped.</p>
<h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4> <h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4>
<p><code>INIT_TMC STEPPER=&lt;name&gt;</code>: Ez a parancs inicializálja a TMC regisztereket. A meghajtó újraaktiválásához szükséges, ha a chip áramellátása kikapcsol, majd visszakapcsol.</p> <p><code>INIT_TMC STEPPER=&lt;name&gt;</code>: Ez a parancs inicializálja a TMC regisztereket. A meghajtó újraaktiválásához szükséges, ha a chip áramellátása kikapcsol, majd visszakapcsol.</p>
<h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: Ez a TMC-motorvezérlő futó- és tartóáramát állítja be. (A HOLDCURRENT nem alkalmazható a tmc2660 motorvezérlőkre).</p> <p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: This will adjust the run and hold currents of the TMC driver. <code>HOLDCURRENT</code> is not applicable to tmc2660 drivers. When used on a driver which has the <code>globalscaler</code> field (tmc5160 and tmc2240), if StealthChop2 is used, the stepper must be held at standstill for &gt;130ms so that the driver executes the AT#1 calibration.</p>
<h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt;</code>: Ez módosítja a TMC-motorvezérlő megadott regisztermezőjének értékét. Ez a parancs csak alacsony szintű diagnosztikára és hibakeresésre szolgál, mivel a mezők futás közbeni módosítása a nyomtató nem kívánt és potenciálisan veszélyes viselkedéséhez vezethet. A tartós változtatásokat inkább a nyomtató konfigurációs fájljának használatával kell elvégezni. A megadott értékek esetében nem történik ellenőrzés.</p> <p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt; VELOCITY=&lt;value&gt;</code>: This will alter the value of the specified register field of the TMC driver. This command is intended for low-level diagnostics and debugging only because changing the fields during run-time can lead to undesired and potentially dangerous behavior of your printer. Permanent changes should be made using the printer configuration file instead. No sanity checks are performed for the given values. A VELOCITY can also be specified instead of a VALUE. This velocity is converted to the 20bit TSTEP based value representation. Only use the VELOCITY argument for fields that represent velocities.</p>
<h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3> <h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3>
<p>A nyomtatófejmodul automatikusan betöltődik.</p> <p>A nyomtatófejmodul automatikusan betöltődik.</p>
<h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4> <h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4>
@ -4814,7 +4814,7 @@
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
<p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#z_tilt">z_tilt konfigurációs szakasz</a> engedélyezve van.</p> <p>A következő parancsok akkor érhetők el, ha a <a href="Config_Reference.html#z_tilt">z_tilt konfigurációs szakasz</a> engedélyezve van.</p>
<h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4> <h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4>
<p><code>Z_TILT_ADJUST [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Ez a parancs a konfigurációban megadott pontokat vizsgálja meg, majd a dőlés kompenzálása érdekében minden egyes Z léptetőn független beállításokat végez. Az opcionális mérési paraméterekkel kapcsolatos részletekért lásd a PROBE parancsot.</p> <p><code>Z_TILT_ADJUST [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then make independent adjustments to each Z stepper to compensate for tilt. See the PROBE command for details on the optional probe parameters. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
</article> </article>

View file

@ -1348,11 +1348,11 @@
<h1 id="hall-nyomtatoszal-szelesseg-erzekelo">Hall nyomtatószál szélesség érzékelő<a class="headerlink" href="#hall-nyomtatoszal-szelesseg-erzekelo" title="Permanent link">&para;</a></h1> <h1 id="hall-nyomtatoszal-szelesseg-erzekelo">Hall nyomtatószál szélesség érzékelő<a class="headerlink" href="#hall-nyomtatoszal-szelesseg-erzekelo" title="Permanent link">&para;</a></h1>
<p>Ez a dokumentum az izzószálszélesség-érzékelő gazdagép modulját írja le. A gazdamodul fejlesztéséhez használt hardver két Hall lineáris érzékelőn alapul (például ss49e). Az érzékelők a testben ellentétes oldalon helyezkednek el. Működési elv: két Hall érzékelő differenciál üzemmódban működik, a hőmérséklet csúszás ugyanaz a szenzornál. Speciális hőmérséklet kompenzáció nem szükséges.</p> <p>This document describes Filament Width Sensor host module. Hardware used for developing this host module is based on two Hall linear sensors (ss49e for example). Sensors in the body are located on opposite sides. Principle of operation: two hall sensors work in differential mode, temperature drift same for sensor. Special temperature compensation not needed.</p>
<p>Terveket a [Thingiverse] oldalon találod (<a href="https://www.thingiverse.com/thing:4138933">https://www.thingiverse.com/thing:4138933</a>), az összeszerelési videó a [Youtube]-on is elérhető (<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">https://www.youtube.com/watch?v=TDO9tME8vp4</a> )</p> <p>Terveket a [Thingiverse] oldalon találod (<a href="https://www.thingiverse.com/thing:4138933">https://www.thingiverse.com/thing:4138933</a>), az összeszerelési videó a [Youtube]-on is elérhető (<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">https://www.youtube.com/watch?v=TDO9tME8vp4</a> )</p>
<p>A Hall nyomtatószál szélesség érzékelő használatához olvasd el a <a href="Config_Reference.html#hall_filament_width_sensor">Konfigurációs hivatkozás</a> és a <a href="G-Codes.html#hall_filament_width_sensor">G-kód dokumentáció</a> részt.</p> <p>A Hall nyomtatószál szélesség érzékelő használatához olvasd el a <a href="Config_Reference.html#hall_filament_width_sensor">Konfigurációs hivatkozás</a> és a <a href="G-Codes.html#hall_filament_width_sensor">G-kód dokumentáció</a> részt.</p>
<h2 id="hogyan-mukodik">Hogyan működik?<a class="headerlink" href="#hogyan-mukodik" title="Permanent link">&para;</a></h2> <h2 id="hogyan-mukodik">Hogyan működik?<a class="headerlink" href="#hogyan-mukodik" title="Permanent link">&para;</a></h2>
<p>Az érzékelő két analóg kimenetet generál az izzószál számított szélessége alapján. A kimeneti feszültség összege mindig megegyezik az izzószál érzékelt szélességével. A gazdamodul figyeli a feszültségváltozásokat és beállítja az extrudálási szorzót. Aux2 csatlakozót használok a RAMPS kártya analóg11 és analóg12 érintkezőin. Különböző tűket és különböző táblákat használhat.</p> <p>Sensor generates two analog output based on calculated filament width. Sum of output voltage always equals to detected filament width. Host module monitors voltage changes and adjusts extrusion multiplier. I use the aux2 connector on a ramps-like board with the analog11 and analog12 pins. You can use different pins and different boards.</p>
<h2 id="menuvaltozok-sablonja">Menüváltozók sablonja<a class="headerlink" href="#menuvaltozok-sablonja" title="Permanent link">&para;</a></h2> <h2 id="menuvaltozok-sablonja">Menüváltozók sablonja<a class="headerlink" href="#menuvaltozok-sablonja" title="Permanent link">&para;</a></h2>
<div class="highlight"><pre><span></span><code>[menu __main __filament __width_current] <div class="highlight"><pre><span></span><code>[menu __main __filament __width_current]
type: command type: command

View file

@ -735,6 +735,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -787,6 +807,33 @@
ADXL345 konfigurálása RPi-vel ADXL345 konfigurálása RPi-vel
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1480,6 +1527,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -1532,6 +1599,33 @@
ADXL345 konfigurálása RPi-vel ADXL345 konfigurálása RPi-vel
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1662,7 +1756,7 @@
<p>Az ADXL345 beszerzésekor vedd figyelembe, hogy számos különböző NYÁK lapkakialakítás és különböző klónok léteznek. Győződj meg róla, hogy a kártya támogatja az SPI módot (kis számú kártya úgy tűnik, hogy szorosan konfigurálva van az I2C-re az SDO GND-re húzásával), és ha 5V-os nyomtató MCU-hoz csatlakozik ellenőrizd,hogy rendelkezik feszültségszabályozóval és szintválasztóval.</p> <p>Az ADXL345 beszerzésekor vedd figyelembe, hogy számos különböző NYÁK lapkakialakítás és különböző klónok léteznek. Győződj meg róla, hogy a kártya támogatja az SPI módot (kis számú kártya úgy tűnik, hogy szorosan konfigurálva van az I2C-re az SDO GND-re húzásával), és ha 5V-os nyomtató MCU-hoz csatlakozik ellenőrizd,hogy rendelkezik feszültségszabályozóval és szintválasztóval.</p>
<h2 id="telepitesi-utasitasok">Telepítési utasítások<a class="headerlink" href="#telepitesi-utasitasok" title="Permanent link">&para;</a></h2> <h2 id="telepitesi-utasitasok">Telepítési utasítások<a class="headerlink" href="#telepitesi-utasitasok" title="Permanent link">&para;</a></h2>
<h3 id="vezetekek">Vezetékek<a class="headerlink" href="#vezetekek" title="Permanent link">&para;</a></h3> <h3 id="vezetekek">Vezetékek<a class="headerlink" href="#vezetekek" title="Permanent link">&para;</a></h3>
<p>A nagy távolságra történő jelintegráció érdekében árnyékolt, sodrott páros (cat5e vagy jobb) ethernet-kábel használata ajánlott. Ha továbbra is jelintegritási problémákat tapasztalsz (SPI/I2C hibák), rövidítsd le a kábelt.</p> <p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrity over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p>
<p>Csatlakoztasd az ethernet kábel árnyékolását a vezérlőpanel/RPI földeléséhez.</p> <p>Csatlakoztasd az ethernet kábel árnyékolását a vezérlőpanel/RPI földeléséhez.</p>
<p><strong><em>Kétszer is ellenőrizd a vezetékeket a bekapcsolás előtt, hogy elkerüld az MCU/Raspberry Pi vagy a gyorsulásmérő károsodását.</em></strong></p> <p><strong><em>Kétszer is ellenőrizd a vezetékeket a bekapcsolás előtt, hogy elkerüld az MCU/Raspberry Pi vagy a gyorsulásmérő károsodását.</em></strong></p>
<h4 id="spi-gyorsulasmerok">SPI Gyorsulásmérők<a class="headerlink" href="#spi-gyorsulasmerok" title="Permanent link">&para;</a></h4> <h4 id="spi-gyorsulasmerok">SPI Gyorsulásmérők<a class="headerlink" href="#spi-gyorsulasmerok" title="Permanent link">&para;</a></h4>
@ -1673,7 +1767,8 @@ SCLK+CS
</code></pre></div> </code></pre></div>
<h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5> <h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5>
<p><strong>Megjegyzés: Sok MCU működik az ADXL345-össel SPI módban (pl. Pi Pico), a vezetékezés és a konfiguráció az adott laptól és a rendelkezésre álló tűktől függően változik.</strong></p> <h6 id="direct-to-raspberry-pi">Direct to Raspberry Pi<a class="headerlink" href="#direct-to-raspberry-pi" title="Permanent link">&para;</a></h6>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and available pins.</strong></p>
<p>Az ADXL345-öt SPI-n keresztül kell csatlakoztatnod a Raspberry Pi-hez. Vedd figyelembe, hogy az ADXL345 dokumentációja által javasolt I2C kapcsolatnak túl alacsony az adatforgalmi képessége, és <strong>nem fog működni</strong>. Az ajánlott kapcsolási séma:</p> <p>Az ADXL345-öt SPI-n keresztül kell csatlakoztatnod a Raspberry Pi-hez. Vedd figyelembe, hogy az ADXL345 dokumentációja által javasolt I2C kapcsolatnak túl alacsony az adatforgalmi képessége, és <strong>nem fog működni</strong>. Az ajánlott kapcsolási séma:</p>
<table> <table>
<thead> <thead>
@ -1687,7 +1782,7 @@ SCLK+CS
<tr> <tr>
<td align="center">3V3 (or VCC)</td> <td align="center">3V3 (or VCC)</td>
<td align="center">01</td> <td align="center">01</td>
<td align="center">3.3v DC feszültség</td> <td align="center">3.3V DC power</td>
</tr> </tr>
<tr> <tr>
<td align="center">GND</td> <td align="center">GND</td>
@ -1718,6 +1813,52 @@ SCLK+CS
</table> </table>
<p>Fritzing kapcsolási rajzok néhány ADXL345 laphoz:</p> <p>Fritzing kapcsolási rajzok néhány ADXL345 laphoz:</p>
<p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p> <p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p>
<h6 id="using-raspberry-pi-pico">Using Raspberry Pi Pico<a class="headerlink" href="#using-raspberry-pi-pico" title="Permanent link">&para;</a></h6>
<p>You may connect the ADXL345 to your Raspberry Pi Pico and then connect the Pico to your Raspberry Pi via USB. This makes it easy to reuse the accelerometer on other Klipper devices, as you can connect via USB instead of GPIO. The Pico does not have much processing power, so make sure it is only running the accelerometer and not performing any other duties.</p>
<p>In order to avoid damage to your RPi make sure to connect the ADXL345 to 3.3V only. Depending on the board's layout, a level shifter may be present, which makes 5V dangerous for your RPi.</p>
<table>
<thead>
<tr>
<th align="center">ADXL345 tű</th>
<th align="center">Pico pin</th>
<th align="center">Pico pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">3V3 (or VCC)</td>
<td align="center">36</td>
<td align="center">3.3V DC power</td>
</tr>
<tr>
<td align="center">GND</td>
<td align="center">38</td>
<td align="center">Föld</td>
</tr>
<tr>
<td align="center">CS</td>
<td align="center">2</td>
<td align="center">GP1 (SPI0_CSn)</td>
</tr>
<tr>
<td align="center">SDO</td>
<td align="center">1</td>
<td align="center">GP0 (SPI0_RX)</td>
</tr>
<tr>
<td align="center">SDA</td>
<td align="center">5</td>
<td align="center">GP3 (SPI0_TX)</td>
</tr>
<tr>
<td align="center">SCL</td>
<td align="center">4</td>
<td align="center">GP2 (SPI0_SCK)</td>
</tr>
</tbody>
</table>
<p>Wiring diagrams for some of the ADXL345 boards:</p>
<p><img alt="ADXL345-Pico" src="img/adxl345-pico.png" /></p>
<h4 id="i2c-gyorsulasmerok">I2C Gyorsulásmérők<a class="headerlink" href="#i2c-gyorsulasmerok" title="Permanent link">&para;</a></h4> <h4 id="i2c-gyorsulasmerok">I2C Gyorsulásmérők<a class="headerlink" href="#i2c-gyorsulasmerok" title="Permanent link">&para;</a></h4>
<p>Javasolt csavart érpáros sorrend:</p> <p>Javasolt csavart érpáros sorrend:</p>
<div class="highlight"><pre><span></span><code>3.3V+SDA <div class="highlight"><pre><span></span><code>3.3V+SDA
@ -1826,6 +1967,47 @@ probe_points:
</code></pre></div> </code></pre></div>
<p>Javasoljuk, hogy 1 mérőponttal kezd, a nyomtatási tárgyasztal közepén, kissé felette.</p> <p>Javasoljuk, hogy 1 mérőponttal kezd, a nyomtatási tárgyasztal közepén, kissé felette.</p>
<h4 id="configure-adxl345-with-pi-pico">Configure ADXL345 With Pi Pico<a class="headerlink" href="#configure-adxl345-with-pi-pico" title="Permanent link">&para;</a></h4>
<h5 id="flash-the-pico-firmware">Flash the Pico Firmware<a class="headerlink" href="#flash-the-pico-firmware" title="Permanent link">&para;</a></h5>
<p>On your Raspberry Pi, compile the firmware for the Pico.</p>
<div class="highlight"><pre><span></span><code>cd ~/klipper
make clean
make menuconfig
</code></pre></div>
<p><img alt="Pico menuconfig" src="img/klipper_pico_menuconfig.png" /></p>
<p>Now, while holding down the <code>BOOTSEL</code> button on the Pico, connect the Pico to the Raspberry Pi via USB. Compile and flash the firmware.</p>
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=first
</code></pre></div>
<p>If that fails, you will be told which <code>FLASH_DEVICE</code> to use. In this example, that's <code>make flash FLASH_DEVICE=2e8a:0003</code>. <img alt="Determine flash device" src="img/flash_rp2040_FLASH_DEVICE.png" /></p>
<h5 id="configure-the-connection">Configure the Connection<a class="headerlink" href="#configure-the-connection" title="Permanent link">&para;</a></h5>
<p>The Pico will now reboot with the new firmware and should show up as a serial device. Find the pico serial device with <code>ls /dev/serial/by-id/*</code>. You can now add an <code>adxl.cfg</code> file with the following settings:</p>
<div class="highlight"><pre><span></span><code>[mcu adxl]
# Change &lt;mySerial&gt; to whatever you found above. For example,
# usb-Klipper_rp2040_E661640843545B2E-if00
serial: /dev/serial/by-id/usb-Klipper_rp2040_&lt;mySerial&gt;
[adxl345]
cs_pin: adxl:gpio1
spi_bus: spi0a
axes_map: x,z,y
[resonance_tester]
accel_chip: adxl345
probe_points:
# Somewhere slightly above the middle of your print bed
147,154, 20
[output_pin power_mode] # Improve power stability
pin: adxl:gpio23
</code></pre></div>
<p>If setting up the ADXL345 configuration in a separate file, as shown above, you'll also want to modify your <code>printer.cfg</code> file to include this:</p>
<div class="highlight"><pre><span></span><code>[include adxl.cfg] # Comment this out when you disconnect the accelerometer
</code></pre></div>
<p>Indítsd újra a Klippert a <code>RESTART</code> paranccsal.</p>
<h4 id="az-mpu-60009000-sorozat-konfiguralasa-rpi-vel">Az MPU-6000/9000 sorozat konfigurálása RPi-vel<a class="headerlink" href="#az-mpu-60009000-sorozat-konfiguralasa-rpi-vel" title="Permanent link">&para;</a></h4> <h4 id="az-mpu-60009000-sorozat-konfiguralasa-rpi-vel">Az MPU-6000/9000 sorozat konfigurálása RPi-vel<a class="headerlink" href="#az-mpu-60009000-sorozat-konfiguralasa-rpi-vel" title="Permanent link">&para;</a></h4>
<p>Az MPU-9250 esetében győződj meg róla, hogy a Linux I2C illesztőprogram engedélyezve van, és az átviteli sebesség 400000-re van állítva (további részletekért lásd az <a href="RPi_microcontroller.html#optional-enabling-i2c">I2C engedélyezése</a> részt). Ezután adjuk hozzá a következőket a printer.cfg fájlhoz:</p> <p>Az MPU-9250 esetében győződj meg róla, hogy a Linux I2C illesztőprogram engedélyezve van, és az átviteli sebesség 400000-re van állítva (további részletekért lásd az <a href="RPi_microcontroller.html#optional-enabling-i2c">I2C engedélyezése</a> részt). Ezután adjuk hozzá a következőket a printer.cfg fájlhoz:</p>
<div class="highlight"><pre><span></span><code>[mcu rpi] <div class="highlight"><pre><span></span><code>[mcu rpi]
@ -1844,18 +2026,18 @@ probe_points:
<h4 id="mpu-60009000-sorozat-konfiguralasa-pico-val">MPU-6000/9000 sorozat konfigurálása PICO-val<a class="headerlink" href="#mpu-60009000-sorozat-konfiguralasa-pico-val" title="Permanent link">&para;</a></h4> <h4 id="mpu-60009000-sorozat-konfiguralasa-pico-val">MPU-6000/9000 sorozat konfigurálása PICO-val<a class="headerlink" href="#mpu-60009000-sorozat-konfiguralasa-pico-val" title="Permanent link">&para;</a></h4>
<p>A PICO I2C alapértelmezés szerint 400000-re van beállítva. Egyszerűen add hozzá a következőket a printer.cfg fájlhoz:</p> <p>A PICO I2C alapértelmezés szerint 400000-re van beállítva. Egyszerűen add hozzá a következőket a printer.cfg fájlhoz:</p>
<div class="highlight"><pre><span></span><code>[mcu pico] <div class="highlight"><pre><span></span><code>[mcu pico]
serial: /dev/serial/by-id/&lt;a PICO soros azonosítója&gt; serial: /dev/serial/by-id/&lt;your PICO&#39;s serial ID&gt;
[mpu9250] [mpu9250]
i2c_mcu: pico i2c_mcu: pico
i2c_bus: i2c1a i2c_bus: i2c0a
[resonance_tester] [resonance_tester]
accel_chip: mpu9250 accel_chip: mpu9250
probe_points: probe_points:
100, 100, 20 # egy példa 100, 100, 20 # an example
[static_digital_output pico_3V3pwm] # A teljesítmény stabilitásának javítása [static_digital_output pico_3V3pwm] # Improve power stability
pin: pico:gpio23 pin: pico:gpio23
</code></pre></div> </code></pre></div>
@ -1871,7 +2053,7 @@ pin: pico:gpio23
<div class="highlight"><pre><span></span><code>Visszahívás: // adxl345 értékek (x, y, z): 470.719200, 941.438400, 9728.196800 <div class="highlight"><pre><span></span><code>Visszahívás: // adxl345 értékek (x, y, z): 470.719200, 941.438400, 9728.196800
</code></pre></div> </code></pre></div>
<p>Ha olyan hibát kapsz, mint <code>Invalid adxl345 id (got xx vs e5)</code>, ahol <code>xx</code> valami más azonosító, azaz ADXL345-öt érintő kapcsolati problémára vagy a hibás érzékelőre utal. Ellenőrizd kétszer is a tápellátást, a kábelezést (hogy megfelel-e a kapcsolási rajzoknak, nincs-e törött vagy laza vezeték stb.) és a forrasztás minőségét.</p> <p>If you get an error like <code>Invalid adxl345 id (got xx vs e5)</code>, where <code>xx</code> is some other ID, immediately try again. There's an issue with SPI initialization. If you still get an error, it is indicative of the connection problem with ADXL345, or the faulty sensor. Double-check the power, the wiring (that it matches the schematics, no wire is broken or loose, etc.), and soldering quality.</p>
<p><strong>Ha MPU-6000/9000 sorozatú gyorsulásmérőt használsz, és az <code>mpu-unknown</code>-ként jelenik meg, óvatosan használd! Ezek valószínűleg felújított chipek!</strong></p> <p><strong>Ha MPU-6000/9000 sorozatú gyorsulásmérőt használsz, és az <code>mpu-unknown</code>-ként jelenik meg, óvatosan használd! Ezek valószínűleg felújított chipek!</strong></p>
<p>Ezután próbáld meg futtatni a <code>MEASURE_AXES_NOISE</code> parancsot az Octoprint-ben, így kaphatsz néhány alapszámot a gyorsulásmérő zajára a tengelyeken (valahol a ~1-100-as tartományban kell lennie). A túl magas tengelyzaj (pl. 1000 és több) az érzékelő problémáira, a tápellátásával kapcsolatos problémákra vagy a 3D nyomtató túl zajos, kiegyensúlyozatlan ventilátoraira utalhat.</p> <p>Ezután próbáld meg futtatni a <code>MEASURE_AXES_NOISE</code> parancsot az Octoprint-ben, így kaphatsz néhány alapszámot a gyorsulásmérő zajára a tengelyeken (valahol a ~1-100-as tartományban kell lennie). A túl magas tengelyzaj (pl. 1000 és több) az érzékelő problémáira, a tápellátásával kapcsolatos problémákra vagy a 3D nyomtató túl zajos, kiegyensúlyozatlan ventilátoraira utalhat.</p>
<h3 id="a-rezonanciak-merese_1">A rezonanciák mérése<a class="headerlink" href="#a-rezonanciak-merese_1" title="Permanent link">&para;</a></h3> <h3 id="a-rezonanciak-merese_1">A rezonanciák mérése<a class="headerlink" href="#a-rezonanciak-merese_1" title="Permanent link">&para;</a></h3>
@ -1923,7 +2105,7 @@ max_accel: 3000 # nem haladhatja meg a becsült max_accel értéket az X és Y t
</code></pre></div> </code></pre></div>
<p>vagy választhatsz más konfigurációt is a generált diagramok alapján: a diagramokon a teljesítményspektrális sűrűség csúcsai megfelelnek a nyomtató rezonanciafrekvenciáinak.</p> <p>vagy választhatsz más konfigurációt is a generált diagramok alapján: a diagramokon a teljesítményspektrális sűrűség csúcsai megfelelnek a nyomtató rezonanciafrekvenciáinak.</p>
<p>Megjegyzendő, hogy alternatívaként a bemeneti alakító automatikus kalibrációját a Klipper-ből <a href="#bemeneti-formazo-automatikus-kalibralasa">közvetlenül</a> is futtathatod, ami például a bemeneti formázó <a href="#bemeneti-formazo-ujrakalibralasa">újrakalibrálásához</a> lehet hasznos.</p> <p>Note that alternatively you can run the input shaper auto-calibration from Klipper <a href="#input-shaper-auto-calibration">directly</a>, which can be convenient, for example, for the input shaper <a href="#input-shaper-re-calibration">re-calibration</a>.</p>
<h3 id="bed-slinger-nyomtatok">Bed-slinger nyomtatók<a class="headerlink" href="#bed-slinger-nyomtatok" title="Permanent link">&para;</a></h3> <h3 id="bed-slinger-nyomtatok">Bed-slinger nyomtatók<a class="headerlink" href="#bed-slinger-nyomtatok" title="Permanent link">&para;</a></h3>
<p>Ha a nyomtatód tárgyasztala Y tengelyen van, akkor meg kell változtatnod a gyorsulásmérő helyét az X és Y tengelyek mérései között: az X tengely rezonanciáit a nyomtatófejre szerelt gyorsulásmérővel, az Y tengely rezonanciáit pedig a tárgyasztalra szerelt gyorsulásmérővel kell mérned (a szokásos nyomtató beállítással).</p> <p>Ha a nyomtatód tárgyasztala Y tengelyen van, akkor meg kell változtatnod a gyorsulásmérő helyét az X és Y tengelyek mérései között: az X tengely rezonanciáit a nyomtatófejre szerelt gyorsulásmérővel, az Y tengely rezonanciáit pedig a tárgyasztalra szerelt gyorsulásmérővel kell mérned (a szokásos nyomtató beállítással).</p>
<p>Azonban két gyorsulásmérőt is csatlakoztathatsz egyszerre, bár ezeket különböző lapokhoz kell csatlakoztatni (mondjuk egy RPi és egy nyomtató MCU laphoz), vagy két különböző fizikai SPI interfészhez ugyanazon a lapon (ritkán elérhető). Ezután a következő módon lehet őket konfigurálni:</p> <p>Azonban két gyorsulásmérőt is csatlakoztathatsz egyszerre, bár ezeket különböző lapokhoz kell csatlakoztatni (mondjuk egy RPi és egy nyomtató MCU laphoz), vagy két különböző fizikai SPI interfészhez ugyanazon a lapon (ritkán elérhető). Ezután a következő módon lehet őket konfigurálni:</p>
@ -2050,7 +2232,7 @@ Ajánlott shaper_type_y = mzv, shaper_freq_y = 36,8 Hz
<div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X <div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X
</code></pre></div> </code></pre></div>
<p><strong>Figyelmeztetés!</strong> Nem tanácsos a gépen az automatikus kalibrációt nagyon gyakran futtatni (pl. minden nyomtatás előtt vagy minden nap). A rezonanciafrekvenciák meghatározása érdekében az automatikus kalibrálás intenzív rezgéseket hoz létre az egyes tengelyeken. A 3D nyomtatókat általában nem úgy tervezték, hogy a rezonanciafrekvenciákhoz közeli rezgéseknek tartósan ellenálljanak. Ez növelheti a nyomtató alkatrészeinek kopását és csökkentheti élettartamukat. Megnő a kockázata annak is, hogy egyes alkatrészek kicsavarodnak vagy meglazulnak. Minden egyes automatikus hangolás után mindig ellenőrizd, hogy a nyomtató minden alkatrésze (beleértve azokat is, amelyek normál esetben nem mozoghatnak) biztonságosan a helyén van-e rögzítve.</p> <p><strong>Warning!</strong> It is not advisable to run the shaper auto-calibration very frequently (e.g. before every print, or every day). In order to determine resonance frequencies, auto-calibration creates intensive vibrations on each of the axes. Generally, 3D printers are not designed to withstand a prolonged exposure to vibrations near the resonance frequencies. Doing so may increase wear of the printer components and reduce their lifespan. There is also an increased risk of some parts unscrewing or becoming loose. Always check that all parts of the printer (including the ones that may normally not move) are securely fixed in place after each auto-tuning.</p>
<p>Továbbá a mérések zajossága miatt lehetséges, hogy a hangolási eredmények kissé eltérnek az egyes kalibrálási folyamatok között. Ennek ellenére nem várható, hogy a zaj túlságosan befolyásolja a nyomtatási minőséget. Mindazonáltal továbbra is tanácsos kétszer is ellenőrizni a javasolt paramétereket, és használat előtt nyomtatni néhány próbanyomatot, hogy megbizonyosodj arról, hogy azok megfelelőek.</p> <p>Továbbá a mérések zajossága miatt lehetséges, hogy a hangolási eredmények kissé eltérnek az egyes kalibrálási folyamatok között. Ennek ellenére nem várható, hogy a zaj túlságosan befolyásolja a nyomtatási minőséget. Mindazonáltal továbbra is tanácsos kétszer is ellenőrizni a javasolt paramétereket, és használat előtt nyomtatni néhány próbanyomatot, hogy megbizonyosodj arról, hogy azok megfelelőek.</p>
<h2 id="a-gyorsulasmero-adatainak-offline-feldolgozasa">A gyorsulásmérő adatainak offline feldolgozása<a class="headerlink" href="#a-gyorsulasmero-adatainak-offline-feldolgozasa" title="Permanent link">&para;</a></h2> <h2 id="a-gyorsulasmero-adatainak-offline-feldolgozasa">A gyorsulásmérő adatainak offline feldolgozása<a class="headerlink" href="#a-gyorsulasmero-adatainak-offline-feldolgozasa" title="Permanent link">&para;</a></h2>
<p>Lehetőség van a nyers gyorsulásmérő adatok előállítására és offline feldolgozására (pl. egy központi gépen), például rezonanciák keresésére. Ehhez futtasd a következő parancsokat az Octoprint terminálon keresztül:</p> <p>Lehetőség van a nyers gyorsulásmérő adatok előállítására és offline feldolgozására (pl. egy központi gépen), például rezonanciák keresésére. Ehhez futtasd a következő parancsokat az Octoprint terminálon keresztül:</p>

View file

@ -1373,7 +1373,7 @@
<li><a href="Slicers.html">Szeletelők</a>: A „szeletelő” szoftverek konfigurálása a Klipper számára.</li> <li><a href="Slicers.html">Szeletelők</a>: A „szeletelő” szoftverek konfigurálása a Klipper számára.</li>
<li><a href="Skew_Correction.html">Ferdeség korrekció</a>: A nem tökéletesen derékszögű tengelyek korrekciója.</li> <li><a href="Skew_Correction.html">Ferdeség korrekció</a>: A nem tökéletesen derékszögű tengelyek korrekciója.</li>
<li><a href="Using_PWM_Tools.html">PWM eszközök</a>: Útmutató a PWM vezérelt szerszámok, például lézerek vagy orsók használatához.</li> <li><a href="Using_PWM_Tools.html">PWM eszközök</a>: Útmutató a PWM vezérelt szerszámok, például lézerek vagy orsók használatához.</li>
<li><a href="Exclude_Object.html">Objektum kizárása</a>: Az Objektum kizárása implementációjának útmutatója.</li> <li><a href="Exclude_Object.html">Exclude Object</a>: The guide to the Exclude Objects implementation.</li>
</ul> </ul>
<h2 id="fejlesztoi-dokumentacio">Fejlesztői Dokumentáció<a class="headerlink" href="#fejlesztoi-dokumentacio" title="Permanent link">&para;</a></h2> <h2 id="fejlesztoi-dokumentacio">Fejlesztői Dokumentáció<a class="headerlink" href="#fejlesztoi-dokumentacio" title="Permanent link">&para;</a></h2>
<ul> <ul>

View file

@ -1342,7 +1342,7 @@
<h2 id="verziokezeles">Verziókezelés<a class="headerlink" href="#verziokezeles" title="Permanent link">&para;</a></h2> <h2 id="verziokezeles">Verziókezelés<a class="headerlink" href="#verziokezeles" title="Permanent link">&para;</a></h2>
<p>Ha a Klipper csomagot git-ből építed, a szokásos gyakorlat szerint nem szállítasz .git könyvtárat, így a verziókezelést git nélkül kell megoldanod. Ehhez használd a <code>scripts/make_version.py</code> alatt szállított szkriptet, amelyet a következőképpen kell futtatni: <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p> <p>Ha a Klipper csomagot git-ből építed, a szokásos gyakorlat szerint nem szállítasz .git könyvtárat, így a verziókezelést git nélkül kell megoldanod. Ehhez használd a <code>scripts/make_version.py</code> alatt szállított szkriptet, amelyet a következőképpen kell futtatni: <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p>
<h2 id="minta-csomagolasi-szkript">Minta csomagolási szkript<a class="headerlink" href="#minta-csomagolasi-szkript" title="Permanent link">&para;</a></h2> <h2 id="minta-csomagolasi-szkript">Minta csomagolási szkript<a class="headerlink" href="#minta-csomagolasi-szkript" title="Permanent link">&para;</a></h2>
<p>a klipper-git az Arch Linuxhoz van csomagolva, és a PKGBUILD (csomagépítő szkript) elérhető az <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch Felhasználói adattár</a> oldalon.</p> <p>klipper-git is packaged for Arch Linux, and has a PKGBUILD (package build script) available at <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repository</a>.</p>
</article> </article>

View file

@ -1471,9 +1471,9 @@ opcionális argumentumok:
<p>A következő mezők adhatók meg:</p> <p>A következő mezők adhatók meg:</p>
<ul> <ul>
<li><code>mcu</code>: Az mcu típusa. Ezt a készlet <code>make menuconfig</code> segítségével történő konfigurálása után a <code>cat .config | grep CONFIG_MCU</code> futtatásával lehet visszakeresni. Ez a mező kötelezően kitöltendő.</li> <li><code>mcu</code>: The mcu type. This can be retrieved after configuring the build via <code>make menuconfig</code> by running <code>cat .config | grep CONFIG_MCU</code>. This field is required.</li>
<li><code>spi_bus</code>: Az SD-kártyához csatlakoztatott SPI-busz. Ezt a tábla kapcsolási rajzából kell visszakeresni. Ez a mező kötelező.</li> <li><code>spi_bus</code>: The SPI bus connected to the SD Card. This should be retrieved from the board's schematic. This field is required.</li>
<li><code>cs_pin</code>: Az SD-kártyához csatlakoztatott chipkiválasztó tű. Ezt a kártya kapcsolási rajzából kell visszakeresni. Ez a mező kötelező.</li> <li><code>cs_pin</code>: The Chip Select Pin connected to the SD Card. This should be retrieved from the board schematic. This field is required.</li>
<li><code>firmware_path</code>: Az SD-kártyán lévő elérési útvonal, ahová a firmware-t át kell vinni. Az alapértelmezett <code>firmware.bin</code>.</li> <li><code>firmware_path</code>: Az SD-kártyán lévő elérési útvonal, ahová a firmware-t át kell vinni. Az alapértelmezett <code>firmware.bin</code>.</li>
<li><code>current_firmware_path</code>: Az SD-kártyán lévő elérési útvonal, ahol az átnevezett firmware fájl található a sikeres égetés után. Az alapértelmezett név: <code>firmware.cur</code>.</li> <li><code>current_firmware_path</code>: Az SD-kártyán lévő elérési útvonal, ahol az átnevezett firmware fájl található a sikeres égetés után. Az alapértelmezett név: <code>firmware.cur</code>.</li>
<li><code>skip_verify</code>: Ez egy logikai értéket határoz meg, amely a szkripteknek azt mondja meg, hogy hagyja ki a firmware ellenőrzésének lépését az égetési folyamat során. Az alapértelmezett érték <code>False</code>. Ez az érték <code>True</code> értékre állítható olyan kártyák esetében, amelyeknél az égetés befejezéséhez kézi bekapcsolás szükséges. A firmware utólagos ellenőrzéséhez futtasd újra a szkriptet a <code>-c</code> opcióval, hogy elvégezd az ellenőrzési lépést. <a href="#caveats">Lásd az SDIO kártyákkal kapcsolatos figyelmeztetéseket</a></li> <li><code>skip_verify</code>: Ez egy logikai értéket határoz meg, amely a szkripteknek azt mondja meg, hogy hagyja ki a firmware ellenőrzésének lépését az égetési folyamat során. Az alapértelmezett érték <code>False</code>. Ez az érték <code>True</code> értékre állítható olyan kártyák esetében, amelyeknél az égetés befejezéséhez kézi bekapcsolás szükséges. A firmware utólagos ellenőrzéséhez futtasd újra a szkriptet a <code>-c</code> opcióval, hogy elvégezd az ellenőrzési lépést. <a href="#caveats">Lásd az SDIO kártyákkal kapcsolatos figyelmeztetéseket</a></li>

View file

@ -889,6 +889,13 @@
Tiltja a "fejlett nyomás előtolás" beállításokat Tiltja a "fejlett nyomás előtolás" beállításokat
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1356,6 +1363,13 @@
Tiltja a "fejlett nyomás előtolás" beállításokat Tiltja a "fejlett nyomás előtolás" beállításokat
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1398,6 +1412,21 @@
<p>Néhány szeletelőnek "fejlett nyomás előtolás" képessége van. A Klipper használata esetén ajánlott ezeket az opciókat kikapcsolva tartani, mivel valószínűleg rossz minőségű nyomatokat eredményeznek. Fontold meg ehelyett a Klipper <a href="Pressure_Advance.html">nyomás előtolás</a> használatát.</p> <p>Néhány szeletelőnek "fejlett nyomás előtolás" képessége van. A Klipper használata esetén ajánlott ezeket az opciókat kikapcsolva tartani, mivel valószínűleg rossz minőségű nyomatokat eredményeznek. Fontold meg ehelyett a Klipper <a href="Pressure_Advance.html">nyomás előtolás</a> használatát.</p>
<p>Konkrétan ezek a szeletelő beállítások utasíthatják a firmware-t, hogy vad változtatásokat végezzen az extrudálási sebességben, abban a reményben, hogy a firmware közelíteni fogja ezeket a kéréseket, és a nyomtató nagyjából a kívánt extrudernyomást fogja elérni. A Klipper azonban pontos kinematikai számításokat és időzítést használ. Amikor a Klipper parancsot kap az extrudálási sebesség jelentős változtatására, megtervezi a sebesség, a gyorsulás és az extruder mozgásának megfelelő változásait - ami nem a szeletelő szándékában áll. A szeletelő akár túlzott extrudálási sebességet is parancsolhat, olyannyira, hogy az kiváltja a Klipper maximális extrudálási keresztmetszet ellenőrzését.</p> <p>Konkrétan ezek a szeletelő beállítások utasíthatják a firmware-t, hogy vad változtatásokat végezzen az extrudálási sebességben, abban a reményben, hogy a firmware közelíteni fogja ezeket a kéréseket, és a nyomtató nagyjából a kívánt extrudernyomást fogja elérni. A Klipper azonban pontos kinematikai számításokat és időzítést használ. Amikor a Klipper parancsot kap az extrudálási sebesség jelentős változtatására, megtervezi a sebesség, a gyorsulás és az extruder mozgásának megfelelő változásait - ami nem a szeletelő szándékában áll. A szeletelő akár túlzott extrudálási sebességet is parancsolhat, olyannyira, hogy az kiváltja a Klipper maximális extrudálási keresztmetszet ellenőrzését.</p>
<p>Ezzel szemben a szeletelő "visszahúzás" beállítása, "törlés" beállítása és/vagy "törlés visszahúzáskor" beállítása rendben van (és gyakran hasznos).</p> <p>Ezzel szemben a szeletelő "visszahúzás" beállítása, "törlés" beállítása és/vagy "törlés visszahúzáskor" beállítása rendben van (és gyakran hasznos).</p>
<h2 id="start_print-macros">START_PRINT macros<a class="headerlink" href="#start_print-macros" title="Permanent link">&para;</a></h2>
<p>When using a START_PRINT macro or similar, it is useful to sometimes pass through parameters from the slicer variables to the macro.</p>
<p>In Cura, to pass through temperatures, the following start gcode would be used:</p>
<div class="highlight"><pre><span></span><code>START_PRINT BED_TEMP={material_bed_temperature_layer_0} EXTRUDER_TEMP={material_print_temperature_layer_0}
</code></pre></div>
<p>In slic3r derivatives such as PrusaSlicer and SuperSlicer, the following would be used:</p>
<p>START_PRINT EXTRUDER_TEMP=[first_layer_temperature] BED_TEMP=[first_layer_bed_temperature]</p>
<p>Also note that these slicers will insert their own heating codes when certain conditions are not met. In Cura, the existence of the <code>{material_bed_temperature_layer_0}</code> and <code>{material_print_temperature_layer_0}</code> variables is enough to mitigate this. In slic3r derivatives, you would use:</p>
<div class="highlight"><pre><span></span><code>M140 S0
M104 S0
</code></pre></div>
<p>before the macro call. Also note that SuperSlicer has a "custom gcode only" button option, which achieves the same outcome.</p>
<p>An example of a START_PRINT macro using these paramaters can be found in config/sample-macros.cfg</p>
</article> </article>

View file

@ -1010,6 +1010,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1771,6 +1778,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1949,6 +1963,7 @@
<ul> <ul>
<li><code>pressure_advance</code>: Az aktuális <a href="Pressure_Advance.html">nyomás előtolás</a> érték.</li> <li><code>pressure_advance</code>: Az aktuális <a href="Pressure_Advance.html">nyomás előtolás</a> érték.</li>
<li><code>smooth_time</code>: Az aktuális nyomás előtolásának simítási ideje.</li> <li><code>smooth_time</code>: Az aktuális nyomás előtolásának simítási ideje.</li>
<li><code>motion_queue</code>: The name of the extruder that this extruder stepper is currently synchronized to. This is reported as <code>None</code> if the extruder stepper is not currently associated with an extruder.</li>
</ul> </ul>
<h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2> <h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2>
<p>A következő információk a <a href="Config_Reference.html#fan">ventilátor</a>, <a href="Config_Reference.html#heater_fan">heater_fan some_name</a> és <a href="Config_Reference.html#controller_fan">controller_fan some_name</a> objektumokban érhetők el:</p> <p>A következő információk a <a href="Config_Reference.html#fan">ventilátor</a>, <a href="Config_Reference.html#heater_fan">heater_fan some_name</a> és <a href="Config_Reference.html#controller_fan">controller_fan some_name</a> objektumokban érhetők el:</p>
@ -2072,6 +2087,7 @@
<h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2> <h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2>
<p>A következő információk a <a href="Config_Reference.html#probe">szonda</a> objektumban érhetők el (ez az objektum akkor is elérhető, ha egy <a href="Config_Reference.html#bltouch">bltouch</a> konfigurációs szakasz van definiálva):</p> <p>A következő információk a <a href="Config_Reference.html#probe">szonda</a> objektumban érhetők el (ez az objektum akkor is elérhető, ha egy <a href="Config_Reference.html#bltouch">bltouch</a> konfigurációs szakasz van definiálva):</p>
<ul> <ul>
<li><code>name</code>: Returns the name of the probe in use.</li>
<li><code>last_query</code>: True értéket ad vissza, ha a szondát az utolsó QUERY_PROBE parancs során "triggered" -ként jelentették. Megjegyzés: ha ezt egy makróban használjuk, a sablon bővítési sorrendje miatt a QUERY_PROBE parancsot akkor ezt a hivatkozást tartalmazó makró előtt kell lefuttatni.</li> <li><code>last_query</code>: True értéket ad vissza, ha a szondát az utolsó QUERY_PROBE parancs során "triggered" -ként jelentették. Megjegyzés: ha ezt egy makróban használjuk, a sablon bővítési sorrendje miatt a QUERY_PROBE parancsot akkor ezt a hivatkozást tartalmazó makró előtt kell lefuttatni.</li>
<li><code>last_z_result</code>: Az utolsó PROBE parancs Z eredményének értékét adja vissza. Figyelem, ha ezt egy makróban használjuk, a sablon bővítési sorrendje miatt a PROBE (vagy hasonló) parancsot akkor ezt a hivatkozást tartalmazó makró előtt kell lefuttatni.</li> <li><code>last_z_result</code>: Az utolsó PROBE parancs Z eredményének értékét adja vissza. Figyelem, ha ezt egy makróban használjuk, a sablon bővítési sorrendje miatt a PROBE (vagy hasonló) parancsot akkor ezt a hivatkozást tartalmazó makró előtt kell lefuttatni.</li>
</ul> </ul>
@ -2089,13 +2105,11 @@
<p>A következő információk a <code>screws_tilt_adjust</code> objektumban találhatók:</p> <p>A következő információk a <code>screws_tilt_adjust</code> objektumban találhatók:</p>
<ul> <ul>
<li><code>error</code>: True értéket ad vissza, ha a legutóbbi <code>SCREWS_TILT_CALCULATE</code> parancs tartalmazta a <code>MAX_DEVIATION</code> paramétert, és bármelyik vizsgált csavarpont meghaladta a megadott <code>MAX_DEVIATION</code> értéket.</li> <li><code>error</code>: True értéket ad vissza, ha a legutóbbi <code>SCREWS_TILT_CALCULATE</code> parancs tartalmazta a <code>MAX_DEVIATION</code> paramétert, és bármelyik vizsgált csavarpont meghaladta a megadott <code>MAX_DEVIATION</code> értéket.</li>
<li><code>results</code>: A vizsgált csavarok helyének listája. A lista minden egyes bejegyzése egy szótár lesz, amely a következő kulcsokat tartalmazza:<ul> <li><code>results["&lt;screw&gt;"]</code>: A dictionary containing the following keys:<ul>
<li><code>name</code>: A csavar neve a konfigurációs fájlban megadottak szerint.</li>
<li><code>x</code>: A csavar X koordinátája a konfigurációs fájlban megadottak szerint.</li>
<li><code>x</code>: A csavar X koordinátája a konfigurációs fájlban megadottak szerint.</li>
<li><code>z</code>: A csavar helyének mért Z magassága.</li> <li><code>z</code>: A csavar helyének mért Z magassága.</li>
<li><code>sign</code>: Egy karakterlánc, amely megadja, hogy a szükséges beállításhoz milyen irányba kell elfordítani a csavart. Vagy "CW" az óramutató járásával megegyező irányban, vagy "CCW" az óramutató járásával ellentétes irányban. Az alapcsavar nem rendelkezik <code>sign</code> kulcsal.</li> <li><code>sign</code>: A string specifying the direction to turn to screw for the necessary adjustment. Either "CW" for clockwise or "CCW" for counterclockwise.</li>
<li><code>adjust</code>: A csavar beállításához szükséges csavarfordítások száma, "HH:MM" formátumban megadva, ahol "HH" a teljes csavarfordítások száma, "MM" pedig a részleges csavarfordítást jelentő "óramutató percek" száma. (Pl. "01:15" azt jelentené, hogy a csavart egy és negyed fordulatot kell elfordítani.)</li> <li><code>adjust</code>: A csavar beállításához szükséges csavarfordítások száma, "HH:MM" formátumban megadva, ahol "HH" a teljes csavarfordítások száma, "MM" pedig a részleges csavarfordítást jelentő "óramutató percek" száma. (Pl. "01:15" azt jelentené, hogy a csavart egy és negyed fordulatot kell elfordítani.)</li>
<li><code>is_base</code>: Returns True if this is the base screw.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -2104,6 +2118,11 @@
<ul> <ul>
<li><code>printer["servo &lt;config_name&gt;"].value</code>: A szervóhoz tartozó PWM tű utolsó beállítása (0,0 és 1,0 közötti érték).</li> <li><code>printer["servo &lt;config_name&gt;"].value</code>: A szervóhoz tartozó PWM tű utolsó beállítása (0,0 és 1,0 közötti érték).</li>
</ul> </ul>
<h2 id="stepper_enable">stepper_enable<a class="headerlink" href="#stepper_enable" title="Permanent link">&para;</a></h2>
<p>The following information is available in the <code>stepper_enable</code> object (this object is available if any stepper is defined):</p>
<ul>
<li><code>steppers["&lt;stepper&gt;"]</code>: Returns True if the given stepper is enabled.</li>
</ul>
<h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2> <h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2>
<p>A következő információk a <code>system_stats</code> objektumban érhetők el (ez az objektum mindig elérhető):</p> <p>A következő információk a <code>system_stats</code> objektumban érhetők el (ez az objektum mindig elérhető):</p>
<ul> <ul>

View file

@ -990,8 +990,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#a-tmc-hibat-jelent-shorttognd-vagy-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
A TMC hibát jelent: ... ShortToGND VAGY LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1649,8 +1649,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#a-tmc-hibat-jelent-shorttognd-vagy-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
A TMC hibát jelent: ... ShortToGND VAGY LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1897,7 +1897,7 @@ gcode:
<p>Néhány gyakori hiba és tipp a diagnosztizáláshoz:</p> <p>Néhány gyakori hiba és tipp a diagnosztizáláshoz:</p>
<h4 id="tmc-hibat-jelent-ot1overtemperror">TMC hibát jelent: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-hibat-jelent-ot1overtemperror" title="Permanent link">&para;</a></h4> <h4 id="tmc-hibat-jelent-ot1overtemperror">TMC hibát jelent: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-hibat-jelent-ot1overtemperror" title="Permanent link">&para;</a></h4>
<p>Ez azt jelzi, hogy a motorvezérlő kikapcsolta magát, mert túlmelegedett. A tipikus megoldások a léptetőmotor áramának csökkentése, a motorvezérlő és/vagy a léptetőmotor hűtése.</p> <p>Ez azt jelzi, hogy a motorvezérlő kikapcsolta magát, mert túlmelegedett. A tipikus megoldások a léptetőmotor áramának csökkentése, a motorvezérlő és/vagy a léptetőmotor hűtése.</p>
<h4 id="a-tmc-hibat-jelent-shorttognd-vagy-lowsideshort">A TMC hibát jelent: <code>... ShortToGND</code> VAGY <code>LowSideShort</code><a class="headerlink" href="#a-tmc-hibat-jelent-shorttognd-vagy-lowsideshort" title="Permanent link">&para;</a></h4> <h4 id="tmc-reports-error-shorttognd-or-shorttosupply">TMC reports error: <code>... ShortToGND</code> OR <code>ShortToSupply</code><a class="headerlink" href="#tmc-reports-error-shorttognd-or-shorttosupply" title="Permanent link">&para;</a></h4>
<p>Ez azt jelzi, hogy a motorvezérlő letiltotta magát, mert nagyon magas áramot érzékelt a meghajtón keresztül. Ez azt jelezheti, hogy meglazult vagy rövidre zárt vezeték van a léptetőmotorban vagy magához a léptetőmotorhoz futó vezeték hibás.</p> <p>Ez azt jelzi, hogy a motorvezérlő letiltotta magát, mert nagyon magas áramot érzékelt a meghajtón keresztül. Ez azt jelezheti, hogy meglazult vagy rövidre zárt vezeték van a léptetőmotorban vagy magához a léptetőmotorhoz futó vezeték hibás.</p>
<p>Ez a hiba akkor is előfordulhat, ha StealthChop üzemmódot használsz, és a TMC motorvezérlő nem képes pontosan megjósolni a motor mechanikai terhelését. (Ha a motorvezérlő rosszul jósol, akkor előfordulhat, hogy túl nagy áramot küld a motoron keresztül, és ezzel kiváltja saját túláram-érzékelését). Ennek teszteléséhez kapcsold ki a StealthChop üzemmódot, és ellenőrizd, hogy a hibák továbbra is előfordulnak-e.</p> <p>Ez a hiba akkor is előfordulhat, ha StealthChop üzemmódot használsz, és a TMC motorvezérlő nem képes pontosan megjósolni a motor mechanikai terhelését. (Ha a motorvezérlő rosszul jósol, akkor előfordulhat, hogy túl nagy áramot küld a motoron keresztül, és ezzel kiváltja saját túláram-érzékelését). Ennek teszteléséhez kapcsold ki a StealthChop üzemmódot, és ellenőrizd, hogy a hibák továbbra is előfordulnak-e.</p>
<h4 id="a-tmc-hibat-jelent-reset1reset-vagy-cs_actual0reset-vagy-se0reset">A TMC hibát jelent: <code>... reset=1(Reset)</code> VAGY <code>CS_ACTUAL=0(Reset?)</code> VAGY <code>SE=0(Reset?)</code><a class="headerlink" href="#a-tmc-hibat-jelent-reset1reset-vagy-cs_actual0reset-vagy-se0reset" title="Permanent link">&para;</a></h4> <h4 id="a-tmc-hibat-jelent-reset1reset-vagy-cs_actual0reset-vagy-se0reset">A TMC hibát jelent: <code>... reset=1(Reset)</code> VAGY <code>CS_ACTUAL=0(Reset?)</code> VAGY <code>SE=0(Reset?)</code><a class="headerlink" href="#a-tmc-hibat-jelent-reset1reset-vagy-cs_actual0reset-vagy-se0reset" title="Permanent link">&para;</a></h4>

File diff suppressed because one or more lines are too long

View file

@ -2,252 +2,252 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
</urlset> </urlset>

Binary file not shown.

View file

@ -1552,7 +1552,7 @@
<h1 id="matrice-del-piatto">Matrice del Piatto<a class="headerlink" href="#matrice-del-piatto" title="Permanent link">&para;</a></h1> <h1 id="matrice-del-piatto">Matrice del Piatto<a class="headerlink" href="#matrice-del-piatto" title="Permanent link">&para;</a></h1>
<p>Il modulo rete piatto (bed mesh) può essere usato per compensare le irregolarità della superficie del piatto e per ottenere un primo strato migliore su tutto il piatto. Va notato che la correzione basata sul software non raggiungerà risultati perfetti, può solo approssimare la forma del piatto. Bed mesh inoltre non può compensare i problemi meccanici ed elettrici. Se un asse è obliquo o una sonda non è accurata, il modulo Bed mesh non riceverà risultati accurati dal processo di ispezione.</p> <p>The Bed Mesh module may be used to compensate for bed surface irregularities to achieve a better first layer across the entire bed. It should be noted that software based correction will not achieve perfect results, it can only approximate the shape of the bed. Bed Mesh also cannot compensate for mechanical and electrical issues. If an axis is skewed or a probe is not accurate then the bed_mesh module will not receive accurate results from the probing process.</p>
<p>Prima della calibrazione della mesh dovrai assicurarti che l'offset Z della tua sonda sia calibrato. Se si utilizza un fine corsa per l'homing Z, anche questo dovrà essere calibrato. Per ulteriori informazioni, vedere <a href="Probe_Calibrate.html">Probe Calibrate</a> e Z_ENDSTOP_CALIBRATE in <a href="Manual_Level.html">Manual Level</a>.</p> <p>Prima della calibrazione della mesh dovrai assicurarti che l'offset Z della tua sonda sia calibrato. Se si utilizza un fine corsa per l'homing Z, anche questo dovrà essere calibrato. Per ulteriori informazioni, vedere <a href="Probe_Calibrate.html">Probe Calibrate</a> e Z_ENDSTOP_CALIBRATE in <a href="Manual_Level.html">Manual Level</a>.</p>
<h2 id="configurazione-base">Configurazione base<a class="headerlink" href="#configurazione-base" title="Permanent link">&para;</a></h2> <h2 id="configurazione-base">Configurazione base<a class="headerlink" href="#configurazione-base" title="Permanent link">&para;</a></h2>
<h3 id="piatti-rettangolari">Piatti rettangolari<a class="headerlink" href="#piatti-rettangolari" title="Permanent link">&para;</a></h3> <h3 id="piatti-rettangolari">Piatti rettangolari<a class="headerlink" href="#piatti-rettangolari" title="Permanent link">&para;</a></h3>
@ -1569,7 +1569,7 @@ probe_count: 5, 3
<li><code>speed: 120</code> <em>Valore predefinito: 50</em> La velocità con cui la testa di stampa si sposta tra i punti.</li> <li><code>speed: 120</code> <em>Valore predefinito: 50</em> La velocità con cui la testa di stampa si sposta tra i punti.</li>
<li><code>horizontal_move_z: 5</code> <em>Valore predefinito: 5</em> La coordinata Z a cui si solleva la sonda prima di spostarsi tra i punti.</li> <li><code>horizontal_move_z: 5</code> <em>Valore predefinito: 5</em> La coordinata Z a cui si solleva la sonda prima di spostarsi tra i punti.</li>
<li><code>mesh_min: 35, 6</code> <em>Richiesto</em> La prima coordinata rilevata, più vicina all'origine. Questa coordinata è relativa alla posizione della sonda.</li> <li><code>mesh_min: 35, 6</code> <em>Richiesto</em> La prima coordinata rilevata, più vicina all'origine. Questa coordinata è relativa alla posizione della sonda.</li>
<li><code>mesh_max: 240, 198</code> <em>Richiesto</em> La coordinata rilevata più lontana dall'origine. Questo non è necessariamente l'ultimo punto sondato, poiché il processo di rilevamento avviene a zig-zag. Come per <code>mesh_min</code>, questa coordinata è relativa alla posizione della sonda.</li> <li><code>mesh_max: 240, 198</code> <em>Required</em> The probed coordinate farthest farthest from the origin. This is not necessarily the last point probed, as the probing process occurs in a zig-zag fashion. As with <code>mesh_min</code>, this coordinate is relative to the probe's location.</li>
<li><code>probe_count: 5, 3</code> <em>Valore predefinito: 3, 3</em> Il numero di punti da sondare su ciascun asse, specificato come valori interi X, Y. In questo esempio verranno tastati 5 punti lungo l'asse X, con 3 punti lungo l'asse Y, per un totale di 15 punti tastati. Nota che se desideri una griglia quadrata, ad esempio 3x3, questo potrebbe essere specificato come un singolo valore intero che viene utilizzato per entrambi gli assi, ad esempio <code>probe_count: 3</code>. Si noti che una mesh richiede un probe_count minimo di 3 lungo ciascun asse.</li> <li><code>probe_count: 5, 3</code> <em>Valore predefinito: 3, 3</em> Il numero di punti da sondare su ciascun asse, specificato come valori interi X, Y. In questo esempio verranno tastati 5 punti lungo l'asse X, con 3 punti lungo l'asse Y, per un totale di 15 punti tastati. Nota che se desideri una griglia quadrata, ad esempio 3x3, questo potrebbe essere specificato come un singolo valore intero che viene utilizzato per entrambi gli assi, ad esempio <code>probe_count: 3</code>. Si noti che una mesh richiede un probe_count minimo di 3 lungo ciascun asse.</li>
</ul> </ul>
<p>L'illustrazione seguente mostra come le opzioni <code>mesh_min</code>, <code>mesh_max</code> e <code>probe_count</code> vengono utilizzate per generare punti sonda. Le frecce indicano la direzione della procedura di probing, a partire da <code>mesh_min</code>. Per riferimento, quando la sonda è a <code>mesh_min</code>, l'ugello sarà a (11, 1), e quando la sonda è a <code>mesh_max</code>, l'ugello sarà a (206, 193).</p> <p>L'illustrazione seguente mostra come le opzioni <code>mesh_min</code>, <code>mesh_max</code> e <code>probe_count</code> vengono utilizzate per generare punti sonda. Le frecce indicano la direzione della procedura di probing, a partire da <code>mesh_min</code>. Per riferimento, quando la sonda è a <code>mesh_min</code>, l'ugello sarà a (11, 1), e quando la sonda è a <code>mesh_max</code>, l'ugello sarà a (206, 193).</p>
@ -1589,12 +1589,12 @@ round_probe_count: 5
<li><code>mesh_origin: 0, 0</code> <em>Valore predefinito: 0, 0</em> Il punto centrale della mesh. Questa coordinata è relativa alla posizione della sonda. Sebbene il valore predefinito sia 0, 0, può essere utile regolare l'origine nel tentativo di sondare una porzione più ampia del letto. Vedi l'illustrazione qui sotto.</li> <li><code>mesh_origin: 0, 0</code> <em>Valore predefinito: 0, 0</em> Il punto centrale della mesh. Questa coordinata è relativa alla posizione della sonda. Sebbene il valore predefinito sia 0, 0, può essere utile regolare l'origine nel tentativo di sondare una porzione più ampia del letto. Vedi l'illustrazione qui sotto.</li>
<li><code>round_probe_count: 5</code> <em>Valore predefinito: 5</em> Questo è un valore intero che definisce il numero massimo di punti sondati lungo gli assi X e Y. Per "massimo" si intende il numero di punti tastati lungo l'origine della mesh. Questo valore deve essere un numero dispari, in quanto è necessario che venga sondato il centro della mesh.</li> <li><code>round_probe_count: 5</code> <em>Valore predefinito: 5</em> Questo è un valore intero che definisce il numero massimo di punti sondati lungo gli assi X e Y. Per "massimo" si intende il numero di punti tastati lungo l'origine della mesh. Questo valore deve essere un numero dispari, in quanto è necessario che venga sondato il centro della mesh.</li>
</ul> </ul>
<p>L'illustrazione seguente mostra come vengono generati i punti sondati. Come puoi vedere, l'impostazione di <code>mesh_origin</code> su (-10, 0) ci consente di specificare un raggio di mesh maggiore di 85.</p> <p>The illustration below shows how the probed points are generated. As you can see, setting the <code>mesh_origin</code> to (-10, 0) allows us to specify a larger mesh radius of 85.</p>
<p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p> <p><img alt="bedmesh_round_basic" src="img/bedmesh_round_basic.svg" /></p>
<h2 id="configurazione-avanzata">Configurazione avanzata<a class="headerlink" href="#configurazione-avanzata" title="Permanent link">&para;</a></h2> <h2 id="configurazione-avanzata">Configurazione avanzata<a class="headerlink" href="#configurazione-avanzata" title="Permanent link">&para;</a></h2>
<p>Di seguito vengono spiegate in dettaglio le opzioni di configurazione più avanzate. Ciascun esempio si baserà sulla configurazione base del piatto rettangolare mostrata sopra. Ciascuna delle opzioni avanzate si applica allo stesso modo ai piatti rotondi.</p> <p>Di seguito vengono spiegate in dettaglio le opzioni di configurazione più avanzate. Ciascun esempio si baserà sulla configurazione base del piatto rettangolare mostrata sopra. Ciascuna delle opzioni avanzate si applica allo stesso modo ai piatti rotondi.</p>
<h3 id="interpolazione-mesh">Interpolazione mesh<a class="headerlink" href="#interpolazione-mesh" title="Permanent link">&para;</a></h3> <h3 id="interpolazione-mesh">Interpolazione mesh<a class="headerlink" href="#interpolazione-mesh" title="Permanent link">&para;</a></h3>
<p>Sebbene sia possibile campionare la matrice sondata direttamente utilizzando una semplice interpolazione bilineare per determinare i valori Z tra i punti sondati, è spesso utile interpolare punti extra utilizzando algoritmi di interpolazione più avanzati per aumentare la densità della mesh. Questi algoritmi aggiungono curvatura alla mesh, tentando di simulare le proprietà del materiale del piatto. Bed Mesh offre l'interpolazione lagrange e bicubica per ottenere questo risultato.</p> <p>While its possible to sample the probed matrix directly using simple bi-linear interpolation to determine the Z-Values between probed points, it is often useful to interpolate extra points using more advanced interpolation algorithms to increase mesh density. These algorithms add curvature to the mesh, attempting to simulate the material properties of the bed. Bed Mesh offers lagrange and bicubic interpolation to accomplish this.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1629,7 +1629,7 @@ split_delta_z: .025
<li><code>move_check_distance: 5</code> <em>Valore predefinito: 5</em> La distanza minima per verificare la modifica desiderata in Z prima di eseguire una divisione. In questo esempio, un movimento più lungo di 5 mm verrà eseguito dall'algoritmo. Ogni 5 mm si verificherà una ricerca Z della mesh, confrontandola con il valore Z del movimento precedente. Se il delta raggiunge la soglia impostata da <code>split_delta_z</code>, il movimento sarà diviso e l'attraversamento continuerà. Questo processo si ripete fino al raggiungimento della fine del movimento, dove verrà applicato un aggiustamento finale. I movimenti più brevi di <code>move_check_distance</code> hanno la correzione Z corretta applicata direttamente alla mossa senza attraversamento o divisione.</li> <li><code>move_check_distance: 5</code> <em>Valore predefinito: 5</em> La distanza minima per verificare la modifica desiderata in Z prima di eseguire una divisione. In questo esempio, un movimento più lungo di 5 mm verrà eseguito dall'algoritmo. Ogni 5 mm si verificherà una ricerca Z della mesh, confrontandola con il valore Z del movimento precedente. Se il delta raggiunge la soglia impostata da <code>split_delta_z</code>, il movimento sarà diviso e l'attraversamento continuerà. Questo processo si ripete fino al raggiungimento della fine del movimento, dove verrà applicato un aggiustamento finale. I movimenti più brevi di <code>move_check_distance</code> hanno la correzione Z corretta applicata direttamente alla mossa senza attraversamento o divisione.</li>
<li><code>split_delta_z: .025</code> <em>Valore predefinito: .025</em> Come accennato in precedenza, questa è la deviazione minima richiesta per attivare una divisione del movimento. In questo esempio, qualsiasi valore Z con una deviazione +/- 0,025 mm attiverà una divisione.</li> <li><code>split_delta_z: .025</code> <em>Valore predefinito: .025</em> Come accennato in precedenza, questa è la deviazione minima richiesta per attivare una divisione del movimento. In questo esempio, qualsiasi valore Z con una deviazione +/- 0,025 mm attiverà una divisione.</li>
</ul> </ul>
<p>Generalmente i valori di default per queste opzioni sono sufficienti, infatti il valore di default di 5mm per il <code>move_check_distance</code> potrebbe essere eccessivo. Tuttavia, un utente esperto potrebbe voler sperimentare queste opzioni nel tentativo di spremere un primo layer ottimale.</p> <p>Generally the default values for these options are sufficient, in fact the default value of 5mm for the <code>move_check_distance</code> may be overkill. However an advanced user may wish to experiment with these options in an effort to squeeze out the optimal first layer.</p>
<h3 id="dissolvenza-mesh">Dissolvenza Mesh<a class="headerlink" href="#dissolvenza-mesh" title="Permanent link">&para;</a></h3> <h3 id="dissolvenza-mesh">Dissolvenza Mesh<a class="headerlink" href="#dissolvenza-mesh" title="Permanent link">&para;</a></h3>
<p>Quando la "dissolvenza" è abilitata, la regolazione Z viene gradualmente eliminata su una distanza definita dalla configurazione. Ciò si ottiene applicando piccole regolazioni all'altezza dello strato, aumentando o diminuendo a seconda della forma del letto. Quando la dissolvenza è completata, la regolazione Z non viene più applicata, consentendo alla parte superiore della stampa di essere piatta anziché rispecchiare la forma del letto. La dissolvenza può anche avere alcuni tratti indesiderati, se dissolve troppo rapidamente può causare artefatti visibili sulla stampa. Inoltre, se il tuo letto è notevolmente deformato, la dissolvenza può ridurre o allungare l'altezza Z della stampa. In quanto tale, la dissolvenza è disabilitata per impostazione predefinita.</p> <p>Quando la "dissolvenza" è abilitata, la regolazione Z viene gradualmente eliminata su una distanza definita dalla configurazione. Ciò si ottiene applicando piccole regolazioni all'altezza dello strato, aumentando o diminuendo a seconda della forma del letto. Quando la dissolvenza è completata, la regolazione Z non viene più applicata, consentendo alla parte superiore della stampa di essere piatta anziché rispecchiare la forma del letto. La dissolvenza può anche avere alcuni tratti indesiderati, se dissolve troppo rapidamente può causare artefatti visibili sulla stampa. Inoltre, se il tuo letto è notevolmente deformato, la dissolvenza può ridurre o allungare l'altezza Z della stampa. In quanto tale, la dissolvenza è disabilitata per impostazione predefinita.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
@ -1646,10 +1646,10 @@ fade_target: 0
<ul> <ul>
<li><code>fade_start: 1</code> <em>Valore predefinito: 1</em> L'altezza Z in cui iniziare la regolazione graduale. È una buona idea avere alcuni layer prima di iniziare il processo di dissolvenza.</li> <li><code>fade_start: 1</code> <em>Valore predefinito: 1</em> L'altezza Z in cui iniziare la regolazione graduale. È una buona idea avere alcuni layer prima di iniziare il processo di dissolvenza.</li>
<li><code>fade_end: 10</code> <em>Valore predefinito: 0</em> L'altezza Z in cui deve essere completata la dissolvenza. Se questo valore è inferiore a <code>fade_start</code>, la dissolvenza è disabilitata. Questo valore può essere regolato a seconda di quanto è deformata la superficie di stampa. Una superficie notevolmente deformata dovrebbe dissolvere su una distanza maggiore. Una superficie quasi piatta potrebbe essere in grado di ridurre questo valore per eliminarlo gradualmente più rapidamente. 10mm è un valore ragionevole per cominciare se si utilizza il valore predefinito di 1 per <code>fade_start</code>.</li> <li><code>fade_end: 10</code> <em>Valore predefinito: 0</em> L'altezza Z in cui deve essere completata la dissolvenza. Se questo valore è inferiore a <code>fade_start</code>, la dissolvenza è disabilitata. Questo valore può essere regolato a seconda di quanto è deformata la superficie di stampa. Una superficie notevolmente deformata dovrebbe dissolvere su una distanza maggiore. Una superficie quasi piatta potrebbe essere in grado di ridurre questo valore per eliminarlo gradualmente più rapidamente. 10mm è un valore ragionevole per cominciare se si utilizza il valore predefinito di 1 per <code>fade_start</code>.</li>
<li><code>fade_target: 0</code> <em>Valore predefinito: il valore Z medio della mesh</em> Il <code>fade_target</code> può essere pensato come un offset Z aggiuntivo applicato all'intero letto dopo il completamento della dissolvenza. In generale, vorremmo che questo valore fosse 0, tuttavia ci sono circostanze in cui non dovrebbe essere. Ad esempio, supponiamo che la tua posizione di riferimento sul letto sia un valore anomalo, 0,2 mm inferiore all'altezza media rilevata del letto. Se <code>fade_target</code> è 0, la dissolvenza ridurrà la stampa di una media di 0,2 mm sul letto. Impostando <code>fade_target</code> su .2, l'area homed si espanderà di .2 mm, tuttavia il resto del letto avrà una dimensione precisa. Generalmente è una buona idea lasciare <code>fade_target</code> fuori dalla configurazione in modo che venga utilizzata l'altezza media della mesh, tuttavia potrebbe essere desiderabile regolare manualmente il target di dissolvenza se si desidera stampare su una parte specifica del letto.</li> <li><code>fade_target: 0</code> <em>Default Value: The average Z value of the mesh</em> The <code>fade_target</code> can be thought of as an additional Z offset applied to the entire bed after fade completes. Generally speaking we would like this value to be 0, however there are circumstances where it should not be. For example, lets assume your homing position on the bed is an outlier, its .2 mm lower than the average probed height of the bed. If the <code>fade_target</code> is 0, fade will shrink the print by an average of .2 mm across the bed. By setting the <code>fade_target</code> to .2, the homed area will expand by .2 mm, however, the rest of the bed will be accurately sized. Generally its a good idea to leave <code>fade_target</code> out of the configuration so the average height of the mesh is used, however it may be desirable to manually adjust the fade target if one wants to print on a specific portion of the bed.</li>
</ul> </ul>
<h3 id="lindice-di-riferimento-relativo">L'Indice di Riferimento Relativo<a class="headerlink" href="#lindice-di-riferimento-relativo" title="Permanent link">&para;</a></h3> <h3 id="lindice-di-riferimento-relativo">L'Indice di Riferimento Relativo<a class="headerlink" href="#lindice-di-riferimento-relativo" title="Permanent link">&para;</a></h3>
<p>La maggior parte delle sonde è suscettibile alla deriva, cioè: imprecisioni nel sondaggio introdotte da calore o interferenza. Ciò può rendere difficile il calcolo dell'offset z della sonda, in particolare a diverse temperature del letto. In quanto tali, alcune stampanti utilizzano un fine corsa per l'homing dell'asse Z e una sonda per calibrare la mesh. Queste stampanti possono trarre vantaggio dalla configurazione del relativo indice di riferimento.</p> <p>Most probes are susceptible to drift, ie: inaccuracies in probing introduced by heat or interference. This can make calculating the probe's z-offset challenging, particularly at different bed temperatures. As such, some printers use an endstop for homing the Z axis, and a probe for calibrating the mesh. These printers can benefit from configuring the relative reference index.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1717,7 +1717,7 @@ faulty_region_4_max: 45.0, 210.0
<p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p> <p><code>BED_MESH_PROFILE SAVE=&lt;name&gt; LOAD=&lt;name&gt; REMOVE=&lt;name&gt;</code></p>
<p>Dopo aver eseguito un BED_MESH_CALIBRATE, è possibile salvare lo stato della mesh corrente in un profilo denominato. Ciò consente di caricare una mesh senza risondare il piatto. Dopo che un profilo è stato salvato usando <code>BED_MESH_PROFILE SAVE=&lt;nome&gt;</code> è possibile eseguire il gcode <code>SAVE_CONFIG</code> per scrivere il profilo su printer.cfg.</p> <p>Dopo aver eseguito un BED_MESH_CALIBRATE, è possibile salvare lo stato della mesh corrente in un profilo denominato. Ciò consente di caricare una mesh senza risondare il piatto. Dopo che un profilo è stato salvato usando <code>BED_MESH_PROFILE SAVE=&lt;nome&gt;</code> è possibile eseguire il gcode <code>SAVE_CONFIG</code> per scrivere il profilo su printer.cfg.</p>
<p>I profili possono essere caricati eseguendo <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code>.</p> <p>I profili possono essere caricati eseguendo <code>BED_MESH_PROFILE LOAD=&lt;name&gt;</code>.</p>
<p>Va notato che ogni volta che si verifica un BED_MESH_CALIBRATE, lo stato corrente viene automaticamente salvato nel profilo <em>predefinito</em>. Se questo profilo esiste, viene caricato automaticamente all'avvio di Klipper. Se questo comportamento non è desiderabile, il profilo <em>predefinito</em> può essere rimosso come segue:</p> <p>It should be noted that each time a BED_MESH_CALIBRATE occurs, the current state is automatically saved to the <em>default</em> profile. The <em>default</em> profile can be removed as follows:</p>
<p><code>BED_MESH_PROFILE REMOVE=default</code></p> <p><code>BED_MESH_PROFILE REMOVE=default</code></p>
<p>Qualsiasi altro profilo salvato può essere rimosso allo stesso modo, sostituendo <em>default</em> con il nome del profilo che desideri rimuovere.</p> <p>Qualsiasi altro profilo salvato può essere rimosso allo stesso modo, sostituendo <em>default</em> con il nome del profilo che desideri rimuovere.</p>
<h4 id="caricamento-del-profilo-predefinito">Caricamento del profilo predefinito<a class="headerlink" href="#caricamento-del-profilo-predefinito" title="Permanent link">&para;</a></h4> <h4 id="caricamento-del-profilo-predefinito">Caricamento del profilo predefinito<a class="headerlink" href="#caricamento-del-profilo-predefinito" title="Permanent link">&para;</a></h4>

View file

@ -1134,6 +1134,13 @@
Benchmark step rate SAMD51 Benchmark step rate SAMD51
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1503,6 +1510,13 @@
Benchmark step rate SAMD51 Benchmark step rate SAMD51
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2005,6 +2019,34 @@ finalize_config crc=0
</tr> </tr>
</tbody> </tbody>
</table> </table>
<h3 id="ar100-step-rate-benchmark">AR100 step rate benchmark<a class="headerlink" href="#ar100-step-rate-benchmark" title="Permanent link">&para;</a></h3>
<p>The following configuration sequence is used on AR100 CPU (Allwinner A64):</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3
config_stepper oid=0 step_pin=PL10 dir_pin=PE14 invert_step=-1 step_pulse_ticks=0
config_stepper oid=1 step_pin=PL11 dir_pin=PE15 invert_step=-1 step_pulse_ticks=0
config_stepper oid=2 step_pin=PL12 dir_pin=PE16 invert_step=-1 step_pulse_ticks=0
finalize_config crc=0
</code></pre></div>
<p>The test was last run on commit <code>08d037c6</code> with gcc version <code>or1k-linux-musl-gcc (GCC) 9.2.0</code> on an Allwinner A64-H micro-controller.</p>
<table>
<thead>
<tr>
<th>AR100 R_PIO</th>
<th>ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 stepper</td>
<td>85</td>
</tr>
<tr>
<td>3 stepper</td>
<td>359</td>
</tr>
</tbody>
</table>
<h3 id="benchmark-step-rate-rp2040">Benchmark step rate RP2040<a class="headerlink" href="#benchmark-step-rate-rp2040" title="Permanent link">&para;</a></h3> <h3 id="benchmark-step-rate-rp2040">Benchmark step rate RP2040<a class="headerlink" href="#benchmark-step-rate-rp2040" title="Permanent link">&para;</a></h3>
<p>Sull'RP2040 viene utilizzata la seguente sequenza di configurazione:</p> <p>Sull'RP2040 viene utilizzata la seguente sequenza di configurazione:</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3 <div class="highlight"><pre><span></span><code>allocate_oids count=3
@ -2105,6 +2147,12 @@ get_uptime
<td>avr-gcc (GCC) 5.4.0</td> <td>avr-gcc (GCC) 5.4.0</td>
</tr> </tr>
<tr> <tr>
<td>ar100 (serial)</td>
<td>138K</td>
<td>08d037c6</td>
<td>or1k-linux-musl-gcc 9.3.0</td>
</tr>
<tr>
<td>samd21 (USB)</td> <td>samd21 (USB)</td>
<td>223K</td> <td>223K</td>
<td>01d2183f</td> <td>01d2183f</td>

View file

@ -1776,7 +1776,7 @@ stm32flash -w generic_boot20_pc13.bin -v -g 0 /dev/ttyAMA0
<p>Il bootloader in genere viene eseguito solo per un breve periodo dopo l'avvio. Potrebbe essere necessario sincronizzare il comando sopra in modo che venga eseguito mentre il bootloader è ancora attivo (il bootloader farà lampeggiare un led della scheda mentre è in esecuzione). In alternativa, imposta il pin "boot 0" su basso e il pin "boot 1" su alto per rimanere nel bootloader dopo un ripristino.</p> <p>Il bootloader in genere viene eseguito solo per un breve periodo dopo l'avvio. Potrebbe essere necessario sincronizzare il comando sopra in modo che venga eseguito mentre il bootloader è ancora attivo (il bootloader farà lampeggiare un led della scheda mentre è in esecuzione). In alternativa, imposta il pin "boot 0" su basso e il pin "boot 1" su alto per rimanere nel bootloader dopo un ripristino.</p>
<h3 id="stm32f103-con-bootloader-hid">STM32F103 con bootloader HID<a class="headerlink" href="#stm32f103-con-bootloader-hid" title="Permanent link">&para;</a></h3> <h3 id="stm32f103-con-bootloader-hid">STM32F103 con bootloader HID<a class="headerlink" href="#stm32f103-con-bootloader-hid" title="Permanent link">&para;</a></h3>
<p>Il <a href="https://github.com/Serasidis/STM32_HID_Bootloader">bootloader HID</a> è un bootloader compatto e senza driver in grado di eseguire il flashing attraverso USB. È inoltre disponibile un <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork con build specifiche per SKR Mini E3 1.2</a>.</p> <p>Il <a href="https://github.com/Serasidis/STM32_HID_Bootloader">bootloader HID</a> è un bootloader compatto e senza driver in grado di eseguire il flashing attraverso USB. È inoltre disponibile un <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">fork con build specifiche per SKR Mini E3 1.2</a>.</p>
<p>Per schede STM32F103 generiche come la blue pill è possibile eseguire il flashing del bootloader tramite seriale 3.3v utilizzando stm32flash come indicato nella sezione stm32duino sopra, sostituendo il nome del file con il binario del bootloader desiderato (es: hid_generic_pc13.bin per blue pill ).</p> <p>For generic STM32F103 boards such as the blue pill it is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired hid bootloader binary (ie: hid_generic_pc13.bin for the blue pill).</p>
<p>Non è possibile utilizzare stm32flash per SKR Mini E3 poiché il pin boot0 è collegato direttamente a terra e non disponibile tramite pin header. Si consiglia di utilizzare un STLink V2 con STM32Cubeprogrammer per eseguire il flashing del bootloader. Se non hai accesso a un STLink è anche possibile utilizzare un <a href="#running-openocd-on-the-raspberry-pi">Raspberry Pi e OpenOCD</a> con la seguente configurazione del chip:</p> <p>Non è possibile utilizzare stm32flash per SKR Mini E3 poiché il pin boot0 è collegato direttamente a terra e non disponibile tramite pin header. Si consiglia di utilizzare un STLink V2 con STM32Cubeprogrammer per eseguire il flashing del bootloader. Se non hai accesso a un STLink è anche possibile utilizzare un <a href="#running-openocd-on-the-raspberry-pi">Raspberry Pi e OpenOCD</a> con la seguente configurazione del chip:</p>
<div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg] <div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg]
</code></pre></div> </code></pre></div>
@ -1829,10 +1829,10 @@ make
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0 <div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0
</code></pre></div> </code></pre></div>
<p>Potrebbe essere necessario inserire manualmente il bootloader, questo può essere fatto impostando "boot 0" basso e "boot 1" alto. Su SKR Mini E3 "Boot 1" non è disponibile, quindi può essere fatto impostando il pin PA2 basso se hai flashato "hid_btt_skr_mini_e3.bin". Questo pin è etichettato "TX0" sull'intestazione TFT nel documento "PIN" di SKR Mini E3. C'è un pin di massa accanto a PA2 che puoi usare per abbassare PA2.</p> <p>It may be necessary to manually enter the bootloader, this can be done by setting "boot 0" low and "boot 1" high. On the SKR Mini E3 "Boot 1" is not available, so it may be done by setting pin PA2 low if you flashed "hid_btt_skr_mini_e3.bin". This pin is labeled "TX0" on the TFT header in the SKR Mini E3's "PIN" document. There is a ground pin next to PA2 which you can use to pull PA2 low.</p>
<h3 id="stm32f103stm32f072-con-bootloader-msc">STM32F103/STM32F072 con bootloader MSC<a class="headerlink" href="#stm32f103stm32f072-con-bootloader-msc" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f072-con-bootloader-msc">STM32F103/STM32F072 con bootloader MSC<a class="headerlink" href="#stm32f103stm32f072-con-bootloader-msc" title="Permanent link">&para;</a></h3>
<p>Il <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">bootloader MSC</a> è un bootloader senza driver in grado di eseguire il flashing su USB.</p> <p>Il <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">bootloader MSC</a> è un bootloader senza driver in grado di eseguire il flashing su USB.</p>
<p>È possibile eseguire il flashing del bootloader tramite seriale 3.3v usando stm32flash come indicato nella sezione stm32duino sopra, sostituendo il nome del file con il file binario del bootloader MSC desiderato (es: MSCboot-Bluepill.bin per la Blue pill).</p> <p>It is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired MSC bootloader binary (ie: MSCboot-Bluepill.bin for the blue pill).</p>
<p>Per le schede STM32F072 è anche possibile eseguire il flashing del bootloader su USB (tramite DFU) con qualcosa del tipo:</p> <p>Per le schede STM32F072 è anche possibile eseguire il flashing del bootloader su USB (tramite DFU) con qualcosa del tipo:</p>
<div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave <div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave
</code></pre></div> </code></pre></div>
@ -1841,7 +1841,7 @@ make
<p>Il bootloader può essere attivato premendo due volte il pulsante di reset della scheda. Non appena il bootloader viene attivato, la scheda appare come una chiavetta USB su cui è possibile copiare il file klipper.bin.</p> <p>Il bootloader può essere attivato premendo due volte il pulsante di reset della scheda. Non appena il bootloader viene attivato, la scheda appare come una chiavetta USB su cui è possibile copiare il file klipper.bin.</p>
<h3 id="stm32f103stm32f0x2-con-bootloader-canboot">STM32F103/STM32F0x2 con bootloader CanBoot<a class="headerlink" href="#stm32f103stm32f0x2-con-bootloader-canboot" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f0x2-con-bootloader-canboot">STM32F103/STM32F0x2 con bootloader CanBoot<a class="headerlink" href="#stm32f103stm32f0x2-con-bootloader-canboot" title="Permanent link">&para;</a></h3>
<p>Il bootloader <a href="https://github.com/Arksine/CanBoot">CanBoot</a> fornisce un'opzione per caricare il firmware Klipper su CANBUS. Il bootloader stesso è derivato dal codice sorgente di Klipper. Attualmente CanBoot supporta i modelli STM32F103, STM32F042 e STM32F072.</p> <p>Il bootloader <a href="https://github.com/Arksine/CanBoot">CanBoot</a> fornisce un'opzione per caricare il firmware Klipper su CANBUS. Il bootloader stesso è derivato dal codice sorgente di Klipper. Attualmente CanBoot supporta i modelli STM32F103, STM32F042 e STM32F072.</p>
<p>Si consiglia di utilizzare un programmatore ST-Link per eseguire il flashing di CanBoot, tuttavia dovrebbe essere possibile eseguire il flashing utilizzando <code>stm32flash</code> sui dispositivi STM32F103 e <code>dfu-util</code> sui dispositivi STM32F042/STM32F072. Vedere le sezioni precedenti di questo documento per istruzioni su questi metodi di flashing, sostituendo <code>canboot.bin</code> per il nome del file ove appropriato. Il link al repository CanBoot collegato sopra fornisce istruzioni per la creazione del bootloader.</p> <p>It is recommended to use a ST-Link Programmer to flash CanBoot, however it should be possible to flash using <code>stm32flash</code> on STM32F103 devices, and <code>dfu-util</code> on STM32F042/STM32F072 devices. See the previous sections in this document for instructions on these flashing methods, substituting <code>canboot.bin</code> for the file name where appropriate. The CanBoot repository linked above provides instructions for building the bootloader.</p>
<p>La prima volta che CanBoot è stato flashato, dovrebbe rilevare che non è presente alcuna applicazione e accedere al bootloader. Se ciò non accade è possibile entrare nel bootloader premendo due volte di seguito il pulsante di reset.</p> <p>La prima volta che CanBoot è stato flashato, dovrebbe rilevare che non è presente alcuna applicazione e accedere al bootloader. Se ciò non accade è possibile entrare nel bootloader premendo due volte di seguito il pulsante di reset.</p>
<p>L'utilità <code>flash_can.py</code> fornita nella cartella <code>lib/canboot</code> può essere utilizzata per caricare il firmware di Klipper. E' necessario l'UUID del dispositivo per eseguire il flashing. Se non si dispone di un UUID è possibile interrogare i nodi che attualmente eseguono il bootloader:</p> <p>L'utilità <code>flash_can.py</code> fornita nella cartella <code>lib/canboot</code> può essere utilizzata per caricare il firmware di Klipper. E' necessario l'UUID del dispositivo per eseguire il flashing. Se non si dispone di un UUID è possibile interrogare i nodi che attualmente eseguono il bootloader:</p>
<div class="highlight"><pre><span></span><code>python3 flash_can.py -q <div class="highlight"><pre><span></span><code>python3 flash_can.py -q
@ -1855,8 +1855,8 @@ make
<p>Dove <code>aabbccddeeff</code> è sostituito dal tuo UUID. Nota che le opzioni <code>-i</code> e <code>-f</code> possono essere omesse, per impostazione predefinita sono rispettivamente <code>can0</code> e <code>~/klipper/out/klipper.bin</code>.</p> <p>Dove <code>aabbccddeeff</code> è sostituito dal tuo UUID. Nota che le opzioni <code>-i</code> e <code>-f</code> possono essere omesse, per impostazione predefinita sono rispettivamente <code>can0</code> e <code>~/klipper/out/klipper.bin</code>.</p>
<p>Quando crei Klipper per l'uso con CanBoot, seleziona l'opzione Bootloader da 8 KiB.</p> <p>Quando crei Klipper per l'uso con CanBoot, seleziona l'opzione Bootloader da 8 KiB.</p>
<h2 id="microcontrollori-stm32f4-skr-pro-11">Microcontrollori STM32F4 (SKR Pro 1.1)<a class="headerlink" href="#microcontrollori-stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2> <h2 id="microcontrollori-stm32f4-skr-pro-11">Microcontrollori STM32F4 (SKR Pro 1.1)<a class="headerlink" href="#microcontrollori-stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2>
<p>I microcontrollori STM32F4 sono dotati di un bootloader di sistema integrato in grado di eseguire il flashing su USB (tramite DFU), seriale 3.3v e vari altri metodi (consultare il documento STM AN2606 per ulteriori informazioni). Alcune schede STM32F4, come SKR Pro 1.1, non sono in grado di accedere al bootloader DFU. Il bootloader HID è disponibile per schede basate su STM32F405/407 nel caso in cui l'utente preferisca eseguire il flashing su USB anziché utilizzare la scheda SD. Tieni presente che potrebbe essere necessario configurare e creare una versione specifica per la tua scheda, una <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">build per SKR Pro 1.1 è disponibile qui</a>.</p> <p>STM32F4 micro-controllers come equipped with a built-in system bootloader capable of flashing over USB (via DFU), 3.3V Serial, and various other methods (see STM Document AN2606 for more information). Some STM32F4 boards, such as the SKR Pro 1.1, are not able to enter the DFU bootloader. The HID bootloader is available for STM32F405/407 based boards should the user prefer flashing over USB over using the sdcard. Note that you may need to configure and build a version specific to your board, a <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">build for the SKR Pro 1.1 is available here</a>.</p>
<p>A meno che la tua scheda non sia compatibile con DFU, il metodo di flashing più accessibile è probabilmente tramite seriale 3.3v, che segue la stessa procedura di <a href="#stm32f103-micro-controllers-blue-pill-devices">flash dell'STM32F103 usando stm32flash</a>. Per esempio:</p> <p>Unless your board is DFU capable the most accessible flashing method is likely via 3.3V serial, which follows the same procedure as <a href="#stm32f103-micro-controllers-blue-pill-devices">flashing the STM32F103 using stm32flash</a>. For example:</p>
<div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin <div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin
stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0 stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0

View file

@ -1466,15 +1466,15 @@
<td>Livellamento del piatto, flashing MCU</td> <td>Livellamento del piatto, flashing MCU</td>
</tr> </tr>
<tr> <tr>
<td>James Hartley</td>
<td>@JamesH1978</td>
<td>Configuration files</td>
</tr>
<tr>
<td>Kevin O'Connor</td> <td>Kevin O'Connor</td>
<td>@KevinOConnor</td> <td>@KevinOConnor</td>
<td>Core motion system, codice microcontrollore</td> <td>Core motion system, codice microcontrollore</td>
</tr> </tr>
<tr>
<td>Paul McGowan</td>
<td>@mental405</td>
<td>File di configurazione, documentazione</td>
</tr>
</tbody> </tbody>
</table> </table>
<p>Si prega di non eseguire il "ping" di nessuno dei revisori e di non indirizzare gli invii a loro. Tutti i revisori controllano i forum e le PR e si occuperanno delle revisioni quando ne avranno il tempo.</p> <p>Si prega di non eseguire il "ping" di nessuno dei revisori e di non indirizzare gli invii a loro. Tutti i revisori controllano i forum e le PR e si occuperanno delle revisioni quando ne avranno il tempo.</p>

View file

@ -1293,6 +1293,8 @@
<p>Questo documento copre le modifiche software recenti al file di configurazione che non sono compatibili con le versioni precedenti. È una buona idea rivedere questo documento durante l'aggiornamento del software Klipper.</p> <p>Questo documento copre le modifiche software recenti al file di configurazione che non sono compatibili con le versioni precedenti. È una buona idea rivedere questo documento durante l'aggiornamento del software Klipper.</p>
<p>Tutte le date in questo documento sono approssimative.</p> <p>Tutte le date in questo documento sono approssimative.</p>
<h2 id="cambiamenti">Cambiamenti<a class="headerlink" href="#cambiamenti" title="Permanent link">&para;</a></h2> <h2 id="cambiamenti">Cambiamenti<a class="headerlink" href="#cambiamenti" title="Permanent link">&para;</a></h2>
<p>20230304: The <code>SET_TMC_CURRENT</code> command now properly adjusts the globalscaler register for drivers that have it. This removes a limitation where on tmc5160, the currents could not be raised higher with <code>SET_TMC_CURRENT</code> than the <code>run_current</code> value set in the config file. However, this has a side effect: After running <code>SET_TMC_CURRENT</code>, the stepper must be held at standstill for &gt;130ms in case StealthChop2 is used so that the AT#1 calibration gets executed by the driver.</p>
<p>20230202: The format of the <code>printer.screws_tilt_adjust</code> status information has changed. The information is now stored as a dictionary of screws with the resulting measurements. See the <a href="Status_Reference.html#screws_tilt_adjust">status reference</a> for details.</p>
<p>20230201: Il modulo <code>[bed_mesh]</code> non carica più il profilo <code>default</code> all'avvio. Si consiglia agli utenti che usano il profilo <code>default</code> di aggiungere <code>BED_MESH_PROFILE LOAD=default</code> alla loro macro <code>START_PRINT</code> (o alla configurazione "Start G-Code" del loro slicer quando applicabile).</p> <p>20230201: Il modulo <code>[bed_mesh]</code> non carica più il profilo <code>default</code> all'avvio. Si consiglia agli utenti che usano il profilo <code>default</code> di aggiungere <code>BED_MESH_PROFILE LOAD=default</code> alla loro macro <code>START_PRINT</code> (o alla configurazione "Start G-Code" del loro slicer quando applicabile).</p>
<p>20230103: Ora è possibile con lo script flash-sdcard.sh eseguire il flashing di entrambe le varianti di Bigtreetech SKR-2, STM32F407 e STM32F429. Ciò significa che il tag originale di btt-skr2 ora è cambiato in btt-skr-2-f407 o btt-skr-2-f429.</p> <p>20230103: Ora è possibile con lo script flash-sdcard.sh eseguire il flashing di entrambe le varianti di Bigtreetech SKR-2, STM32F407 e STM32F429. Ciò significa che il tag originale di btt-skr2 ora è cambiato in btt-skr-2-f407 o btt-skr-2-f429.</p>
<p>20221128: rilascio di Klipper v0.11.0.</p> <p>20221128: rilascio di Klipper v0.11.0.</p>

View file

@ -1337,6 +1337,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3258,6 +3265,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3842,68 +3856,65 @@ radius:
<div class="highlight"><pre><span></span><code>[printer] <div class="highlight"><pre><span></span><code>[printer]
kinematics: deltesian kinematics: deltesian
max_z_velocity: max_z_velocity:
# Per le stampanti deltesiane, ciò limita la velocità massima (in mm/s) # For deltesian printers, this limits the maximum velocity (in mm/s) of
# dei movimenti con movimento dell&#39;asse z. Questa impostazione può # moves with z axis movement. This setting can be used to reduce the
# essere utilizzata per ridurre la velocità massima dei movimenti su/giù # maximum speed of up/down moves (which require a higher step rate
# (che richiedono una velocità di incremento maggiore rispetto ad altri # than other moves on a deltesian printer). The default is to use
# movimenti su una stampante deltesiana). L&#39;impostazione predefinita # max_velocity for max_z_velocity.
# è utilizzare max_velocity per max_z_velocity.
#max_z_accel: #max_z_accel:
# Imposta l&#39;accelerazione massima (in mm/s^2) del movimento lungo # This sets the maximum acceleration (in mm/s^2) of movement along
# l&#39;asse z. L&#39;impostazione può essere utile se la stampante può raggiungere # the z axis. Setting this may be useful if the printer can reach higher
# un&#39;accelerazione maggiore sui movimenti XY rispetto ai movimenti Z # acceleration on XY moves than Z moves (eg, when using input shaper).
# (ad esempio, quando si utilizza l&#39;input shaper). L&#39;impostazione # The default is to use max_accel for max_z_accel.
# predefinita è utilizzare max_accel per max_z_accel.
#minimum_z_position: 0 #minimum_z_position: 0
# La posizione Z minima in cui l&#39;utente può comandare alla testa di # The minimum Z position that the user may command the head to move
# spostarsi. Il valore predefinito è 0. # to. The default is 0.
#min_angle: 5 #min_angle: 5
# Questo rappresenta l&#39;angolo minimo (in gradi) rispetto all&#39;orizzontale # This represents the minimum angle (in degrees) relative to horizontal
# che le braccia deltesiane possono raggiungere. Questo parametro ha lo # that the deltesian arms are allowed to achieve. This parameter is
# scopo di impedire che i bracci diventino completamente orizzontali, il # intended to restrict the arms from becoming completely horizontal,
# che rischierebbe l&#39;inversione accidentale dell&#39;asse XZ. # which would risk accidental inversion of the XZ axis. The default is 5.
# L&#39;impostazione predefinita è 5.
#print_width: #print_width:
# La distanza (in mm) delle coordinate X della testa utensile valide. # The distance (in mm) of valid toolhead X coordinates. One may use
# È possibile utilizzare questa impostazione per personalizzare il # this setting to customize the range checking of toolhead moves. If
# controllo dell&#39;intervallo dei movimenti della testa utensile. Se # a large value is specified here then it may be possible to command
# qui viene specificato un valore elevato, potrebbe essere possibile # the toolhead into a collision with a tower. This setting usually
# comandare la collisione della testa utensile con una torre. Questa # corresponds to bed width (in mm).
# impostazione di solito corrisponde alla larghezza del piatto (in mm).
#slow_ratio: 3 #slow_ratio: 3
# Il rapporto utilizzato per limitare la velocità e l&#39;accelerazione sui # The ratio used to limit velocity and acceleration on moves near the
# movimenti vicini agli estremi dell&#39;asse X. Se la distanza verticale # extremes of the X axis. If vertical distance divided by horizontal
# divisa per la distanza orizzontale supera il valore di slow_ratio, la # distance exceeds the value of slow_ratio, then velocity and
# velocità e l&#39;accelerazione sono limitate alla metà dei loro valori # acceleration are limited to half their nominal values. If vertical
# nominali. Se la distanza verticale divisa per la distanza orizzontale # distance divided by horizontal distance exceeds twice the value of
# supera il doppio del valore di slow_ratio, la velocità e l&#39;accelerazione # the slow_ratio, then velocity and acceleration are limited to one
# sono limitate a un quarto dei loro valori nominali. # quarter of their nominal values. The default is 3.
# Il valore predefinito è 3.
# la sezione stepper_left è usata per descrivere lo stepper che controlla # The stepper_left section is used to describe the stepper controlling
# la torre di sinistra. Questa sezione controlla anche i parametri di # the left tower. This section also controls the homing parameters
# homing (velocità di homing, homing retract_dist) per tutte le torri. # (homing_speed, homing_retract_dist) for all towers.
[stepper_left] [stepper_left]
position_endstop: position_endstop:
# Distanza (in mm) tra l&#39;ugello e il piatto quando l&#39;ugello si trova al # Distance (in mm) between the nozzle and the bed when the nozzle is
# centro dell&#39;area di costruzione e vengono attivati i finecorsa. Questo # in the center of the build area and the endstops are triggered. This
# parametro deve essere fornito per stepper_left; per stepper_right # parameter must be provided for stepper_left; for stepper_right this
# questo parametro è predefinito sul valore specificato per stepper_left. # parameter defaults to the value specified for stepper_left.
arm_length: arm_length:
# Lunghezza (in mm) dell&#39;asta diagonale che collega il carrello torre # Length (in mm) of the diagonal rod that connects the tower carriage to
# alla testina di stampa. Questo parametro deve essere fornito per # the print head. This parameter must be provided for stepper_left; for
# stepper_left; per stepper_right, questo parametro per impostazione # stepper_right, this parameter defaults to the value specified for
# predefinita è il valore specificato per stepper_left. # stepper_left.
arm_x_length: arm_x_length:
# Distanza orizzontale tra la testina di stampa e la torre quando le # Horizontal distance between the print head and the tower when the
# stampanti è in homing. Questo parametro deve essere fornito # printers is homed. This parameter must be provided for stepper_left;
# per stepper_left; per stepper_right, questo parametro per impostazione # for stepper_right, this parameter defaults to the value specified for
# predefinita è il valore specificato per stepper_left. # stepper_left.
# La sezione stepper_right è usata per descrivere lo stepper che
# controlla la torre destra. # The stepper_right section is used to describe the stepper controlling the
# right tower.
[stepper_right] [stepper_right]
# La sezione stepper_y viene utilizzata per descrivere lo stepper che # The stepper_y section is used to describe the stepper controlling
# controlla l&#39;asse Y in un robot deltesiano. # the Y axis in a deltesian robot.
[stepper_y] [stepper_y]
</code></pre></div> </code></pre></div>
@ -4477,33 +4488,33 @@ max_temp:
<p>Per ulteriori informazioni, vedere la <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guida al livellamento</a> e <a href="G-Codes.html#screws_tilt_adjust">riferimento al comando</a>.</p> <p>Per ulteriori informazioni, vedere la <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">guida al livellamento</a> e <a href="G-Codes.html#screws_tilt_adjust">riferimento al comando</a>.</p>
<div class="highlight"><pre><span></span><code>[screws_tilt_adjust] <div class="highlight"><pre><span></span><code>[screws_tilt_adjust]
#screw1: #screw1:
# La coordinata (X, Y) della prima vite di livellamento del piatto. Questa # The (X, Y) coordinate of the first bed leveling screw. This is a
# è una posizione in cui comandare l&#39;ugello in modo che la sonda sia # position to command the nozzle to so that the probe is directly
# direttamente sopra la vite del piatto (o il più vicino possibile mentre si # above the bed screw (or as close as possible while still being
# trova ancora sopra il piatto). Questa è la vite di base utilizzata nei calcoli. # above the bed). This is the base screw used in calculations. This
# Questo parametro deve essere fornito. # parameter must be provided.
#screw1_name: #screw1_name:
# Un nome arbitrario per la vite data. Questo nome viene visualizzato # An arbitrary name for the given screw. This name is displayed when
# quando viene eseguito lo script di supporto. L&#39;impostazione predefinita # the helper script runs. The default is to use a name based upon
# prevede l&#39;utilizzo di un nome basato sulla posizione XY della vite. # the screw XY location.
#screw2: #screw2:
#screw2_name: #screw2_name:
#... #...
# Viti di livellamento del piatto aggiuntive. Devono essere definite # Additional bed leveling screws. At least two screws must be
# almeno due viti. # defined.
#speed: 50 #speed: 50
# La velocità (in mm/s) degli spostamenti senza probing durante la # The speed (in mm/s) of non-probing moves during the calibration.
# calibrazione. Il valore predefinito è 50. # The default is 50.
#horizontal_move_z: 5 #horizontal_move_z: 5
# L&#39;altezza (in mm) a cui la testa deve essere spostata appena prima # The height (in mm) that the head should be commanded to move to
# di avviare un&#39;operazione di sonda. L&#39;impostazione predefinita è 5. # just prior to starting a probe operation. The default is 5.
#screw_thread: CW-M3 #screw_thread: CW-M3
# Il tipo di vite utilizzata per il livello del piatto, M3, M4 o M5 e la # The type of screw used for bed leveling, M3, M4, or M5, and the
# direzione della manopola utilizzata per livellare il letto, in senso orario # rotation direction of the knob that is used to level the bed.
# decrementa in senso antiorario decrementa. Valori accettati: CW-M3, # Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5.
# CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5. Il valore predefinito è # Default value is CW-M3 which most printers use. A clockwise
# CW-M3, la maggior parte delle stampanti utilizza una vite M3 e # rotation of the knob decreases the gap between the nozzle and the
# ruotando la manopola in senso orario diminuisce la distanza. # bed. Conversely, a counter-clockwise rotation increases the gap.
</code></pre></div> </code></pre></div>
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
@ -6297,6 +6308,120 @@ run_current:
# viene interpretato come MSB di HSTRT in questo caso). # viene interpretato come MSB di HSTRT in questo caso).
</code></pre></div> </code></pre></div>
<h3 id="tmc2240">[tmc2240]<a class="headerlink" href="#tmc2240" title="Permanent link">&para;</a></h3>
<p>Configure a TMC2240 stepper motor driver via SPI bus. To use this feature, define a config section with a "tmc2240" prefix followed by the name of the corresponding stepper config section (for example, "[tmc2240 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc2240 stepper_x]
cs_pin:
# The pin corresponding to the TMC2240 chip select line. This pin
# will be set to low at the start of SPI messages and raised to high
# after the message completes. This parameter must be provided.
#spi_speed:
#spi_bus:
#spi_software_sclk_pin:
#spi_software_mosi_pin:
#spi_software_miso_pin:
# See the &quot;common SPI settings&quot; section for a description of the
# above parameters.
#chain_position:
#chain_length:
# These parameters configure an SPI daisy chain. The two parameters
# define the stepper position in the chain and the total chain length.
# Position 1 corresponds to the stepper that connects to the MOSI signal.
# The default is to not use an SPI daisy chain.
#interpolate: True
# If true, enable step interpolation (the driver will internally
# step at a rate of 256 micro-steps). The default is True.
run_current:
# The amount of current (in amps RMS) to configure the driver to use
# during stepper movement. This parameter must be provided.
#hold_current:
# The amount of current (in amps RMS) to configure the driver to use
# when the stepper is not moving. Setting a hold_current is not
# recommended (see TMC_Drivers.md for details). The default is to
# not reduce the current.
#rref: 12000
# The resistance (in ohms) of the resistor between IREF and GND. The
# default is 12000.
#stealthchop_threshold: 0
# The velocity (in mm/s) to set the &quot;stealthChop&quot; threshold to. When
# set, &quot;stealthChop&quot; mode will be enabled if the stepper motor
# velocity is below this value. The default is 0, which disables
# &quot;stealthChop&quot; mode.
#driver_MSLUT0: 2863314260
#driver_MSLUT1: 1251300522
#driver_MSLUT2: 608774441
#driver_MSLUT3: 269500962
#driver_MSLUT4: 4227858431
#driver_MSLUT5: 3048961917
#driver_MSLUT6: 1227445590
#driver_MSLUT7: 4211234
#driver_W0: 2
#driver_W1: 1
#driver_W2: 1
#driver_W3: 1
#driver_X1: 128
#driver_X2: 255
#driver_X3: 255
#driver_START_SIN: 0
#driver_START_SIN90: 247
#driver_OFFSET_SIN90: 0
# These fields control the Microstep Table registers directly. The optimal
# wave table is specific to each motor and might vary with current. An
# optimal configuration will have minimal print artifacts caused by
# non-linear stepper movement. The values specified above are the default
# values used by the driver. The value must be specified as a decimal integer
# (hex form is not supported). In order to compute the wave table fields,
# see the tmc2130 &quot;Calculation Sheet&quot; from the Trinamic website.
# Additionally, this driver also has the OFFSET_SIN90 field which can be used
# to tune a motor with unbalanced coils. See the `Sine Wave Lookup Table`
# section in the datasheet for information about this field and how to tune
# it.
#driver_IHOLDDELAY: 6
#driver_IRUNDELAY: 4
#driver_TPOWERDOWN: 10
#driver_TBL: 2
#driver_TOFF: 3
#driver_HEND: 2
#driver_HSTRT: 5
#driver_FD3: 0
#driver_TPFD: 4
#driver_CHM: 0
#driver_VHIGHFS: 0
#driver_VHIGHCHM: 0
#driver_DISS2G: 0
#driver_DISS2VS: 0
#driver_PWM_AUTOSCALE: True
#driver_PWM_AUTOGRAD: True
#driver_PWM_FREQ: 0
#driver_FREEWHEEL: 0
#driver_PWM_GRAD: 0
#driver_PWM_OFS: 29
#driver_PWM_REG: 4
#driver_PWM_LIM: 12
#driver_SGT: 0
#driver_SEMIN: 0
#driver_SEUP: 0
#driver_SEMAX: 0
#driver_SEDN: 0
#driver_SEIMIN: 0
#driver_SFILT: 0
#driver_SG4_ANGLE_OFFSET: 1
# Set the given register during the configuration of the TMC2240
# chip. This may be used to set custom motor parameters. The
# defaults for each parameter are next to the parameter name in the
# above list.
#diag0_pin:
#diag1_pin:
# The micro-controller pin attached to one of the DIAG lines of the
# TMC2240 chip. Only a single diag pin should be specified. The pin
# is &quot;active low&quot; and is thus normally prefaced with &quot;^!&quot;. Setting
# this creates a &quot;tmc2240_stepper_x:virtual_endstop&quot; virtual pin
# which may be used as the stepper&#39;s endstop_pin. Doing this enables
# &quot;sensorless homing&quot;. (Be sure to also set driver_SGT to an
# appropriate sensitivity value.) The default is to not enable
# sensorless homing.
</code></pre></div>
<h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3> <h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3>
<p>Configurare un driver per motore passo-passo TMC5160 tramite bus SPI. Per utilizzare questa funzione, definire una sezione di configurazione con un prefisso "tmc5160" seguito dal nome della sezione di configurazione dello stepper corrispondente (ad esempio, "[tmc5160 stepper_x]").</p> <p>Configurare un driver per motore passo-passo TMC5160 tramite bus SPI. Per utilizzare questa funzione, definire una sezione di configurazione con un prefisso "tmc5160" seguito dal nome della sezione di configurazione dello stepper corrispondente (ad esempio, "[tmc5160 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc5160 stepper_x] <div class="highlight"><pre><span></span><code>[tmc5160 stepper_x]
@ -7146,21 +7271,17 @@ host_mcu:
<p>Se utilizzi Octoprint e esegui lo streaming di gcode sulla porta seriale invece di stampare da virtual_sd, rimuovere <strong>M1</strong> e <strong>M0</strong> da <em>Pausa dei comandi</em> in <em>Impostazioni &gt; Connessione seriale &gt; Firmware e protocollo</em> eviterà la necessità per avviare la stampa sulla tavolozza 2 e riattivare la pausa in Octoprint per avviare la stampa.</p> <p>Se utilizzi Octoprint e esegui lo streaming di gcode sulla porta seriale invece di stampare da virtual_sd, rimuovere <strong>M1</strong> e <strong>M0</strong> da <em>Pausa dei comandi</em> in <em>Impostazioni &gt; Connessione seriale &gt; Firmware e protocollo</em> eviterà la necessità per avviare la stampa sulla tavolozza 2 e riattivare la pausa in Octoprint per avviare la stampa.</p>
<div class="highlight"><pre><span></span><code>[palette2] <div class="highlight"><pre><span></span><code>[palette2]
serial: serial:
# La porta seriale per la connessione alla Palette 2. # The serial port to connect to the Palette 2.
#baud: 115200 #baud: 115200
# La velocità da utilizzare. Il valore predefinito è 115200. # The baud rate to use. The default is 115200.
#feedrate_splice: 0.8 #feedrate_splice: 0.8
# L&#39;avanzamento da utilizzare durante la giunzione # The feedrate to use when splicing, default is 0.8
# il valore predefinito è 0.8
#feedrate_normal: 1.0 #feedrate_normal: 1.0
# L&#39;avanzamento da utilizzare dopo la giunzione # The feedrate to use after splicing, default is 1.0
# il valore predefinito è 1.0
#auto_load_speed: 2 #auto_load_speed: 2
# Avanzamento di estrusione durante il caricamento automatico # Extrude feedrate when autoloading, default is 2 (mm/s)
# il valore predefinito è 2 (mm/s)
#auto_cancel_variation: 0.1 #auto_cancel_variation: 0.1
# Annullamento automatico della stampa quando la variazione # Auto cancel print when ping variation is above this threshold
# del ping è superiore a questa soglia
</code></pre></div> </code></pre></div>
<h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3> <h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3>
@ -7211,25 +7332,23 @@ cs_pin:
<h3 id="impostazioni-i2c-comuni">Impostazioni I2C comuni<a class="headerlink" href="#impostazioni-i2c-comuni" title="Permanent link">&para;</a></h3> <h3 id="impostazioni-i2c-comuni">Impostazioni I2C comuni<a class="headerlink" href="#impostazioni-i2c-comuni" title="Permanent link">&para;</a></h3>
<p>I seguenti parametri sono generalmente disponibili per i dispositivi che utilizzano un bus I2C.</p> <p>I seguenti parametri sono generalmente disponibili per i dispositivi che utilizzano un bus I2C.</p>
<p>Si noti che l'attuale supporto del microcontrollore di Klipper per i2c generalmente non tollera il rumore di linea. Errori imprevisti sui cavi i2c possono causare la generazione di un errore di runtime da parte di Klipper. Il supporto di Klipper per il ripristino degli errori varia a seconda del tipo di microcontrollore. In genere si consiglia di utilizzare solo dispositivi i2c che si trovano sulla stessa scheda a circuito stampato del microcontrollore.</p> <p>Note that Klipper's current micro-controller support for I2C is generally not tolerant to line noise. Unexpected errors on the I2C wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use I2C devices that are on the same printed circuit board as the micro-controller.</p>
<p>La maggior parte delle implementazioni del microcontrollore Klipper supporta solo un <code>i2c_speed</code> di 100000. Il microcontrollore "linux" Klipper supporta una velocità 400000, ma deve essere <a href="RPi_microcontroller.html#optional-enbling-i2c">impostato nel sistema operativo</a> e il parametro <code>i2c_speed</code> viene altrimenti ignorato. Il microcontrollore Klipper "rp2040" supporta una velocità di 400000 tramite il parametro <code>i2c_speed</code>. Tutti gli altri microcontrollori Klipper utilizzano una frequenza di 100000 e ignorano il parametro <code>i2c_speed</code>.</p> <p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000 (<em>standard mode</em>, 100kbit/s). The Klipper "Linux" micro-controller supports a 400000 speed (<em>fast mode</em>, 400kbit/s), but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "RP2040" micro-controller and ATmega AVR family support a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p>
<div class="highlight"><pre><span></span><code>#i2c_address: <div class="highlight"><pre><span></span><code>#i2c_address:
# L&#39;indirizzo i2c del dispositivo. Questo deve essere specificato # The i2c address of the device. This must specified as a decimal
# come numero decimale (non in esadecimale). L&#39;impostazione # number (not in hex). The default depends on the type of device.
# predefinita dipende dal tipo di dispositivo.
#i2c_mcu: #i2c_mcu:
# Il nome del microcontrollore a cui è collegato il chip. # The name of the micro-controller that the chip is connected to.
# L&#39;impostazione predefinita è &quot;mcu&quot;. # The default is &quot;mcu&quot;.
#i2c_bus: #i2c_bus:
# Se il microcontrollore supporta più bus I2C, è possibile # If the micro-controller supports multiple I2C busses then one may
# specificare qui il nome del bus del microcontrollore. # specify the micro-controller bus name here. The default depends on
# L&#39;impostazione predefinita dipende dal tipo di microcontrollore. # the type of micro-controller.
#i2c_speed: #i2c_speed:
# La velocità I2C (in Hz) da utilizzare durante la comunicazione # The I2C speed (in Hz) to use when communicating with the device.
# con il dispositivo. L&#39;implementazione di Klipper sulla maggior # The Klipper implementation on most micro-controllers is hard-coded
# parte dei microcontrollori è codificata a 100000 e la modifica # to 100000 and changing this value has no effect. The default is
# di questo valore non ha alcun effetto. # 100000. Linux, RP2040 and ATmega support 400000.
# Il valore predefinito è 100000.
</code></pre></div> </code></pre></div>

View file

@ -1505,7 +1505,7 @@ make build
<div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so <div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so
</code></pre></div> </code></pre></div>
<p>Questo comando dovrebbe segnalare un file specifico (ad es. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) e non un errore.</p> <p>This command should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p>
<p>Se utilizzi un sistema basato su Debian (Debian, Ubuntu, ecc.) puoi installare i seguenti pacchetti e generare file *.deb per l'installazione di simulavr a livello di sistema:</p> <p>Se utilizzi un sistema basato su Debian (Debian, Ubuntu, ecc.) puoi installare i seguenti pacchetti e generare file *.deb per l'installazione di simulavr a livello di sistema:</p>
<div class="highlight"><pre><span></span><code>sudo apt update <div class="highlight"><pre><span></span><code>sudo apt update
sudo apt install g++ make cmake swig rst2pdf help2man texinfo sudo apt install g++ make cmake swig rst2pdf help2man texinfo

View file

@ -1307,7 +1307,7 @@
<p>Klipper ha diverse caratteristiche interessanti:</p> <p>Klipper ha diverse caratteristiche interessanti:</p>
<ul> <ul>
<li>Movimento passo-passo di alta precisione. Klipper utilizza un processore applicativo (come un Raspberry Pi a basso costo) per calcolare i movimenti della stampante. Il processore dell'applicazione determina quando far avanzare ciascun motore passo-passo, comprime quegli eventi, li trasmette al microcontrollore e quindi il microcontrollore esegue ogni evento all'ora richiesta. Ogni evento stepper è programmato con una precisione di 25 microsecondi o superiore. Il software non utilizza stime cinematiche (come l'algoritmo di Bresenham), ma calcola tempi di passo precisi in base alla fisica dell'accelerazione e alla fisica della cinematica della macchina. Il movimento passo-passo più preciso garantisce un funzionamento della stampante più silenzioso e stabile.</li> <li>Movimento passo-passo di alta precisione. Klipper utilizza un processore applicativo (come un Raspberry Pi a basso costo) per calcolare i movimenti della stampante. Il processore dell'applicazione determina quando far avanzare ciascun motore passo-passo, comprime quegli eventi, li trasmette al microcontrollore e quindi il microcontrollore esegue ogni evento all'ora richiesta. Ogni evento stepper è programmato con una precisione di 25 microsecondi o superiore. Il software non utilizza stime cinematiche (come l'algoritmo di Bresenham), ma calcola tempi di passo precisi in base alla fisica dell'accelerazione e alla fisica della cinematica della macchina. Il movimento passo-passo più preciso garantisce un funzionamento della stampante più silenzioso e stabile.</li>
<li>Le migliori prestazioni della classe. Klipper è in grado di raggiungere elevate velocità di stepping su microcontrollori nuovi e vecchi. Anche i vecchi microcontrollori a 8 bit possono ottenere velocità di oltre 175.000 passi al secondo. Sui microcontrollori più recenti sono possibili diversi milioni di passi al secondo. Velocità stepper più elevate consentono velocità di stampa più elevate. Il timing dell'evento stepper rimane preciso anche a velocità elevate, migliorando la stabilità generale.</li> <li>Best in class performance. Klipper is able to achieve high stepping rates on both new and old micro-controllers. Even old 8-bit micro-controllers can obtain rates over 175K steps per second. On more recent micro-controllers, several million steps per second are possible. Higher stepper rates enable higher print velocities. The stepper event timing remains precise even at high speeds which improves overall stability.</li>
<li>Klipper supporta stampanti con più microcontrollori. Ad esempio, un microcontrollore potrebbe essere utilizzato per controllare un estrusore, mentre un altro controlla i riscaldatori della stampante, mentre un terzo controlla il resto della stampante. Il software host Klipper implementa la sincronizzazione dell'orologio per tenere conto della deriva dell'orologio tra i microcontrollori. Non è necessario alcun codice speciale per abilitare più microcontrollori: sono necessarie solo alcune righe in più nel file di configurazione.</li> <li>Klipper supporta stampanti con più microcontrollori. Ad esempio, un microcontrollore potrebbe essere utilizzato per controllare un estrusore, mentre un altro controlla i riscaldatori della stampante, mentre un terzo controlla il resto della stampante. Il software host Klipper implementa la sincronizzazione dell'orologio per tenere conto della deriva dell'orologio tra i microcontrollori. Non è necessario alcun codice speciale per abilitare più microcontrollori: sono necessarie solo alcune righe in più nel file di configurazione.</li>
<li>Configurazione tramite semplice file. Non è necessario eseguire il reflash del microcontrollore per modificare un'impostazione. Tutta la configurazione di Klipper è memorizzata in un file di configurazione standard che può essere facilmente modificato. Ciò semplifica la configurazione e la manutenzione dell'hardware.</li> <li>Configurazione tramite semplice file. Non è necessario eseguire il reflash del microcontrollore per modificare un'impostazione. Tutta la configurazione di Klipper è memorizzata in un file di configurazione standard che può essere facilmente modificato. Ciò semplifica la configurazione e la manutenzione dell'hardware.</li>
<li>Klipper supporta "Smooth Pressure Advance", un meccanismo per tenere conto degli effetti della pressione all'interno di un estrusore. Ciò riduce la "melma" dell'estrusore e migliora la qualità degli angoli di stampa. L'implementazione di Klipper non introduce variazioni istantanee della velocità dell'estrusore, il che migliora la stabilità e la robustezza complessive.</li> <li>Klipper supporta "Smooth Pressure Advance", un meccanismo per tenere conto degli effetti della pressione all'interno di un estrusore. Ciò riduce la "melma" dell'estrusore e migliora la qualità degli angoli di stampa. L'implementazione di Klipper non introduce variazioni istantanee della velocità dell'estrusore, il che migliora la stabilità e la robustezza complessive.</li>
@ -1424,6 +1424,11 @@
<td>1885K</td> <td>1885K</td>
</tr> </tr>
<tr> <tr>
<td>AR100</td>
<td>3529K</td>
<td>2507K</td>
</tr>
<tr>
<td>STM32F407</td> <td>STM32F407</td>
<td>3652K</td> <td>3652K</td>
<td>2459K</td> <td>2459K</td>

View file

@ -4424,7 +4424,7 @@
<h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3> <h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#bed_mesh">sezione di configurazione bed_mesh</a> è abilitata (consultare anche la <a href="Bed_Mesh.html">guida della mesh del letto</a>).</p> <p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#bed_mesh">sezione di configurazione bed_mesh</a> è abilitata (consultare anche la <a href="Bed_Mesh.html">guida della mesh del letto</a>).</p>
<h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: Questo comando sonda il piatto utilizzando i punti generati specificati dai parametri nella configurazione. Dopo il sondaggio, viene generata una mesh e il movimento z viene regolato in base alla mesh. Vedere il comando PROBE per i dettagli sui parametri della sonda opzionali. Se viene specificato METHOD=manual, lo strumento di probing manuale è attivato - vedere il comando MANUAL_PROBE per quanti riguarda per i dettagli sui comandi aggiuntivi disponibili mentre questo strumento è attivo.</p> <p><code>BED_MESH_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: This command probes the bed using generated points specified by the parameters in the config. After probing, a mesh is generated and z-movement is adjusted according to the mesh. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>: questo comando restituisce i valori z sondati e i valori mesh correnti al terminale. Se viene specificato PGP=1, le coordinate X, Y generate da bed_mesh, insieme ai relativi indici associati, verranno inviate al terminale.</p> <p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>: questo comando restituisce i valori z sondati e i valori mesh correnti al terminale. Se viene specificato PGP=1, le coordinate X, Y generate da bed_mesh, insieme ai relativi indici associati, verranno inviate al terminale.</p>
<h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4>
@ -4442,7 +4442,7 @@
<h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3> <h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#inclinazione_piatto">sezione di configurazione inclinazione_piatto</a> è abilitata.</p> <p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#inclinazione_piatto">sezione di configurazione inclinazione_piatto</a> è abilitata.</p>
<h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_TILT_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Questo comando sonderà i punti specificati nella configurazione e quindi consiglierà le regolazioni dell'inclinazione x e y aggiornate. Vedere il comando PROBE per i dettagli sui parametri della sonda opzionali. Se viene specificato METHOD=manual, lo strumento di probing manuale è attivato - vedere il comando MANUAL_PROBE sopra per i dettagli sui comandi aggiuntivi disponibili mentre questo strumento è attivo.</p> <p><code>BED_TILT_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then recommend updated x and y tilt adjustments. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3> <h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3>
<p>Il comando seguente è disponibile quando è abilitata una <a href="Config_Reference.html#bltouch">sezione di configurazione bltouch</a> (vedere anche la <a href="BLTouch.html">Guida BL-Touch</a>).</p> <p>Il comando seguente è disponibile quando è abilitata una <a href="Config_Reference.html#bltouch">sezione di configurazione bltouch</a> (vedere anche la <a href="BLTouch.html">Guida BL-Touch</a>).</p>
<h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4> <h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4>
@ -4460,7 +4460,7 @@
<h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3> <h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#linear-delta-cinematica">sezione di configurazione delta_calibrate</a> è abilitata (consultare anche la <a href="Delta_Calibrate.html">guida alla calibrazione delta</a>).</p> <p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#linear-delta-cinematica">sezione di configurazione delta_calibrate</a> è abilitata (consultare anche la <a href="Delta_Calibrate.html">guida alla calibrazione delta</a>).</p>
<h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4> <h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4>
<p><code>DELTA_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: questo comando sonderà sette punti sul piatto e consiglierà posizioni di finecorsa, angoli della torre e raggio aggiornati. Vedere il comando PROBE per i dettagli sui parametri della sonda opzionali. Se viene specificato METHOD=manual, lo strumento di probe manuale è attivato - vedere il comando MANUAL_PROBE precedente per i dettagli sui comandi aggiuntivi disponibili mentre questo strumento è attivo.</p> <p><code>DELTA_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe seven points on the bed and recommend updated endstop positions, tower angles, and radius. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4> <h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4>
<p><code>DELTA_ANALYZE</code>: questo comando viene utilizzato durante la calibrazione avanzata delle stampanti delta. Vedere <a href="Delta_Calibrate.html">Delta Calibrate</a> per i dettagli.</p> <p><code>DELTA_ANALYZE</code>: questo comando viene utilizzato durante la calibrazione avanzata delle stampanti delta. Vedere <a href="Delta_Calibrate.html">Delta Calibrate</a> per i dettagli.</p>
<h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3> <h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3>
@ -4731,7 +4731,7 @@
<h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3> <h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#screws_tilt_adjust">sezione di configurazione viti_tilt_adjust</a> è abilitata (consultare anche la <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">manual level guide</a>).</p> <p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#screws_tilt_adjust">sezione di configurazione viti_tilt_adjust</a> è abilitata (consultare anche la <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">manual level guide</a>).</p>
<h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4> <h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4>
<p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: Questo comando richiamerà lo strumento di regolazione delle viti del piatto. Comanderà l'ugello in diverse posizioni (come definito nel file di configurazione) sondando l'altezza z e calcolerà il numero di giri della manopola per regolare il livello del piatto. Se si specifica DIRECTION, le rotazioni della manopola saranno tutte nella stessa direzione, in senso orario (CW) o in senso antiorario (CCW). Vedere il comando PROBE per i dettagli sui parametri della sonda opzionali. IMPORTANTE: DEVI sempre eseguire un G28 prima di utilizzare questo comando. Se viene specificato MAX_DEVIATION, il comando genererà un errore gcode se qualsiasi differenza nell'altezza della vite rispetto all'altezza della vite di base è maggiore del valore fornito.</p> <p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3> <h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3>
<p>Quando la <a href="Config_Reference.html#sdcard_loop">sezione di configurazione sdcard_loop</a> è abilitata, sono disponibili i seguenti comandi estesi.</p> <p>Quando la <a href="Config_Reference.html#sdcard_loop">sezione di configurazione sdcard_loop</a> è abilitata, sono disponibili i seguenti comandi estesi.</p>
<h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4> <h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4>
@ -4771,13 +4771,13 @@
<h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3> <h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando una qualsiasi delle <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config section</a> è abilitata.</p> <p>I seguenti comandi sono disponibili quando una qualsiasi delle <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config section</a> è abilitata.</p>
<h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4> <h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4>
<p><code>DUMP_TMC STEPPER=&lt;nome&gt;</code>: questo comando leggerà i registri del driver TMC e ne riporterà i valori.</p> <p><code>DUMP_TMC STEPPER=&lt;name&gt; [REGISTER=&lt;name&gt;]</code>: This command will read all TMC driver registers and report their values. If a REGISTER is provided, only the specified register will be dumped.</p>
<h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4> <h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4>
<p><code>INIT_TMC STEPPER=&lt;nome&gt;</code>: questo comando inizializzerà i registri TMC. Necessario per riattivare il driver se l'alimentazione al chip viene spenta e poi riaccesa.</p> <p><code>INIT_TMC STEPPER=&lt;nome&gt;</code>: questo comando inizializzerà i registri TMC. Necessario per riattivare il driver se l'alimentazione al chip viene spenta e poi riaccesa.</p>
<h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_CURRENT STEPPER=&lt;nome&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: Questo regolerà le correnti di funzionamento e di mantenimento del driver TMC. (HOLDCURRENT non è applicabile ai driver tmc2660.)</p> <p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: This will adjust the run and hold currents of the TMC driver. <code>HOLDCURRENT</code> is not applicable to tmc2660 drivers. When used on a driver which has the <code>globalscaler</code> field (tmc5160 and tmc2240), if StealthChop2 is used, the stepper must be held at standstill for &gt;130ms so that the driver executes the AT#1 calibration.</p>
<h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_FIELD STEPPER=&lt;nome&gt; FIELD=&lt;campo&gt; VALUE=&lt;valore&gt;</code>: Questo altererà il valore del campo del registro specificato del driver TMC. Questo comando è destinato alla diagnostica e al debug di basso livello solo perché la modifica dei campi durante l'esecuzione può causare comportamenti indesiderati e potenzialmente pericolosi della stampante. Le modifiche permanenti dovrebbero invece essere apportate utilizzando il file di configurazione della stampante. Non vengono eseguiti controlli di integrità per i valori indicati.</p> <p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt; VELOCITY=&lt;value&gt;</code>: This will alter the value of the specified register field of the TMC driver. This command is intended for low-level diagnostics and debugging only because changing the fields during run-time can lead to undesired and potentially dangerous behavior of your printer. Permanent changes should be made using the printer configuration file instead. No sanity checks are performed for the given values. A VELOCITY can also be specified instead of a VALUE. This velocity is converted to the 20bit TSTEP based value representation. Only use the VELOCITY argument for fields that represent velocities.</p>
<h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3> <h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3>
<p>Il modulo toolhead viene caricato automaticamente.</p> <p>Il modulo toolhead viene caricato automaticamente.</p>
<h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4> <h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4>
@ -4814,7 +4814,7 @@
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
<p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#z_tilt">sezione z_tilt config</a> è abilitata.</p> <p>I seguenti comandi sono disponibili quando la <a href="Config_Reference.html#z_tilt">sezione z_tilt config</a> è abilitata.</p>
<h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4> <h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4>
<p><code>Z_TILT_ADJUST [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: questo comando sonderà i punti specificati nella configurazione e quindi apporterà regolazioni indipendenti a ciascuno Z stepper per compensare l'inclinazione. Vedere il comando PROBE per i dettagli sui parametri opzionali della sonda.</p> <p><code>Z_TILT_ADJUST [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then make independent adjustments to each Z stepper to compensate for tilt. See the PROBE command for details on the optional probe parameters. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
</article> </article>

View file

@ -1348,11 +1348,11 @@
<h1 id="sensore-di-hall-per-larghezza-del-filamento">Sensore di Hall per larghezza del filamento<a class="headerlink" href="#sensore-di-hall-per-larghezza-del-filamento" title="Permanent link">&para;</a></h1> <h1 id="sensore-di-hall-per-larghezza-del-filamento">Sensore di Hall per larghezza del filamento<a class="headerlink" href="#sensore-di-hall-per-larghezza-del-filamento" title="Permanent link">&para;</a></h1>
<p>Questo documento descrive il modulo host del sensore di larghezza del filamento Filament Width Sensor. L'hardware utilizzato per lo sviluppo di questo modulo host si basa su due sensori lineari Hall (ad esempio ss49e). I sensori nel corpo si trovano ai lati opposti. Principio di funzionamento: due sensori Hall funzionano in modalità differenziale, la stessa deriva di temperatura per il sensore. Non è necessaria una speciale compensazione della temperatura.</p> <p>This document describes Filament Width Sensor host module. Hardware used for developing this host module is based on two Hall linear sensors (ss49e for example). Sensors in the body are located on opposite sides. Principle of operation: two hall sensors work in differential mode, temperature drift same for sensor. Special temperature compensation not needed.</p>
<p>Puoi trovare i design su <a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>, un video di assemblaggio è disponibile anche su <a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a></p> <p>Puoi trovare i design su <a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>, un video di assemblaggio è disponibile anche su <a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a></p>
<p>Per utilizzare il sensore di larghezza del filamento Hall, leggere <a href="Config_Reference.html#hall_filament_width_sensor">Config Reference</a> e <a href="G-Codes.html#hall_filament_width_sensor">G-Code documentation</a>.</p> <p>Per utilizzare il sensore di larghezza del filamento Hall, leggere <a href="Config_Reference.html#hall_filament_width_sensor">Config Reference</a> e <a href="G-Codes.html#hall_filament_width_sensor">G-Code documentation</a>.</p>
<h2 id="come-funziona">Come funziona?<a class="headerlink" href="#come-funziona" title="Permanent link">&para;</a></h2> <h2 id="come-funziona">Come funziona?<a class="headerlink" href="#come-funziona" title="Permanent link">&para;</a></h2>
<p>Il sensore genera due uscite analogiche in base alla larghezza del filamento calcolata. La somma della tensione di uscita è sempre uguale alla larghezza del filamento rilevata. Il modulo host monitora le variazioni di tensione e regola il moltiplicatore di estrusione. Uso il connettore aux2 su una scheda simile a rampe analog11 e analog12 pin. Puoi usare diversi pin e diverse schede.</p> <p>Sensor generates two analog output based on calculated filament width. Sum of output voltage always equals to detected filament width. Host module monitors voltage changes and adjusts extrusion multiplier. I use the aux2 connector on a ramps-like board with the analog11 and analog12 pins. You can use different pins and different boards.</p>
<h2 id="modello-per-variabili-di-menu">Modello per variabili di menu<a class="headerlink" href="#modello-per-variabili-di-menu" title="Permanent link">&para;</a></h2> <h2 id="modello-per-variabili-di-menu">Modello per variabili di menu<a class="headerlink" href="#modello-per-variabili-di-menu" title="Permanent link">&para;</a></h2>
<div class="highlight"><pre><span></span><code>[menu __main __filament __width_current] <div class="highlight"><pre><span></span><code>[menu __main __filament __width_current]
type: command type: command

View file

@ -735,6 +735,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -787,6 +807,33 @@
Configura ADXL345 con RPi Configura ADXL345 con RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1480,6 +1527,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -1532,6 +1599,33 @@
Configura ADXL345 con RPi Configura ADXL345 con RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1662,7 +1756,7 @@
<p>Quando acquisti ADXL345, tieni presente che esiste una varietà di diversi design di schede PCB e diversi cloni di essi. Assicurati che la scheda supporti la modalità SPI (un piccolo numero di schede sembra essere configurato in modo rigido per I2C trascinando SDO su GND) e, se deve essere collegato a un MCU per stampante da 5 V, che abbia un regolatore di tensione e un cambio di livello.</p> <p>Quando acquisti ADXL345, tieni presente che esiste una varietà di diversi design di schede PCB e diversi cloni di essi. Assicurati che la scheda supporti la modalità SPI (un piccolo numero di schede sembra essere configurato in modo rigido per I2C trascinando SDO su GND) e, se deve essere collegato a un MCU per stampante da 5 V, che abbia un regolatore di tensione e un cambio di livello.</p>
<h2 id="istruzioni-per-linstallazione">Istruzioni per l'installazione<a class="headerlink" href="#istruzioni-per-linstallazione" title="Permanent link">&para;</a></h2> <h2 id="istruzioni-per-linstallazione">Istruzioni per l'installazione<a class="headerlink" href="#istruzioni-per-linstallazione" title="Permanent link">&para;</a></h2>
<h3 id="cablaggio">Cablaggio<a class="headerlink" href="#cablaggio" title="Permanent link">&para;</a></h3> <h3 id="cablaggio">Cablaggio<a class="headerlink" href="#cablaggio" title="Permanent link">&para;</a></h3>
<p>Si consiglia un cavo Ethernet con doppini intrecciati schermati (cat5e o superiore) per l'integrità del segnale su lunghe distanze. Se si verificano ancora problemi di integrità del segnale (errori SPI/I2C), accorciare il cavo.</p> <p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrity over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p>
<p>Collegare la schermatura del cavo Ethernet al gnd/ground della scheda controller RPI.</p> <p>Collegare la schermatura del cavo Ethernet al gnd/ground della scheda controller RPI.</p>
<p><strong><em>Ricontrolla il cablaggio prima di accendere per evitare di danneggiare il tuo MCU/Raspberry Pi o l'accelerometro.</em></strong></p> <p><strong><em>Ricontrolla il cablaggio prima di accendere per evitare di danneggiare il tuo MCU/Raspberry Pi o l'accelerometro.</em></strong></p>
<h4 id="accelerometri-spi">Accelerometri SPI<a class="headerlink" href="#accelerometri-spi" title="Permanent link">&para;</a></h4> <h4 id="accelerometri-spi">Accelerometri SPI<a class="headerlink" href="#accelerometri-spi" title="Permanent link">&para;</a></h4>
@ -1673,7 +1767,8 @@ SCLK+CS
</code></pre></div> </code></pre></div>
<h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5> <h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5>
<p><strong>Nota: molti MCU funzionano con un ADXL345 in modalità SPI (ad es. Pi Pico), il cablaggio e la configurazione variano in base alla scheda specifica ed ai pin disponibili.</strong></p> <h6 id="direct-to-raspberry-pi">Direct to Raspberry Pi<a class="headerlink" href="#direct-to-raspberry-pi" title="Permanent link">&para;</a></h6>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and available pins.</strong></p>
<p>Devi connettere ADXL345 al tuo Raspberry Pi tramite SPI. Si noti che la connessione I2C, suggerita dalla documentazione di ADXL345, ha un throughput troppo basso e <strong>non funzionerà</strong>. Lo schema di connessione consigliato:</p> <p>Devi connettere ADXL345 al tuo Raspberry Pi tramite SPI. Si noti che la connessione I2C, suggerita dalla documentazione di ADXL345, ha un throughput troppo basso e <strong>non funzionerà</strong>. Lo schema di connessione consigliato:</p>
<table> <table>
<thead> <thead>
@ -1687,7 +1782,7 @@ SCLK+CS
<tr> <tr>
<td align="center">3V3 (or VCC)</td> <td align="center">3V3 (or VCC)</td>
<td align="center">01</td> <td align="center">01</td>
<td align="center">3.3v alimentazione DC</td> <td align="center">3.3V DC power</td>
</tr> </tr>
<tr> <tr>
<td align="center">GND</td> <td align="center">GND</td>
@ -1718,6 +1813,52 @@ SCLK+CS
</table> </table>
<p>Schemi collegamenti Fritzing per alcune delle schede ADXL345:</p> <p>Schemi collegamenti Fritzing per alcune delle schede ADXL345:</p>
<p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p> <p><img alt="ADXL345-Rpi" src="img/adxl345-fritzing.png" /></p>
<h6 id="using-raspberry-pi-pico">Using Raspberry Pi Pico<a class="headerlink" href="#using-raspberry-pi-pico" title="Permanent link">&para;</a></h6>
<p>You may connect the ADXL345 to your Raspberry Pi Pico and then connect the Pico to your Raspberry Pi via USB. This makes it easy to reuse the accelerometer on other Klipper devices, as you can connect via USB instead of GPIO. The Pico does not have much processing power, so make sure it is only running the accelerometer and not performing any other duties.</p>
<p>In order to avoid damage to your RPi make sure to connect the ADXL345 to 3.3V only. Depending on the board's layout, a level shifter may be present, which makes 5V dangerous for your RPi.</p>
<table>
<thead>
<tr>
<th align="center">ADXL345 pin</th>
<th align="center">Pico pin</th>
<th align="center">Pico pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">3V3 (or VCC)</td>
<td align="center">36</td>
<td align="center">3.3V DC power</td>
</tr>
<tr>
<td align="center">GND</td>
<td align="center">38</td>
<td align="center">Ground</td>
</tr>
<tr>
<td align="center">CS</td>
<td align="center">2</td>
<td align="center">GP1 (SPI0_CSn)</td>
</tr>
<tr>
<td align="center">SDO</td>
<td align="center">1</td>
<td align="center">GP0 (SPI0_RX)</td>
</tr>
<tr>
<td align="center">SDA</td>
<td align="center">5</td>
<td align="center">GP3 (SPI0_TX)</td>
</tr>
<tr>
<td align="center">SCL</td>
<td align="center">4</td>
<td align="center">GP2 (SPI0_SCK)</td>
</tr>
</tbody>
</table>
<p>Wiring diagrams for some of the ADXL345 boards:</p>
<p><img alt="ADXL345-Pico" src="img/adxl345-pico.png" /></p>
<h4 id="accelerometri-i2c">Accelerometri I2C<a class="headerlink" href="#accelerometri-i2c" title="Permanent link">&para;</a></h4> <h4 id="accelerometri-i2c">Accelerometri I2C<a class="headerlink" href="#accelerometri-i2c" title="Permanent link">&para;</a></h4>
<p>Ordine dei doppini intrecciati suggerito:</p> <p>Ordine dei doppini intrecciati suggerito:</p>
<div class="highlight"><pre><span></span><code>3.3V+SDA <div class="highlight"><pre><span></span><code>3.3V+SDA
@ -1826,6 +1967,47 @@ probe_points:
</code></pre></div> </code></pre></div>
<p>Si consiglia di iniziare con 1 punto sonda, al centro del piano di stampa, leggermente al di sopra di esso.</p> <p>Si consiglia di iniziare con 1 punto sonda, al centro del piano di stampa, leggermente al di sopra di esso.</p>
<h4 id="configure-adxl345-with-pi-pico">Configure ADXL345 With Pi Pico<a class="headerlink" href="#configure-adxl345-with-pi-pico" title="Permanent link">&para;</a></h4>
<h5 id="flash-the-pico-firmware">Flash the Pico Firmware<a class="headerlink" href="#flash-the-pico-firmware" title="Permanent link">&para;</a></h5>
<p>On your Raspberry Pi, compile the firmware for the Pico.</p>
<div class="highlight"><pre><span></span><code>cd ~/klipper
make clean
make menuconfig
</code></pre></div>
<p><img alt="Pico menuconfig" src="img/klipper_pico_menuconfig.png" /></p>
<p>Now, while holding down the <code>BOOTSEL</code> button on the Pico, connect the Pico to the Raspberry Pi via USB. Compile and flash the firmware.</p>
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=first
</code></pre></div>
<p>If that fails, you will be told which <code>FLASH_DEVICE</code> to use. In this example, that's <code>make flash FLASH_DEVICE=2e8a:0003</code>. <img alt="Determine flash device" src="img/flash_rp2040_FLASH_DEVICE.png" /></p>
<h5 id="configure-the-connection">Configure the Connection<a class="headerlink" href="#configure-the-connection" title="Permanent link">&para;</a></h5>
<p>The Pico will now reboot with the new firmware and should show up as a serial device. Find the pico serial device with <code>ls /dev/serial/by-id/*</code>. You can now add an <code>adxl.cfg</code> file with the following settings:</p>
<div class="highlight"><pre><span></span><code>[mcu adxl]
# Change &lt;mySerial&gt; to whatever you found above. For example,
# usb-Klipper_rp2040_E661640843545B2E-if00
serial: /dev/serial/by-id/usb-Klipper_rp2040_&lt;mySerial&gt;
[adxl345]
cs_pin: adxl:gpio1
spi_bus: spi0a
axes_map: x,z,y
[resonance_tester]
accel_chip: adxl345
probe_points:
# Somewhere slightly above the middle of your print bed
147,154, 20
[output_pin power_mode] # Improve power stability
pin: adxl:gpio23
</code></pre></div>
<p>If setting up the ADXL345 configuration in a separate file, as shown above, you'll also want to modify your <code>printer.cfg</code> file to include this:</p>
<div class="highlight"><pre><span></span><code>[include adxl.cfg] # Comment this out when you disconnect the accelerometer
</code></pre></div>
<p>Riavvia Klipper tramite il comando <code>RESTART</code>.</p>
<h4 id="configura-la-serie-mpu-60009000-con-rpi">Configura la serie MPU-6000/9000 con RPi<a class="headerlink" href="#configura-la-serie-mpu-60009000-con-rpi" title="Permanent link">&para;</a></h4> <h4 id="configura-la-serie-mpu-60009000-con-rpi">Configura la serie MPU-6000/9000 con RPi<a class="headerlink" href="#configura-la-serie-mpu-60009000-con-rpi" title="Permanent link">&para;</a></h4>
<p>Assicurati che il driver Linux I2C sia abilitato e che la velocità di trasmissione sia impostata su 400000 (consulta la sezione <a href="RPi_microcontroller.html#optional-enabling-i2c">Abilitazione di I2C</a> per ulteriori dettagli). Quindi, aggiungi quanto segue a printer.cfg:</p> <p>Assicurati che il driver Linux I2C sia abilitato e che la velocità di trasmissione sia impostata su 400000 (consulta la sezione <a href="RPi_microcontroller.html#optional-enabling-i2c">Abilitazione di I2C</a> per ulteriori dettagli). Quindi, aggiungi quanto segue a printer.cfg:</p>
<div class="highlight"><pre><span></span><code>[mcu rpi] <div class="highlight"><pre><span></span><code>[mcu rpi]
@ -1844,19 +2026,19 @@ probe_points:
<h4 id="configura-la-serie-mpu-60009000-con-pico">Configura la serie MPU-6000/9000 con PICO<a class="headerlink" href="#configura-la-serie-mpu-60009000-con-pico" title="Permanent link">&para;</a></h4> <h4 id="configura-la-serie-mpu-60009000-con-pico">Configura la serie MPU-6000/9000 con PICO<a class="headerlink" href="#configura-la-serie-mpu-60009000-con-pico" title="Permanent link">&para;</a></h4>
<p>PICO I2C è impostato su 400000 per impostazione predefinita. Aggiungi semplicemente quanto segue a printer.cfg:</p> <p>PICO I2C è impostato su 400000 per impostazione predefinita. Aggiungi semplicemente quanto segue a printer.cfg:</p>
<div class="highlight"><pre><span></span><code>[mcu pico] <div class="highlight"><pre><span></span><code>[mcu pico]
serial: /dev/serial/by-id/&lt;ID seriale del tuo PICO&gt; serial: /dev/serial/by-id/&lt;your PICO&#39;s serial ID&gt;
[mpu9250] [mpu9250]
i2c_mcu: pico i2c_mcu: pico
i2c_bus: i2c1a i2c_bus: i2c0a
[resonance_tester] [resonance_tester]
accel_chip: mpu9250 accel_chip: mpu9250
probe_points: probe_points:
100, 100, 20 # un esempio 100, 100, 20 # an example
[static_digital_output pico_3V3pwm] # Aumenta la stabilità [static_digital_output pico_3V3pwm] # Improve power stability
pin:pico:gpio23 pin: pico:gpio23
</code></pre></div> </code></pre></div>
<p>Riavvia Klipper tramite il comando <code>RESTART</code>.</p> <p>Riavvia Klipper tramite il comando <code>RESTART</code>.</p>
@ -1871,7 +2053,7 @@ pin:pico:gpio23
<div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800 <div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800
</code></pre></div> </code></pre></div>
<p>Se ricevi un errore come <code>Invalid adxl345 id (got xx vs e5)</code>, dove <code>xx</code> è un altro ID, è indicativo del problema di connessione con ADXL345 o del sensore difettoso. Ricontrolla l'alimentazione, il cablaggio (che corrisponda agli schemi, nessun filo è rotto o allentato, ecc.) e la qualità delle saldature.</p> <p>If you get an error like <code>Invalid adxl345 id (got xx vs e5)</code>, where <code>xx</code> is some other ID, immediately try again. There's an issue with SPI initialization. If you still get an error, it is indicative of the connection problem with ADXL345, or the faulty sensor. Double-check the power, the wiring (that it matches the schematics, no wire is broken or loose, etc.), and soldering quality.</p>
<p><strong>Se si utilizza l'accelerometro della serie MPU-6000/9000 e viene visualizzato come <code>mpu-unknown</code>, utilizzare con cautela! Probabilmente sono chip ricondizionati!</strong></p> <p><strong>Se si utilizza l'accelerometro della serie MPU-6000/9000 e viene visualizzato come <code>mpu-unknown</code>, utilizzare con cautela! Probabilmente sono chip ricondizionati!</strong></p>
<p>Quindi, prova a eseguire <code>MEASURE_AXES_NOISE</code> in Octoprint, dovresti ottenere alcuni numeri di riferimento per il rumore dell'accelerometro sugli assi (dovrebbe essere compreso tra ~1-100). Un rumore degli assi troppo elevato (ad es. 1000 e più) può essere indicativo di problemi con il sensore, problemi con la sua alimentazione o ventole sbilanciate troppo rumorose su una stampante 3D.</p> <p>Quindi, prova a eseguire <code>MEASURE_AXES_NOISE</code> in Octoprint, dovresti ottenere alcuni numeri di riferimento per il rumore dell'accelerometro sugli assi (dovrebbe essere compreso tra ~1-100). Un rumore degli assi troppo elevato (ad es. 1000 e più) può essere indicativo di problemi con il sensore, problemi con la sua alimentazione o ventole sbilanciate troppo rumorose su una stampante 3D.</p>
<h3 id="misurare-le-risonanze_1">Misurare le risonanze<a class="headerlink" href="#misurare-le-risonanze_1" title="Permanent link">&para;</a></h3> <h3 id="misurare-le-risonanze_1">Misurare le risonanze<a class="headerlink" href="#misurare-le-risonanze_1" title="Permanent link">&para;</a></h3>
@ -1923,7 +2105,7 @@ max_accel: 3000 # non dovrebbe superare il max_accel stimato per gli assi X e Y
</code></pre></div> </code></pre></div>
<p>oppure puoi scegliere tu stesso un'altra configurazione in base ai grafici generati: i picchi nella densità spettrale di potenza sui grafici corrispondono alle frequenze di risonanza della stampante.</p> <p>oppure puoi scegliere tu stesso un'altra configurazione in base ai grafici generati: i picchi nella densità spettrale di potenza sui grafici corrispondono alle frequenze di risonanza della stampante.</p>
<p>Nota che in alternativa puoi eseguire l'autocalibrazione dello input shaper da Klipper <a href="#input-shaper-auto-calibration">directly</a>, che può essere conveniente, ad esempio, per lo input shaper<a href="#input-shaper-re-calibrazione">re-calibration</a>.</p> <p>Note that alternatively you can run the input shaper auto-calibration from Klipper <a href="#input-shaper-auto-calibration">directly</a>, which can be convenient, for example, for the input shaper <a href="#input-shaper-re-calibration">re-calibration</a>.</p>
<h3 id="stampanti-con-piatto-scorrevole">Stampanti con piatto scorrevole<a class="headerlink" href="#stampanti-con-piatto-scorrevole" title="Permanent link">&para;</a></h3> <h3 id="stampanti-con-piatto-scorrevole">Stampanti con piatto scorrevole<a class="headerlink" href="#stampanti-con-piatto-scorrevole" title="Permanent link">&para;</a></h3>
<p>Se la tua stampante ha un piatto scorrevole, dovrai cambiare la posizione dell'accelerometro tra le misurazioni per gli assi X e Y: misurare le risonanze dell'asse X con l'accelerometro collegato alla testa di stampa e le risonanze dell'asse Y - al piatto.</p> <p>Se la tua stampante ha un piatto scorrevole, dovrai cambiare la posizione dell'accelerometro tra le misurazioni per gli assi X e Y: misurare le risonanze dell'asse X con l'accelerometro collegato alla testa di stampa e le risonanze dell'asse Y - al piatto.</p>
<p>Tuttavia, puoi anche collegare due accelerometri contemporaneamente, sebbene debbano essere collegati a schede diverse (ad esempio, a una scheda RPi e MCU della stampante) o a due diverse interfacce SPI fisiche sulla stessa scheda (raramente disponibili). Quindi possono essere configurati nel modo seguente:</p> <p>Tuttavia, puoi anche collegare due accelerometri contemporaneamente, sebbene debbano essere collegati a schede diverse (ad esempio, a una scheda RPi e MCU della stampante) o a due diverse interfacce SPI fisiche sulla stessa scheda (raramente disponibili). Quindi possono essere configurati nel modo seguente:</p>
@ -2050,7 +2232,7 @@ Recommended shaper_type_y = mzv, shaper_freq_y = 36.8 Hz
<div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X <div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X
</code></pre></div> </code></pre></div>
<p><strong>Attenzione!</strong> Non è consigliabile eseguire l'autocalibrazione dello shaper molto frequentemente (ad es. prima di ogni stampa o ogni giorno). Per determinare le frequenze di risonanza, l'autocalibrazione crea intense vibrazioni su ciascuno degli assi. Generalmente, le stampanti 3D non sono progettate per resistere a un'esposizione prolungata a vibrazioni vicino alle frequenze di risonanza. Ciò potrebbe aumentare l'usura dei componenti della stampante e ridurne la durata. C'è anche un aumento del rischio che alcune parti si svitino o si allentino. Verificare sempre che tutte le parti della stampante (comprese quelle che normalmente potrebbero non muoversi) siano fissate saldamente in posizione dopo ogni autotuning.</p> <p><strong>Warning!</strong> It is not advisable to run the shaper auto-calibration very frequently (e.g. before every print, or every day). In order to determine resonance frequencies, auto-calibration creates intensive vibrations on each of the axes. Generally, 3D printers are not designed to withstand a prolonged exposure to vibrations near the resonance frequencies. Doing so may increase wear of the printer components and reduce their lifespan. There is also an increased risk of some parts unscrewing or becoming loose. Always check that all parts of the printer (including the ones that may normally not move) are securely fixed in place after each auto-tuning.</p>
<p>Inoltre, a causa di un po' di rumore nelle misurazioni, è possibile che i risultati dell'ottimizzazione siano leggermente diversi da una calibrazione all'altra. Tuttavia, non ci si aspetta che il rumore influisca troppo sulla qualità di stampa. Tuttavia, si consiglia comunque di ricontrollare i parametri suggeriti e di stampare alcune stampe di prova prima di utilizzarli per confermare che siano corretti.</p> <p>Inoltre, a causa di un po' di rumore nelle misurazioni, è possibile che i risultati dell'ottimizzazione siano leggermente diversi da una calibrazione all'altra. Tuttavia, non ci si aspetta che il rumore influisca troppo sulla qualità di stampa. Tuttavia, si consiglia comunque di ricontrollare i parametri suggeriti e di stampare alcune stampe di prova prima di utilizzarli per confermare che siano corretti.</p>
<h2 id="elaborazione-offline-dei-dati-dellaccelerometro">Elaborazione offline dei dati dell'accelerometro<a class="headerlink" href="#elaborazione-offline-dei-dati-dellaccelerometro" title="Permanent link">&para;</a></h2> <h2 id="elaborazione-offline-dei-dati-dellaccelerometro">Elaborazione offline dei dati dell'accelerometro<a class="headerlink" href="#elaborazione-offline-dei-dati-dellaccelerometro" title="Permanent link">&para;</a></h2>
<p>È possibile generare i dati grezzi dell'accelerometro ed elaborarli offline (ad esempio su una macchina host), ad esempio per trovare risonanze. Per fare ciò, esegui i seguenti comandi tramite il terminale Octoprint:</p> <p>È possibile generare i dati grezzi dell'accelerometro ed elaborarli offline (ad esempio su una macchina host), ad esempio per trovare risonanze. Per fare ciò, esegui i seguenti comandi tramite il terminale Octoprint:</p>

View file

@ -1373,7 +1373,7 @@
<li><a href="Slicers.html">Slicers</a>: Configurare il software "slicer" per Klipper.</li> <li><a href="Slicers.html">Slicers</a>: Configurare il software "slicer" per Klipper.</li>
<li><a href="Skew_Correction.html">Correzione dell'inclinazione</a>: Regolazioni per assi non perfettamente squadrati.</li> <li><a href="Skew_Correction.html">Correzione dell'inclinazione</a>: Regolazioni per assi non perfettamente squadrati.</li>
<li><a href="Using_PWM_Tools.html">Strumenti PWM</a>: Guida su come usare gli strumenti controllati da PWM come i laser o i mandrini.</li> <li><a href="Using_PWM_Tools.html">Strumenti PWM</a>: Guida su come usare gli strumenti controllati da PWM come i laser o i mandrini.</li>
<li><a href="Exclude_Object.html">Exclude Object</a>: La guida all'implementazione di Exclude Objects.</li> <li><a href="Exclude_Object.html">Exclude Object</a>: The guide to the Exclude Objects implementation.</li>
</ul> </ul>
<h2 id="documentazione-per-sviluppatori">Documentazione per sviluppatori<a class="headerlink" href="#documentazione-per-sviluppatori" title="Permanent link">&para;</a></h2> <h2 id="documentazione-per-sviluppatori">Documentazione per sviluppatori<a class="headerlink" href="#documentazione-per-sviluppatori" title="Permanent link">&para;</a></h2>
<ul> <ul>

View file

@ -1342,7 +1342,7 @@
<h2 id="versione">Versione<a class="headerlink" href="#versione" title="Permanent link">&para;</a></h2> <h2 id="versione">Versione<a class="headerlink" href="#versione" title="Permanent link">&para;</a></h2>
<p>Se stai compilando un pacchetto di Klipper da git, è normale non spedire una directory .git, quindi il controllo delle versioni deve essere gestito senza git. Per fare ciò, usa lo script fornito in <code>scripts/make_version.py</code> che dovrebbe essere eseguito come segue: <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p> <p>Se stai compilando un pacchetto di Klipper da git, è normale non spedire una directory .git, quindi il controllo delle versioni deve essere gestito senza git. Per fare ciò, usa lo script fornito in <code>scripts/make_version.py</code> che dovrebbe essere eseguito come segue: <code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code>.</p>
<h2 id="esempio-di-script-di-packaging">Esempio di script di packaging<a class="headerlink" href="#esempio-di-script-di-packaging" title="Permanent link">&para;</a></h2> <h2 id="esempio-di-script-di-packaging">Esempio di script di packaging<a class="headerlink" href="#esempio-di-script-di-packaging" title="Permanent link">&para;</a></h2>
<p>klipper-git è un pacchetto per Arch Linux e ha un PKGBUILD (script di compilazione del pacchetto) disponibile su <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repositiory</a>.</p> <p>klipper-git is packaged for Arch Linux, and has a PKGBUILD (package build script) available at <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repository</a>.</p>
</article> </article>

View file

@ -1471,9 +1471,9 @@ optional arguments:
<p>Possono essere specificati i seguenti campi:</p> <p>Possono essere specificati i seguenti campi:</p>
<ul> <ul>
<li><code>mcu</code>: il tipo di mcu. Questo può essere recuperato dopo aver configurato la build tramite <code>make menuconfig</code> eseguendo <code>cat .config | grep CONFIG_MCU</code>. Questo campo è obbligatorio.</li> <li><code>mcu</code>: The mcu type. This can be retrieved after configuring the build via <code>make menuconfig</code> by running <code>cat .config | grep CONFIG_MCU</code>. This field is required.</li>
<li><code>spi_bus</code>: il bus SPI collegato alla scheda SD. Questo dovrebbe essere recuperato dallo schema della scheda. Questo campo è obbligatorio.</li> <li><code>spi_bus</code>: The SPI bus connected to the SD Card. This should be retrieved from the board's schematic. This field is required.</li>
<li><code>cs_pin</code>: il pin di selezione del chip collegato alla scheda SD. Questo dovrebbe essere recuperato dallo schema della scheda. Questo campo è obbligatorio.</li> <li><code>cs_pin</code>: The Chip Select Pin connected to the SD Card. This should be retrieved from the board schematic. This field is required.</li>
<li><code>firmware_path</code>: il percorso sulla scheda SD in cui trasferire il firmware. L'impostazione predefinita è <code>firmware.bin</code>.</li> <li><code>firmware_path</code>: il percorso sulla scheda SD in cui trasferire il firmware. L'impostazione predefinita è <code>firmware.bin</code>.</li>
<li><code>current_firmware_path</code>: il percorso sulla scheda SD in cui si trova il file del firmware rinominato dopo un flash riuscito. L'impostazione predefinita è 'firmware.cur'.</li> <li><code>current_firmware_path</code>: il percorso sulla scheda SD in cui si trova il file del firmware rinominato dopo un flash riuscito. L'impostazione predefinita è 'firmware.cur'.</li>
<li><code>skip_verify</code>: Definisce un valore booleano che dice agli script di saltare il passaggio di verifica del firmware durante il processo di flashing. L'impostazione predefinita è <code>False</code>. Può essere impostato su <code>True</code> per le schede che richiedono un ciclo di alimentazione manuale per completare il flashing. Per verificare il firmware in seguito, eseguire nuovamente lo script con l'opzione <code>-c</code> per eseguire lo step di verifica. <a href="#caveats">Vedi le avvertenze con le schede SDIO</a></li> <li><code>skip_verify</code>: Definisce un valore booleano che dice agli script di saltare il passaggio di verifica del firmware durante il processo di flashing. L'impostazione predefinita è <code>False</code>. Può essere impostato su <code>True</code> per le schede che richiedono un ciclo di alimentazione manuale per completare il flashing. Per verificare il firmware in seguito, eseguire nuovamente lo script con l'opzione <code>-c</code> per eseguire lo step di verifica. <a href="#caveats">Vedi le avvertenze con le schede SDIO</a></li>

View file

@ -889,6 +889,13 @@
Disattiva le impostazioni di "pressione dell'estrusore avanzata"-"advanced extruder pressure" Disattiva le impostazioni di "pressione dell'estrusore avanzata"-"advanced extruder pressure"
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1356,6 +1363,13 @@
Disattiva le impostazioni di "pressione dell'estrusore avanzata"-"advanced extruder pressure" Disattiva le impostazioni di "pressione dell'estrusore avanzata"-"advanced extruder pressure"
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1398,6 +1412,21 @@
<p>Alcune affettatrici pubblicizzano una capacità di "pressione dell'estrusore avanzata" - "advanced extruder pressure". Si consiglia di mantenere queste opzioni disabilitate quando si utilizza Klipper poiché è probabile che si traducano in stampe di scarsa qualità. Prendi in considerazione l'utilizzo di <a href="Pressure_Advance.html">pressure advance</a> di Klipper.</p> <p>Alcune affettatrici pubblicizzano una capacità di "pressione dell'estrusore avanzata" - "advanced extruder pressure". Si consiglia di mantenere queste opzioni disabilitate quando si utilizza Klipper poiché è probabile che si traducano in stampe di scarsa qualità. Prendi in considerazione l'utilizzo di <a href="Pressure_Advance.html">pressure advance</a> di Klipper.</p>
<p>In particolare, queste impostazioni dello slicer possono indicare al firmware di apportare modifiche alla velocità di estrusione nella speranza che il firmware si avvicini a tali richieste e che la stampante ottenga approssimativamente una pressione dell'estrusore desiderabile. Klipper, tuttavia, utilizza calcoli cinematici e tempi precisi. Quando a Klipper viene comandato di apportare modifiche significative alla velocità di estrusione, pianificherà le modifiche corrispondenti a velocità, accelerazione e movimento dell'estrusore, il che non è l'intento dello slicer. Lo slicer può anche comandare velocità di estrusione eccessive al punto da attivare il controllo della sezione trasversale di estrusione massima di Klipper.</p> <p>In particolare, queste impostazioni dello slicer possono indicare al firmware di apportare modifiche alla velocità di estrusione nella speranza che il firmware si avvicini a tali richieste e che la stampante ottenga approssimativamente una pressione dell'estrusore desiderabile. Klipper, tuttavia, utilizza calcoli cinematici e tempi precisi. Quando a Klipper viene comandato di apportare modifiche significative alla velocità di estrusione, pianificherà le modifiche corrispondenti a velocità, accelerazione e movimento dell'estrusore, il che non è l'intento dello slicer. Lo slicer può anche comandare velocità di estrusione eccessive al punto da attivare il controllo della sezione trasversale di estrusione massima di Klipper.</p>
<p>Al contrario, va bene (e spesso utile) utilizzare l'impostazione ritiro "retract" , l'impostazione pulire "wipe" e/o l'impostazione pulire alla retrazione "wipe on retract".</p> <p>Al contrario, va bene (e spesso utile) utilizzare l'impostazione ritiro "retract" , l'impostazione pulire "wipe" e/o l'impostazione pulire alla retrazione "wipe on retract".</p>
<h2 id="start_print-macros">START_PRINT macros<a class="headerlink" href="#start_print-macros" title="Permanent link">&para;</a></h2>
<p>When using a START_PRINT macro or similar, it is useful to sometimes pass through parameters from the slicer variables to the macro.</p>
<p>In Cura, to pass through temperatures, the following start gcode would be used:</p>
<div class="highlight"><pre><span></span><code>START_PRINT BED_TEMP={material_bed_temperature_layer_0} EXTRUDER_TEMP={material_print_temperature_layer_0}
</code></pre></div>
<p>In slic3r derivatives such as PrusaSlicer and SuperSlicer, the following would be used:</p>
<p>START_PRINT EXTRUDER_TEMP=[first_layer_temperature] BED_TEMP=[first_layer_bed_temperature]</p>
<p>Also note that these slicers will insert their own heating codes when certain conditions are not met. In Cura, the existence of the <code>{material_bed_temperature_layer_0}</code> and <code>{material_print_temperature_layer_0}</code> variables is enough to mitigate this. In slic3r derivatives, you would use:</p>
<div class="highlight"><pre><span></span><code>M140 S0
M104 S0
</code></pre></div>
<p>before the macro call. Also note that SuperSlicer has a "custom gcode only" button option, which achieves the same outcome.</p>
<p>An example of a START_PRINT macro using these paramaters can be found in config/sample-macros.cfg</p>
</article> </article>

View file

@ -1010,6 +1010,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1771,6 +1778,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1949,6 +1963,7 @@
<ul> <ul>
<li><code>pressure_advance</code>: il valore corrente di <a href="Pressure_Advance.html">pressure advance</a>.</li> <li><code>pressure_advance</code>: il valore corrente di <a href="Pressure_Advance.html">pressure advance</a>.</li>
<li><code>smooth_time</code>: il tempo di avanzamento graduale della pressure advance corrente.</li> <li><code>smooth_time</code>: il tempo di avanzamento graduale della pressure advance corrente.</li>
<li><code>motion_queue</code>: The name of the extruder that this extruder stepper is currently synchronized to. This is reported as <code>None</code> if the extruder stepper is not currently associated with an extruder.</li>
</ul> </ul>
<h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2> <h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2>
<p>Le seguenti informazioni sono disponibili negli oggetti <a href="Config_Reference.html#fan">fan</a>, <a href="Config_Reference.html#heater_fan">heater_fan some_name</a> e <a href="Config_Reference.html#controller_fan">controller_fan some_name</a>:</p> <p>Le seguenti informazioni sono disponibili negli oggetti <a href="Config_Reference.html#fan">fan</a>, <a href="Config_Reference.html#heater_fan">heater_fan some_name</a> e <a href="Config_Reference.html#controller_fan">controller_fan some_name</a>:</p>
@ -2072,6 +2087,7 @@
<h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2> <h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2>
<p>Le seguenti informazioni sono disponibili nell'oggetto <a href="Config_Reference.html#probe">probe</a> (questo oggetto è disponibile anche se è definita una sezione di configurazione <a href="Config_Reference.html#bltouch">bltouch</a>):</p> <p>Le seguenti informazioni sono disponibili nell'oggetto <a href="Config_Reference.html#probe">probe</a> (questo oggetto è disponibile anche se è definita una sezione di configurazione <a href="Config_Reference.html#bltouch">bltouch</a>):</p>
<ul> <ul>
<li><code>name</code>: Returns the name of the probe in use.</li>
<li><code>last_query</code>: Restituisce True se il probe è stato segnalato come "attivato" durante l'ultimo comando QUERY_PROBE. Nota, se questo viene utilizzato in una macro, a causa dell'ordine di espansione del modello, il comando QUERY_PROBE deve essere eseguito prima della macro contenente questo riferimento.</li> <li><code>last_query</code>: Restituisce True se il probe è stato segnalato come "attivato" durante l'ultimo comando QUERY_PROBE. Nota, se questo viene utilizzato in una macro, a causa dell'ordine di espansione del modello, il comando QUERY_PROBE deve essere eseguito prima della macro contenente questo riferimento.</li>
<li><code>last_z_result</code>: Restituisce il valore del risultato Z dell'ultimo comando PROBE. Nota, se questo viene utilizzato in una macro, a causa dell'ordine di espansione del modello, il comando PROBE (o simile) deve essere eseguito prima della macro contenente questo riferimento.</li> <li><code>last_z_result</code>: Restituisce il valore del risultato Z dell'ultimo comando PROBE. Nota, se questo viene utilizzato in una macro, a causa dell'ordine di espansione del modello, il comando PROBE (o simile) deve essere eseguito prima della macro contenente questo riferimento.</li>
</ul> </ul>
@ -2089,13 +2105,11 @@
<p>Le seguenti informazioni sono disponibili nell'oggetto <code>screws_tilt_adjust</code>:</p> <p>Le seguenti informazioni sono disponibili nell'oggetto <code>screws_tilt_adjust</code>:</p>
<ul> <ul>
<li><code>error</code>: restituisce True se il comando <code>SCREWS_TILT_CALCULATE</code> più recente includeva il parametro <code>MAX_DEVIATION</code> e uno qualsiasi dei punti della vite rilevati superava il <code>MAX_DEVIATION</code> specificato.</li> <li><code>error</code>: restituisce True se il comando <code>SCREWS_TILT_CALCULATE</code> più recente includeva il parametro <code>MAX_DEVIATION</code> e uno qualsiasi dei punti della vite rilevati superava il <code>MAX_DEVIATION</code> specificato.</li>
<li><code>results</code>: un elenco delle posizioni delle viti rilevate. Ogni voce nell'elenco sarà un dizionario contenente le seguenti chiavi:<ul> <li><code>results["&lt;screw&gt;"]</code>: A dictionary containing the following keys:<ul>
<li><code>name</code>: il nome della vite come specificato nel file di configurazione.</li>
<li><code>x</code>: la coordinata X della vite come specificato nel file di configurazione.</li>
<li><code>y</code>: la coordinata Y della vite come specificato nel file di configurazione.</li>
<li><code>z</code>: L'altezza Z misurata della posizione della vite.</li> <li><code>z</code>: L'altezza Z misurata della posizione della vite.</li>
<li><code>sign</code>: Una stringa che specifica la direzione da girare per avvitare per la regolazione necessaria. O "CW" per senso orario o "CCW" per senso antiorario. La vite di base non avrà una chiave di "segno".</li> <li><code>sign</code>: A string specifying the direction to turn to screw for the necessary adjustment. Either "CW" for clockwise or "CCW" for counterclockwise.</li>
<li><code>adjust</code>: il numero di giri di vite per regolare la vite, dato nel formato "HH:MM", dove "HH" è il numero di giri di vite completi e "MM" è il numero di "minuti di un quadrante di orologio" che rappresenta un giro di vite parziale. (Es. "01:15" significherebbe girare la vite di un giro e un quarto.)</li> <li><code>adjust</code>: il numero di giri di vite per regolare la vite, dato nel formato "HH:MM", dove "HH" è il numero di giri di vite completi e "MM" è il numero di "minuti di un quadrante di orologio" che rappresenta un giro di vite parziale. (Es. "01:15" significherebbe girare la vite di un giro e un quarto.)</li>
<li><code>is_base</code>: Returns True if this is the base screw.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -2104,6 +2118,11 @@
<ul> <ul>
<li><code>printer["servo &lt;config_name&gt;"].value</code>: l'ultima impostazione del pin PWM (un valore compreso tra 0.0 e 1.0) associata al servo.</li> <li><code>printer["servo &lt;config_name&gt;"].value</code>: l'ultima impostazione del pin PWM (un valore compreso tra 0.0 e 1.0) associata al servo.</li>
</ul> </ul>
<h2 id="stepper_enable">stepper_enable<a class="headerlink" href="#stepper_enable" title="Permanent link">&para;</a></h2>
<p>The following information is available in the <code>stepper_enable</code> object (this object is available if any stepper is defined):</p>
<ul>
<li><code>steppers["&lt;stepper&gt;"]</code>: Returns True if the given stepper is enabled.</li>
</ul>
<h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2> <h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2>
<p>Le seguenti informazioni sono disponibili nell'oggetto <code>system_stats</code> (questo oggetto è sempre disponibile):</p> <p>Le seguenti informazioni sono disponibili nell'oggetto <code>system_stats</code> (questo oggetto è sempre disponibile):</p>
<ul> <ul>

View file

@ -990,8 +990,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-segnala-un-errore-shorttognd-o-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC segnala un errore: ... ShortToGND O LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1649,8 +1649,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-segnala-un-errore-shorttognd-o-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC segnala un errore: ... ShortToGND O LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1897,7 +1897,7 @@ gcode:
<p>Alcuni errori comuni e suggerimenti per diagnosticarli:</p> <p>Alcuni errori comuni e suggerimenti per diagnosticarli:</p>
<h4 id="tmc-segnala-lerrore-ot1overtemperror">TMC segnala l'errore: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-segnala-lerrore-ot1overtemperror" title="Permanent link">&para;</a></h4> <h4 id="tmc-segnala-lerrore-ot1overtemperror">TMC segnala l'errore: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-segnala-lerrore-ot1overtemperror" title="Permanent link">&para;</a></h4>
<p>Ciò indica che il driver del motore si è disabilitato perché è diventato troppo caldo. Le soluzioni tipiche consistono nel ridurre la corrente del motore passo-passo, aumentare il raffreddamento sul driver del motore passo-passo e/o aumentare il raffreddamento sul motore passo-passo.</p> <p>Ciò indica che il driver del motore si è disabilitato perché è diventato troppo caldo. Le soluzioni tipiche consistono nel ridurre la corrente del motore passo-passo, aumentare il raffreddamento sul driver del motore passo-passo e/o aumentare il raffreddamento sul motore passo-passo.</p>
<h4 id="tmc-segnala-un-errore-shorttognd-o-lowsideshort">TMC segnala un errore: <code>... ShortToGND</code> O <code>LowSideShort</code><a class="headerlink" href="#tmc-segnala-un-errore-shorttognd-o-lowsideshort" title="Permanent link">&para;</a></h4> <h4 id="tmc-reports-error-shorttognd-or-shorttosupply">TMC reports error: <code>... ShortToGND</code> OR <code>ShortToSupply</code><a class="headerlink" href="#tmc-reports-error-shorttognd-or-shorttosupply" title="Permanent link">&para;</a></h4>
<p>Ciò indica che il driver si è disabilitato perché ha rilevato una corrente molto elevata che passa attraverso il driver. Ciò potrebbe indicare un filo allentato o in cortocircuito al motore passo-passo o all'interno del motore passo-passo stesso.</p> <p>Ciò indica che il driver si è disabilitato perché ha rilevato una corrente molto elevata che passa attraverso il driver. Ciò potrebbe indicare un filo allentato o in cortocircuito al motore passo-passo o all'interno del motore passo-passo stesso.</p>
<p>Questo errore può verificarsi anche se si utilizza la modalità StealthChop e il driver TMC non è in grado di prevedere con precisione il carico meccanico del motore. (Se il driver fa una previsione scadente, potrebbe inviare troppa corrente attraverso il motore e attivare il proprio rilevamento di sovracorrente.) Per verificarlo, disabilitare la modalità StealthChop e verificare se gli errori continuano a verificarsi.</p> <p>Questo errore può verificarsi anche se si utilizza la modalità StealthChop e il driver TMC non è in grado di prevedere con precisione il carico meccanico del motore. (Se il driver fa una previsione scadente, potrebbe inviare troppa corrente attraverso il motore e attivare il proprio rilevamento di sovracorrente.) Per verificarlo, disabilitare la modalità StealthChop e verificare se gli errori continuano a verificarsi.</p>
<h4 id="tmc-segnala-un-errore-reset1reset-or-cs_actual0reset-or-se0reset">TMC segnala un errore: <code>... reset=1(Reset)</code> OR <code>CS_ACTUAL=0(Reset?)</code> OR <code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-segnala-un-errore-reset1reset-or-cs_actual0reset-or-se0reset" title="Permanent link">&para;</a></h4> <h4 id="tmc-segnala-un-errore-reset1reset-or-cs_actual0reset-or-se0reset">TMC segnala un errore: <code>... reset=1(Reset)</code> OR <code>CS_ACTUAL=0(Reset?)</code> OR <code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-segnala-un-errore-reset1reset-or-cs_actual0reset-or-se0reset" title="Permanent link">&para;</a></h4>

File diff suppressed because one or more lines are too long

View file

@ -2,252 +2,252 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
</urlset> </urlset>

Binary file not shown.

View file

@ -2,247 +2,247 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
</urlset> </urlset>

Binary file not shown.

View file

@ -1552,7 +1552,7 @@
<h1 id="_1">床網<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1> <h1 id="_1">床網<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1>
<p>網床 外掛可用於補償熱床表面的不規則性,以保證在列印過程中獲得更好的第一層。 需要注意的是,基於軟體的校正還不能達到完美的程度,它只能儘可能達到床的形狀。網床 也無法補償機械和電氣導致的問題。 如果機器沒裝好結構歪了或探針不準確,則 網床 模組將無法從探測過程中獲得令人滿意的結果。</p> <p>The Bed Mesh module may be used to compensate for bed surface irregularities to achieve a better first layer across the entire bed. It should be noted that software based correction will not achieve perfect results, it can only approximate the shape of the bed. Bed Mesh also cannot compensate for mechanical and electrical issues. If an axis is skewed or a probe is not accurate then the bed_mesh module will not receive accurate results from the probing process.</p>
<p>在進行網格校準之前,需要先校準探針的 Z 偏移。如果使用限位開關進行Z軸定位也需要對其進行校準。請參閱<a href="Probe_Calibrate.html">探針校準</a><a href="Manual_Level.html">手動調平</a>中的 Z_ENDSTOP_CALIBRATE 獲取更多資訊。</p> <p>在進行網格校準之前,需要先校準探針的 Z 偏移。如果使用限位開關進行Z軸定位也需要對其進行校準。請參閱<a href="Probe_Calibrate.html">探針校準</a><a href="Manual_Level.html">手動調平</a>中的 Z_ENDSTOP_CALIBRATE 獲取更多資訊。</p>
<h2 id="_2">基本配置<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">基本配置<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<h3 id="_3">矩形床<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3> <h3 id="_3">矩形床<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
@ -1569,7 +1569,7 @@ probe_count: 5, 3
<li><code>speed: 120</code> <em>預設值50</em> 探針在兩個點之間移動的速度。</li> <li><code>speed: 120</code> <em>預設值50</em> 探針在兩個點之間移動的速度。</li>
<li><code>horizontal_move_z: 5</code> <em>預設值5</em> 探針前往下一個點之前Z需要抬升的高度。</li> <li><code>horizontal_move_z: 5</code> <em>預設值5</em> 探針前往下一個點之前Z需要抬升的高度。</li>
<li><code>mesh_min: 35,6</code> <em>(必須存在)</em>第一個探測的座標,距離原點最近。該座標就是探針所在的位置。</li> <li><code>mesh_min: 35,6</code> <em>(必須存在)</em>第一個探測的座標,距離原點最近。該座標就是探針所在的位置。</li>
<li><code>mesh_max: 240,198</code> <em>必須配置</em> 距離原點最遠的探測座標。 這不一定是最後一個探測點,因為探測會以鋸齒形的方式運動。 與 <code>mesh_min</code> 一樣,這個座標相對於探針。</li> <li><code>mesh_max: 240, 198</code> <em>Required</em> The probed coordinate farthest farthest from the origin. This is not necessarily the last point probed, as the probing process occurs in a zig-zag fashion. As with <code>mesh_min</code>, this coordinate is relative to the probe's location.</li>
<li><code>probe_count: 5, 3</code> <em>預設值3, 3</em> 每個軸上要探測的點數,指定為 X, Y 整數值。 在本示例中,將沿 X 軸探測 5 個點,沿 Y 軸探測 3 個點,總共探測 15 個點。 請注意,如果您想要一個方形網格,例如 3x3可以將指定其為一個整數值比如 <code>probe_count: 3</code>。 請注意,網格需要沿每個軸的最小 probe_count 為3。</li> <li><code>probe_count: 5, 3</code> <em>預設值3, 3</em> 每個軸上要探測的點數,指定為 X, Y 整數值。 在本示例中,將沿 X 軸探測 5 個點,沿 Y 軸探測 3 個點,總共探測 15 個點。 請注意,如果您想要一個方形網格,例如 3x3可以將指定其為一個整數值比如 <code>probe_count: 3</code>。 請注意,網格需要沿每個軸的最小 probe_count 為3。</li>
</ul> </ul>
<p>下圖演示瞭如何使用 <code>mesh_min</code><code>mesh_max</code><code>probe_count</code> 選項來產生探測點。 箭頭表示探測過程的運動方向從「mesh_min」開始。 圖中所示當探針位於「mesh_min」時噴嘴將位於 (11, 1)當探針位於「mesh_max」時噴嘴將位於 (206, 193)。</p> <p>下圖演示瞭如何使用 <code>mesh_min</code><code>mesh_max</code><code>probe_count</code> 選項來產生探測點。 箭頭表示探測過程的運動方向從「mesh_min」開始。 圖中所示當探針位於「mesh_min」時噴嘴將位於 (11, 1)當探針位於「mesh_max」時噴嘴將位於 (206, 193)。</p>
@ -1589,12 +1589,12 @@ round_probe_count: 5
<li><code>mesh_origin: 0, 0</code> <em>預設值0, 0</em> 探測網格的中心點。 該座標相對於探針的位置。 雖然預設值為 0,0但如果希望探測床的邊角可以修改該值。 請參閱下圖。</li> <li><code>mesh_origin: 0, 0</code> <em>預設值0, 0</em> 探測網格的中心點。 該座標相對於探針的位置。 雖然預設值為 0,0但如果希望探測床的邊角可以修改該值。 請參閱下圖。</li>
<li><code>round_probe_count: 5</code> <em>預設值: 5</em> 這是一個整數值,用於限制沿 X 軸和 Y 軸的最大探測點數。 「最大」是指沿網格原點探測的點數。 該值必須是奇數,因為需要探測網格的中心。</li> <li><code>round_probe_count: 5</code> <em>預設值: 5</em> 這是一個整數值,用於限制沿 X 軸和 Y 軸的最大探測點數。 「最大」是指沿網格原點探測的點數。 該值必須是奇數,因為需要探測網格的中心。</li>
</ul> </ul>
<p>下圖展示瞭如何產生探測點。 如您所見,將 <code>mesh_origin</code> 設定為 (-10, 0) 允許我們指定更大的網格半徑 85mm。</p> <p>The illustration below shows how the probed points are generated. As you can see, setting the <code>mesh_origin</code> to (-10, 0) allows us to specify a larger mesh radius of 85.</p>
<p><img alt="圓形網床基本配置" src="img/bedmesh_round_basic.svg" /></p> <p><img alt="圓形網床基本配置" src="img/bedmesh_round_basic.svg" /></p>
<h2 id="_5">高級配置<a class="headerlink" href="#_5" title="Permanent link">&para;</a></h2> <h2 id="_5">高級配置<a class="headerlink" href="#_5" title="Permanent link">&para;</a></h2>
<p>下面詳細解釋了更高級的配置選項。 每個示例都將建立在上面顯示的基本矩形床配置之上。 每個高級選項都以相同的方式應用於圓床。</p> <p>下面詳細解釋了更高級的配置選項。 每個示例都將建立在上面顯示的基本矩形床配置之上。 每個高級選項都以相同的方式應用於圓床。</p>
<h3 id="_6">網格插值<a class="headerlink" href="#_6" title="Permanent link">&para;</a></h3> <h3 id="_6">網格插值<a class="headerlink" href="#_6" title="Permanent link">&para;</a></h3>
<p>雖然可以使用簡單的雙線性插值直接對探測網格的數據進行採樣以確定探測點之間的 Z 值,但使用更高級的插值演算法來插入額外的點以增加網格密度通常很有用。 這些演算法向網格新增曲率,試圖模擬床的材料屬性。 網床提供了拉格朗日和雙三次插值來實現這一點。</p> <p>While its possible to sample the probed matrix directly using simple bi-linear interpolation to determine the Z-Values between probed points, it is often useful to interpolate extra points using more advanced interpolation algorithms to increase mesh density. These algorithms add curvature to the mesh, attempting to simulate the material properties of the bed. Bed Mesh offers lagrange and bicubic interpolation to accomplish this.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1629,7 +1629,7 @@ split_delta_z: .025
<li><code>move_check_distance: 5</code> <em>預設值5</em> 在執行拆分之前檢查 Z 中需要變化的最小距離。 在此示例中,演算法將遍歷超過 5 毫米的移動。 每 5mm 將查詢一次網格的Z ,並將其與前一次移動的 Z 值進行比較。 如果三角洲滿足 <code>split_delta_z</code> 設定的閾值,則移動將被拆分並繼續遍歷。 重複此過程,直到到達移動結束處,在此將應用最終調整。 比 <code>move_check_distance</code> 短的移動將正確的 Z 調整直接應用於移動,無需遍歷或拆分。</li> <li><code>move_check_distance: 5</code> <em>預設值5</em> 在執行拆分之前檢查 Z 中需要變化的最小距離。 在此示例中,演算法將遍歷超過 5 毫米的移動。 每 5mm 將查詢一次網格的Z ,並將其與前一次移動的 Z 值進行比較。 如果三角洲滿足 <code>split_delta_z</code> 設定的閾值,則移動將被拆分並繼續遍歷。 重複此過程,直到到達移動結束處,在此將應用最終調整。 比 <code>move_check_distance</code> 短的移動將正確的 Z 調整直接應用於移動,無需遍歷或拆分。</li>
<li><code>split_delta_z: .025</code> <em>預設值:.025</em> 如上所述,這是觸發移動拆分所需的最小偏差。 在上面的示例中,任何偏差為 +/- .025 mm的 Z 值都將觸發拆分。</li> <li><code>split_delta_z: .025</code> <em>預設值:.025</em> 如上所述,這是觸發移動拆分所需的最小偏差。 在上面的示例中,任何偏差為 +/- .025 mm的 Z 值都將觸發拆分。</li>
</ul> </ul>
<p>一般來說,這些選項的預設值就足夠了,但事實上,<code>move_check_distance</code> 的預設值 5mm 可能會有點過度矯正。 所以,高階可能希望嘗試使用這個選項來獲得擠出最佳的第一層。</p> <p>Generally the default values for these options are sufficient, in fact the default value of 5mm for the <code>move_check_distance</code> may be overkill. However an advanced user may wish to experiment with these options in an effort to squeeze out the optimal first layer.</p>
<h3 id="_8">網格淡出<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3> <h3 id="_8">網格淡出<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3>
<p>啟用「網格淡出」后Z 軸的調整將在配置中定義的距離範圍內逐步消失。 這是通過對層高進行小幅調整來實現的,根據床的形狀增加或減少。 網格淡出完成後,不再使用 Z 調整,使列印的表面是平坦的而不是床彎曲的形狀。 網格淡出也可能會產生一些不良表現,如果網格淡出過快,可能會導致列印件上出現可見的瑕疵(偽影)。 此外,如果您的床明顯變形,網格淡出會縮小或拉伸列印件的 Z 高度。 因此,預設情況下禁用網格淡出。</p> <p>啟用「網格淡出」后Z 軸的調整將在配置中定義的距離範圍內逐步消失。 這是通過對層高進行小幅調整來實現的,根據床的形狀增加或減少。 網格淡出完成後,不再使用 Z 調整,使列印的表面是平坦的而不是床彎曲的形狀。 網格淡出也可能會產生一些不良表現,如果網格淡出過快,可能會導致列印件上出現可見的瑕疵(偽影)。 此外,如果您的床明顯變形,網格淡出會縮小或拉伸列印件的 Z 高度。 因此,預設情況下禁用網格淡出。</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
@ -1646,10 +1646,10 @@ fade_target: 0
<ul> <ul>
<li><code>fade_start: 1</code> <em>預設值1</em> 開始網格淡出的值在設定的fade_start值之後逐步停止調整Z的高度。 建議在列印幾層之後再開始淡出層高。</li> <li><code>fade_start: 1</code> <em>預設值1</em> 開始網格淡出的值在設定的fade_start值之後逐步停止調整Z的高度。 建議在列印幾層之後再開始淡出層高。</li>
<li><code>fade_end: 10</code> <em>預設值0</em> 網格淡出完成的 Z 高度。 如果此值低於<code>fade_start</code>,則禁用網格淡出。 該值可以根據列印表面的彎曲程度進行調整。 明顯彎曲的表面應該在將網格淡出的距離長。 接近平坦的表面可能能夠降低該值以更快地逐步淘汰。 如果對 <code>fade_start</code> 使用預設值 1則 10mm 是一個合理的值。</li> <li><code>fade_end: 10</code> <em>預設值0</em> 網格淡出完成的 Z 高度。 如果此值低於<code>fade_start</code>,則禁用網格淡出。 該值可以根據列印表面的彎曲程度進行調整。 明顯彎曲的表面應該在將網格淡出的距離長。 接近平坦的表面可能能夠降低該值以更快地逐步淘汰。 如果對 <code>fade_start</code> 使用預設值 1則 10mm 是一個合理的值。</li>
<li><code>fade_target: 0</code> <em>預設值熱床網格的平均Z值</em> <code>fade_target</code> 是在網格淡出完成後應用於整個床的額外 Z 偏移。一 般來說,這個值是 0但有些情況下它需要改動。 例如,您在熱床的歸位位置與床的平均探測高度有偏差,它比床的平均探測高度低 0.2 mm。 如果 <code>fade_target</code> 為 0淡出會將整個床的列印平均縮小 0.2 mm。 通過將 <code>fade_target</code> 設定為 0.2,歸位的位置將擴大 0.2 毫米,但床的其餘部分將具有準確的尺寸。 一般來說,最好不要修改 <code>fade_target</code> 而修正機器本身導致的誤差,以便使用網格的平均高度,但是如果想要在床的特定部分列印,可能需要手動調整網格淡出。</li> <li><code>fade_target: 0</code> <em>Default Value: The average Z value of the mesh</em> The <code>fade_target</code> can be thought of as an additional Z offset applied to the entire bed after fade completes. Generally speaking we would like this value to be 0, however there are circumstances where it should not be. For example, lets assume your homing position on the bed is an outlier, its .2 mm lower than the average probed height of the bed. If the <code>fade_target</code> is 0, fade will shrink the print by an average of .2 mm across the bed. By setting the <code>fade_target</code> to .2, the homed area will expand by .2 mm, however, the rest of the bed will be accurately sized. Generally its a good idea to leave <code>fade_target</code> out of the configuration so the average height of the mesh is used, however it may be desirable to manually adjust the fade target if one wants to print on a specific portion of the bed.</li>
</ul> </ul>
<h3 id="_9">相對參考索引<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3> <h3 id="_9">相對參考索引<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3>
<p>大部分探針檢測到的值容易產生誤差,即:由溫度或探測介質干擾產生的探測誤差。 這加大探針Z偏移的看計算難度尤其是在不同的熱床溫度下。 因此,一些印表機使用限位開關來歸位 Z 軸,並使用探針來校準網格。 這些印表機可以從配置中的相對參考索引relative_reference_index中尋找幫助。</p> <p>Most probes are susceptible to drift, ie: inaccuracies in probing introduced by heat or interference. This can make calculating the probe's z-offset challenging, particularly at different bed temperatures. As such, some printers use an endstop for homing the Z axis, and a probe for calibrating the mesh. These printers can benefit from configuring the relative reference index.</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1717,7 +1717,7 @@ faulty_region_4_max: 45.0, 210.0
<p><code>BED_MESH_PROFILE SAVE=&lt;名稱&gt; LOAD=&lt;名稱&gt; REMOVE=&lt;名稱&gt;</code></p> <p><code>BED_MESH_PROFILE SAVE=&lt;名稱&gt; LOAD=&lt;名稱&gt; REMOVE=&lt;名稱&gt;</code></p>
<p>在執行 BED_MESH_CALIBRATE 后,可以將目前網格狀態儲存到一個命名的配置中。這樣不需要重新探測列印床就可以載入一個網格。在使用<code>BED_MESH_PROFILE SAVE=&lt;名稱&gt;</code>儲存了一個配置檔案后,可以執行<code>SAVE_CONFIG</code> G程式碼將配置寫入 printer.cfg。</p> <p>在執行 BED_MESH_CALIBRATE 后,可以將目前網格狀態儲存到一個命名的配置中。這樣不需要重新探測列印床就可以載入一個網格。在使用<code>BED_MESH_PROFILE SAVE=&lt;名稱&gt;</code>儲存了一個配置檔案后,可以執行<code>SAVE_CONFIG</code> G程式碼將配置寫入 printer.cfg。</p>
<p>可以通過執行 <code>BED_MESH_PROFILE LOAD=&lt;名稱&gt;</code> 來載入配置。</p> <p>可以通過執行 <code>BED_MESH_PROFILE LOAD=&lt;名稱&gt;</code> 來載入配置。</p>
<p>請注意,每次執行 BED_MESH_CALIBRATE 后,目前狀態會被儲存到 <em>default</em> 配置。如果這個配置在配置檔案中存在,它會在 Klipper 啟動時自動載入。如果不希望這種行為,可以通過以下命令刪除 <em>default</em> 配置:</p> <p>It should be noted that each time a BED_MESH_CALIBRATE occurs, the current state is automatically saved to the <em>default</em> profile. The <em>default</em> profile can be removed as follows:</p>
<p><code>BED_MESH_PROFILE REMOVE=default</code></p> <p><code>BED_MESH_PROFILE REMOVE=default</code></p>
<p>任何其他儲存的配置也可以用相同的方式刪除,用你想刪除的配置名稱替換<em>default</em></p> <p>任何其他儲存的配置也可以用相同的方式刪除,用你想刪除的配置名稱替換<em>default</em></p>
<h4 id="loading-the-default-profile">Loading the default profile<a class="headerlink" href="#loading-the-default-profile" title="Permanent link">&para;</a></h4> <h4 id="loading-the-default-profile">Loading the default profile<a class="headerlink" href="#loading-the-default-profile" title="Permanent link">&para;</a></h4>

View file

@ -1134,6 +1134,13 @@
SAMD51 步速率基準測試 SAMD51 步速率基準測試
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1503,6 +1510,13 @@
SAMD51 步速率基準測試 SAMD51 步速率基準測試
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100-step-rate-benchmark" class="md-nav__link">
AR100 step rate benchmark
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2005,6 +2019,34 @@ finalize_config crc=0
</tr> </tr>
</tbody> </tbody>
</table> </table>
<h3 id="ar100-step-rate-benchmark">AR100 step rate benchmark<a class="headerlink" href="#ar100-step-rate-benchmark" title="Permanent link">&para;</a></h3>
<p>The following configuration sequence is used on AR100 CPU (Allwinner A64):</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3
config_stepper oid=0 step_pin=PL10 dir_pin=PE14 invert_step=-1 step_pulse_ticks=0
config_stepper oid=1 step_pin=PL11 dir_pin=PE15 invert_step=-1 step_pulse_ticks=0
config_stepper oid=2 step_pin=PL12 dir_pin=PE16 invert_step=-1 step_pulse_ticks=0
finalize_config crc=0
</code></pre></div>
<p>The test was last run on commit <code>08d037c6</code> with gcc version <code>or1k-linux-musl-gcc (GCC) 9.2.0</code> on an Allwinner A64-H micro-controller.</p>
<table>
<thead>
<tr>
<th>AR100 R_PIO</th>
<th>ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1個步進電機</td>
<td>85</td>
</tr>
<tr>
<td>3個步進電機</td>
<td>359</td>
</tr>
</tbody>
</table>
<h3 id="rp2040">RP2040 步速率基準測試<a class="headerlink" href="#rp2040" title="Permanent link">&para;</a></h3> <h3 id="rp2040">RP2040 步速率基準測試<a class="headerlink" href="#rp2040" title="Permanent link">&para;</a></h3>
<p>RP2040 上使用以下配置序列:</p> <p>RP2040 上使用以下配置序列:</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3 <div class="highlight"><pre><span></span><code>allocate_oids count=3
@ -2105,6 +2147,12 @@ get_uptime
<td>avr-gcc (GCC) 5.4.0</td> <td>avr-gcc (GCC) 5.4.0</td>
</tr> </tr>
<tr> <tr>
<td>ar100 (serial)</td>
<td>138K</td>
<td>08d037c6</td>
<td>or1k-linux-musl-gcc 9.3.0</td>
</tr>
<tr>
<td>samd21 (USB)</td> <td>samd21 (USB)</td>
<td>223K</td> <td>223K</td>
<td>01d2183f</td> <td>01d2183f</td>

View file

@ -1776,7 +1776,7 @@ stm32flash -w generic_boot20_pc13.bin -v -g 0 /dev/ttyAMA0
<p>啟動載入程式通常只在啟動后的一小段時間執行。在輸入以上命令的時候需要確保啟動載入程式還在執行啟動載入程式執行的時候會控制板上的led閃爍。此外啟動后如果設定「boot 0」引腳為低設定「boot 1」引腳為高則可以一直停留在啟動載入程式。</p> <p>啟動載入程式通常只在啟動后的一小段時間執行。在輸入以上命令的時候需要確保啟動載入程式還在執行啟動載入程式執行的時候會控制板上的led閃爍。此外啟動后如果設定「boot 0」引腳為低設定「boot 1」引腳為高則可以一直停留在啟動載入程式。</p>
<h3 id="hid-stm32f103">帶有 HID 載入程式的STM32F103<a class="headerlink" href="#hid-stm32f103" title="Permanent link">&para;</a></h3> <h3 id="hid-stm32f103">帶有 HID 載入程式的STM32F103<a class="headerlink" href="#hid-stm32f103" title="Permanent link">&para;</a></h3>
<p><a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a>是一個緊湊的、不包含驅動的啟動載入程式能夠通過USB進行刷寫。此外還有一個<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">針對SKR Mini E3 1.2構建的分支</a></p> <p><a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a>是一個緊湊的、不包含驅動的啟動載入程式能夠通過USB進行刷寫。此外還有一個<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">針對SKR Mini E3 1.2構建的分支</a></p>
<p>對於常見的STM32F103板如Blue Pill和 stm32duino 章節中一樣,可以通過 3.3v 序列用stm32flash 刷寫啟動載入程式,將檔名替換為所需的 hid載入程式二進制檔案例如Blue Pill 使用的 hid_generic_pc13.bin</p> <p>For generic STM32F103 boards such as the blue pill it is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired hid bootloader binary (ie: hid_generic_pc13.bin for the blue pill).</p>
<p>SKR Mini E3無法使用stm32flash 因為boot 0引腳被直接接到GND且沒有跳線斷開。推薦使用STLink V2通過STM32Cubeprogrammer刷寫啟動載入程式。如果你沒有STLink ,也可以按照以下晶片配置使用<a href="#running-openocd-on-the-raspberry-pi">樹莓派和OpenOCD</a> 刷寫:</p> <p>SKR Mini E3無法使用stm32flash 因為boot 0引腳被直接接到GND且沒有跳線斷開。推薦使用STLink V2通過STM32Cubeprogrammer刷寫啟動載入程式。如果你沒有STLink ,也可以按照以下晶片配置使用<a href="#running-openocd-on-the-raspberry-pi">樹莓派和OpenOCD</a> 刷寫:</p>
<div class="highlight"><pre><span></span><code>來源 [查詢目標/stm32f1x.cfg] <div class="highlight"><pre><span></span><code>來源 [查詢目標/stm32f1x.cfg]
</code></pre></div> </code></pre></div>
@ -1829,10 +1829,10 @@ make
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0 <div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0
</code></pre></div> </code></pre></div>
<p>可能需要手動進入載入程式,這可以通過設定 "boot 0 "的低電平和 "boot 1 "的高電平來完成。在SKR Mini E3上"Boot 1 "是不可用的,所以如果你寫入過"hid_btt_skr_mini_e3.bin"可以通過設定PA2的低電平來完成。在SKR Mini E3的 "PIN "檔案中這個引腳在TFT插座上被標記為 "TX0"。在PA2旁邊有一個接地引腳你可以用它來把PA2拉低。</p> <p>It may be necessary to manually enter the bootloader, this can be done by setting "boot 0" low and "boot 1" high. On the SKR Mini E3 "Boot 1" is not available, so it may be done by setting pin PA2 low if you flashed "hid_btt_skr_mini_e3.bin". This pin is labeled "TX0" on the TFT header in the SKR Mini E3's "PIN" document. There is a ground pin next to PA2 which you can use to pull PA2 low.</p>
<h3 id="stm32f103stm32f072-with-msc-bootloader">STM32F103/STM32F072 with MSC bootloader<a class="headerlink" href="#stm32f103stm32f072-with-msc-bootloader" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f072-with-msc-bootloader">STM32F103/STM32F072 with MSC bootloader<a class="headerlink" href="#stm32f103stm32f072-with-msc-bootloader" title="Permanent link">&para;</a></h3>
<p>The <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC bootloader</a> is a driverless bootloader capable of flashing over USB.</p> <p>The <a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC bootloader</a> is a driverless bootloader capable of flashing over USB.</p>
<p>It is possible to flash the bootloader via 3.3v serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired MSC bootloader binary (ie: MSCboot-Bluepill.bin for the blue pill).</p> <p>It is possible to flash the bootloader via 3.3V serial using stm32flash as noted in the stm32duino section above, substituting the file name for the desired MSC bootloader binary (ie: MSCboot-Bluepill.bin for the blue pill).</p>
<p>For STM32F072 boards it is also possible to flash the bootloader over USB (via DFU) with something like:</p> <p>For STM32F072 boards it is also possible to flash the bootloader over USB (via DFU) with something like:</p>
<div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave <div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave
</code></pre></div> </code></pre></div>
@ -1841,7 +1841,7 @@ make
<p>The bootloader can be activated by pressing the reset button of the board twice. As soon as the bootloader is activated, the board appears as a USB flash drive onto which the klipper.bin file can be copied.</p> <p>The bootloader can be activated by pressing the reset button of the board twice. As soon as the bootloader is activated, the board appears as a USB flash drive onto which the klipper.bin file can be copied.</p>
<h3 id="stm32f103stm32f0x2-with-canboot-bootloader">STM32F103/STM32F0x2 with CanBoot bootloader<a class="headerlink" href="#stm32f103stm32f0x2-with-canboot-bootloader" title="Permanent link">&para;</a></h3> <h3 id="stm32f103stm32f0x2-with-canboot-bootloader">STM32F103/STM32F0x2 with CanBoot bootloader<a class="headerlink" href="#stm32f103stm32f0x2-with-canboot-bootloader" title="Permanent link">&para;</a></h3>
<p>The <a href="https://github.com/Arksine/CanBoot">CanBoot</a> bootloader provides an option for uploading Klipper firmware over the CANBUS. The bootloader itself is derived from Klipper's source code. Currently CanBoot supports the STM32F103, STM32F042, and STM32F072 models.</p> <p>The <a href="https://github.com/Arksine/CanBoot">CanBoot</a> bootloader provides an option for uploading Klipper firmware over the CANBUS. The bootloader itself is derived from Klipper's source code. Currently CanBoot supports the STM32F103, STM32F042, and STM32F072 models.</p>
<p>It is recommended to use a ST-Link Programmer to flash CanBoot, however it should be possible to flash using <code>stm32flash</code> on STM32F103 devices, and <code>dfu-util</code> on STM32F042/STM32F072 devices. See the previous sections in this document for instructions on these flashing methods, substituting <code>canboot.bin</code> for the file name where appropriate. The CanBoot repo linked above provides instructions for building the bootloader.</p> <p>It is recommended to use a ST-Link Programmer to flash CanBoot, however it should be possible to flash using <code>stm32flash</code> on STM32F103 devices, and <code>dfu-util</code> on STM32F042/STM32F072 devices. See the previous sections in this document for instructions on these flashing methods, substituting <code>canboot.bin</code> for the file name where appropriate. The CanBoot repository linked above provides instructions for building the bootloader.</p>
<p>The first time CanBoot has been flashed it should detect that no application is present and enter the bootloader. If this doesn't occur it is possible to enter the bootloader by pressing the reset button twice in succession.</p> <p>The first time CanBoot has been flashed it should detect that no application is present and enter the bootloader. If this doesn't occur it is possible to enter the bootloader by pressing the reset button twice in succession.</p>
<p>The <code>flash_can.py</code> utility supplied in the <code>lib/canboot</code> folder may be used to upload Klipper firmware. The device UUID is necessary to flash. If you do not have a UUID it is possible to query nodes currently running the bootloader:</p> <p>The <code>flash_can.py</code> utility supplied in the <code>lib/canboot</code> folder may be used to upload Klipper firmware. The device UUID is necessary to flash. If you do not have a UUID it is possible to query nodes currently running the bootloader:</p>
<div class="highlight"><pre><span></span><code>python3 flash_can.py -q <div class="highlight"><pre><span></span><code>python3 flash_can.py -q
@ -1855,8 +1855,8 @@ make
<p>Where <code>aabbccddeeff</code> is replaced by your UUID. Note that the <code>-i</code> and <code>-f</code> options may be omitted, they default to <code>can0</code> and <code>~/klipper/out/klipper.bin</code> respectively.</p> <p>Where <code>aabbccddeeff</code> is replaced by your UUID. Note that the <code>-i</code> and <code>-f</code> options may be omitted, they default to <code>can0</code> and <code>~/klipper/out/klipper.bin</code> respectively.</p>
<p>When building Klipper for use with CanBoot, select the 8 KiB Bootloader option.</p> <p>When building Klipper for use with CanBoot, select the 8 KiB Bootloader option.</p>
<h2 id="stm32f4-skr-pro-11">STM32F4 微控制器 (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2> <h2 id="stm32f4-skr-pro-11">STM32F4 微控制器 (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2>
<p>STM32F4微控制器配備了一個內建的系統載入程式能夠通過USB通過DFU、3.3v串列埠和其他各種方法進行刷寫更多資訊見STM檔案AN2606。一些STM32F4板如SKR Pro 1.1不能進入DFU載入程式。基於STM32F405/407的板子可以使用HID載入程式如果使用者願意通過USB刷寫而不是使用SD卡。請注意你可能需針對你的板子配置和構建一個特定的版本<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">針對SKR Pro 1.1的構建可以在這裡找到</a></p> <p>STM32F4 micro-controllers come equipped with a built-in system bootloader capable of flashing over USB (via DFU), 3.3V Serial, and various other methods (see STM Document AN2606 for more information). Some STM32F4 boards, such as the SKR Pro 1.1, are not able to enter the DFU bootloader. The HID bootloader is available for STM32F405/407 based boards should the user prefer flashing over USB over using the sdcard. Note that you may need to configure and build a version specific to your board, a <a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">build for the SKR Pro 1.1 is available here</a>.</p>
<p>除非你的板子有DFU功能否則最容易的寫入方法可能是通過3.3v的串列埠,這與<a href="#stm32f103-micro-controllers-blue-pill-devices">使用stm32flash刷寫STM32F103</a>的步驟相同。例如:</p> <p>Unless your board is DFU capable the most accessible flashing method is likely via 3.3V serial, which follows the same procedure as <a href="#stm32f103-micro-controllers-blue-pill-devices">flashing the STM32F103 using stm32flash</a>. For example:</p>
<div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin <div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin
stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0 stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0

View file

@ -1466,15 +1466,15 @@
<td>列印床調平中,MCU 更新中</td> <td>列印床調平中,MCU 更新中</td>
</tr> </tr>
<tr> <tr>
<td>James Hartley</td>
<td>@JamesH1978</td>
<td>Configuration files</td>
</tr>
<tr>
<td>Kevin O'Connor</td> <td>Kevin O'Connor</td>
<td>@KevinOConnor</td> <td>@KevinOConnor</td>
<td>核心運動系統,微控制器代碼</td> <td>核心運動系統,微控制器代碼</td>
</tr> </tr>
<tr>
<td>Paul McGowan</td>
<td>@mental405</td>
<td>配置檔案, 文件</td>
</tr>
</tbody> </tbody>
</table> </table>
<p>請不要“ping”任何審閱人仕也不要直接向他們投稿。所有審閱人仕都會監控論壇和 PR並會在有時間時進行審閱。</p> <p>請不要“ping”任何審閱人仕也不要直接向他們投稿。所有審閱人仕都會監控論壇和 PR並會在有時間時進行審閱。</p>

View file

@ -1293,6 +1293,8 @@
<p>本文件涵蓋了軟體更新中對配置檔案不向后相容的部分。在升級 Klipper 時,最好也檢視一下這份文件。</p> <p>本文件涵蓋了軟體更新中對配置檔案不向后相容的部分。在升級 Klipper 時,最好也檢視一下這份文件。</p>
<p>本文件中的所有日期都是不精確的。</p> <p>本文件中的所有日期都是不精確的。</p>
<h2 id="_2">變更<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">變更<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>20230304: The <code>SET_TMC_CURRENT</code> command now properly adjusts the globalscaler register for drivers that have it. This removes a limitation where on tmc5160, the currents could not be raised higher with <code>SET_TMC_CURRENT</code> than the <code>run_current</code> value set in the config file. However, this has a side effect: After running <code>SET_TMC_CURRENT</code>, the stepper must be held at standstill for &gt;130ms in case StealthChop2 is used so that the AT#1 calibration gets executed by the driver.</p>
<p>20230202: The format of the <code>printer.screws_tilt_adjust</code> status information has changed. The information is now stored as a dictionary of screws with the resulting measurements. See the <a href="Status_Reference.html#screws_tilt_adjust">status reference</a> for details.</p>
<p>20230201: The <code>[bed_mesh]</code> module no longer loads the <code>default</code> profile on startup. It is recommended that users who use the <code>default</code> profile add <code>BED_MESH_PROFILE LOAD=default</code> to their <code>START_PRINT</code> macro (or to their slicer's "Start G-Code" configuration when applicable).</p> <p>20230201: The <code>[bed_mesh]</code> module no longer loads the <code>default</code> profile on startup. It is recommended that users who use the <code>default</code> profile add <code>BED_MESH_PROFILE LOAD=default</code> to their <code>START_PRINT</code> macro (or to their slicer's "Start G-Code" configuration when applicable).</p>
<p>20230103: It is now possible with the flash-sdcard.sh script to flash both variants of the Bigtreetech SKR-2, STM32F407 and STM32F429. This means that the original tag of btt-skr2 now has changed to either btt-skr-2-f407 or btt-skr-2-f429.</p> <p>20230103: It is now possible with the flash-sdcard.sh script to flash both variants of the Bigtreetech SKR-2, STM32F407 and STM32F429. This means that the original tag of btt-skr2 now has changed to either btt-skr-2-f407 or btt-skr-2-f429.</p>
<p>20221128: Klipper v0.11.0 released.</p> <p>20221128: Klipper v0.11.0 released.</p>

View file

@ -1337,6 +1337,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3258,6 +3265,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3849,7 +3863,7 @@ max_z_velocity:
#min_angle: 5 #min_angle: 5
# This represents the minimum angle (in degrees) relative to horizontal # This represents the minimum angle (in degrees) relative to horizontal
# that the deltesian arms are allowed to achieve. This parameter is # that the deltesian arms are allowed to achieve. This parameter is
# intended to restrict the arms from becomming completely horizontal, # intended to restrict the arms from becoming completely horizontal,
# which would risk accidental inversion of the XZ axis. The default is 5. # which would risk accidental inversion of the XZ axis. The default is 5.
#print_width: #print_width:
# The distance (in mm) of valid toolhead X coordinates. One may use # The distance (in mm) of valid toolhead X coordinates. One may use
@ -3886,7 +3900,7 @@ arm_x_length:
# for stepper_right, this parameter defaults to the value specified for # for stepper_right, this parameter defaults to the value specified for
# stepper_left. # stepper_left.
# The stepper_right section is used to desribe the stepper controlling the # The stepper_right section is used to describe the stepper controlling the
# right tower. # right tower.
[stepper_right] [stepper_right]
@ -4486,12 +4500,12 @@ max_temp:
# The height (in mm) that the head should be commanded to move to # The height (in mm) that the head should be commanded to move to
# just prior to starting a probe operation. The default is 5. # just prior to starting a probe operation. The default is 5.
#screw_thread: CW-M3 #screw_thread: CW-M3
# The type of screw used for bed level, M3, M4 or M5 and the # The type of screw used for bed leveling, M3, M4, or M5, and the
# direction of the knob used to level the bed, clockwise decrease # rotation direction of the knob that is used to level the bed.
# counter-clockwise decrease.
# Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5. # Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5.
# Default value is CW-M3, most printers use an M3 screw and # Default value is CW-M3 which most printers use. A clockwise
# turning the knob clockwise decrease distance. # rotation of the knob decreases the gap between the nozzle and the
# bed. Conversely, a counter-clockwise rotation increases the gap.
</code></pre></div> </code></pre></div>
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
@ -6221,6 +6235,120 @@ run_current:
# HDEC) is interpreted as the MSB of HSTRT in this case). # HDEC) is interpreted as the MSB of HSTRT in this case).
</code></pre></div> </code></pre></div>
<h3 id="tmc2240">[tmc2240]<a class="headerlink" href="#tmc2240" title="Permanent link">&para;</a></h3>
<p>Configure a TMC2240 stepper motor driver via SPI bus. To use this feature, define a config section with a "tmc2240" prefix followed by the name of the corresponding stepper config section (for example, "[tmc2240 stepper_x]").</p>
<div class="highlight"><pre><span></span><code>[tmc2240 stepper_x]
cs_pin:
# The pin corresponding to the TMC2240 chip select line. This pin
# will be set to low at the start of SPI messages and raised to high
# after the message completes. This parameter must be provided.
#spi_speed:
#spi_bus:
#spi_software_sclk_pin:
#spi_software_mosi_pin:
#spi_software_miso_pin:
# See the &quot;common SPI settings&quot; section for a description of the
# above parameters.
#chain_position:
#chain_length:
# These parameters configure an SPI daisy chain. The two parameters
# define the stepper position in the chain and the total chain length.
# Position 1 corresponds to the stepper that connects to the MOSI signal.
# The default is to not use an SPI daisy chain.
#interpolate: True
# If true, enable step interpolation (the driver will internally
# step at a rate of 256 micro-steps). The default is True.
run_current:
# The amount of current (in amps RMS) to configure the driver to use
# during stepper movement. This parameter must be provided.
#hold_current:
# The amount of current (in amps RMS) to configure the driver to use
# when the stepper is not moving. Setting a hold_current is not
# recommended (see TMC_Drivers.md for details). The default is to
# not reduce the current.
#rref: 12000
# The resistance (in ohms) of the resistor between IREF and GND. The
# default is 12000.
#stealthchop_threshold: 0
# The velocity (in mm/s) to set the &quot;stealthChop&quot; threshold to. When
# set, &quot;stealthChop&quot; mode will be enabled if the stepper motor
# velocity is below this value. The default is 0, which disables
# &quot;stealthChop&quot; mode.
#driver_MSLUT0: 2863314260
#driver_MSLUT1: 1251300522
#driver_MSLUT2: 608774441
#driver_MSLUT3: 269500962
#driver_MSLUT4: 4227858431
#driver_MSLUT5: 3048961917
#driver_MSLUT6: 1227445590
#driver_MSLUT7: 4211234
#driver_W0: 2
#driver_W1: 1
#driver_W2: 1
#driver_W3: 1
#driver_X1: 128
#driver_X2: 255
#driver_X3: 255
#driver_START_SIN: 0
#driver_START_SIN90: 247
#driver_OFFSET_SIN90: 0
# These fields control the Microstep Table registers directly. The optimal
# wave table is specific to each motor and might vary with current. An
# optimal configuration will have minimal print artifacts caused by
# non-linear stepper movement. The values specified above are the default
# values used by the driver. The value must be specified as a decimal integer
# (hex form is not supported). In order to compute the wave table fields,
# see the tmc2130 &quot;Calculation Sheet&quot; from the Trinamic website.
# Additionally, this driver also has the OFFSET_SIN90 field which can be used
# to tune a motor with unbalanced coils. See the `Sine Wave Lookup Table`
# section in the datasheet for information about this field and how to tune
# it.
#driver_IHOLDDELAY: 6
#driver_IRUNDELAY: 4
#driver_TPOWERDOWN: 10
#driver_TBL: 2
#driver_TOFF: 3
#driver_HEND: 2
#driver_HSTRT: 5
#driver_FD3: 0
#driver_TPFD: 4
#driver_CHM: 0
#driver_VHIGHFS: 0
#driver_VHIGHCHM: 0
#driver_DISS2G: 0
#driver_DISS2VS: 0
#driver_PWM_AUTOSCALE: True
#driver_PWM_AUTOGRAD: True
#driver_PWM_FREQ: 0
#driver_FREEWHEEL: 0
#driver_PWM_GRAD: 0
#driver_PWM_OFS: 29
#driver_PWM_REG: 4
#driver_PWM_LIM: 12
#driver_SGT: 0
#driver_SEMIN: 0
#driver_SEUP: 0
#driver_SEMAX: 0
#driver_SEDN: 0
#driver_SEIMIN: 0
#driver_SFILT: 0
#driver_SG4_ANGLE_OFFSET: 1
# Set the given register during the configuration of the TMC2240
# chip. This may be used to set custom motor parameters. The
# defaults for each parameter are next to the parameter name in the
# above list.
#diag0_pin:
#diag1_pin:
# The micro-controller pin attached to one of the DIAG lines of the
# TMC2240 chip. Only a single diag pin should be specified. The pin
# is &quot;active low&quot; and is thus normally prefaced with &quot;^!&quot;. Setting
# this creates a &quot;tmc2240_stepper_x:virtual_endstop&quot; virtual pin
# which may be used as the stepper&#39;s endstop_pin. Doing this enables
# &quot;sensorless homing&quot;. (Be sure to also set driver_SGT to an
# appropriate sensitivity value.) The default is to not enable
# sensorless homing.
</code></pre></div>
<h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3> <h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3>
<p>通過 SPI 匯流排配置 TMC5160 步進電機驅動。要使用此功能,請定義一個帶有 「tmc5160」 字首並後跟步進驅動配置分段相應名稱的配置分段(例如,「[tmc5160 stepper_x]」)。</p> <p>通過 SPI 匯流排配置 TMC5160 步進電機驅動。要使用此功能,請定義一個帶有 「tmc5160」 字首並後跟步進驅動配置分段相應名稱的配置分段(例如,「[tmc5160 stepper_x]」)。</p>
<div class="highlight"><pre><span></span><code>[tmc5160 stepper_x] <div class="highlight"><pre><span></span><code>[tmc5160 stepper_x]
@ -7024,20 +7152,17 @@ host_mcu:
<p>如果使用 OctoPrint 並通過串列埠流式傳輸 G-Code而不通過 virtual_sd 列印,將 * 設定&gt;序列連線&gt;韌體和協議 * 中的「暫停命令」 設定為<strong>M1</strong><strong>M0</strong> 可以避免在開始列印時需要在Palette 2 上選擇開始列印並在 OctoPrint 中取消暫停。</p> <p>如果使用 OctoPrint 並通過串列埠流式傳輸 G-Code而不通過 virtual_sd 列印,將 * 設定&gt;序列連線&gt;韌體和協議 * 中的「暫停命令」 設定為<strong>M1</strong><strong>M0</strong> 可以避免在開始列印時需要在Palette 2 上選擇開始列印並在 OctoPrint 中取消暫停。</p>
<div class="highlight"><pre><span></span><code>[palette2] <div class="highlight"><pre><span></span><code>[palette2]
serial: serial:
# 連線到 Palette 2 的串列埠。 # The serial port to connect to the Palette 2.
#baud: 115200 #baud: 115200
# 使用的波特率。 # The baud rate to use. The default is 115200.
# 預設為115200。
#feedrate_splice: 0.8 #feedrate_splice: 0.8
# 融接時的給進率 # The feedrate to use when splicing, default is 0.8
# 預設為0.8。
#feedrate_normal: 1.0 #feedrate_normal: 1.0
# 不在融接時的給進率 1.0 # The feedrate to use after splicing, default is 1.0
#auto_load_speed: 2 #auto_load_speed: 2
# 自動換料時的給近率 # Extrude feedrate when autoloading, default is 2 (mm/s)
# 預設 2 (mm/s)
#auto_cancel_variation: 0.1 #auto_cancel_variation: 0.1
# # 當 ping 值變化高於此閾值時自動取消列印 # Auto cancel print when ping variation is above this threshold
</code></pre></div> </code></pre></div>
<h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3> <h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3>
@ -7088,8 +7213,8 @@ cs_pin:
<h3 id="i2c">通用 I2C 設定<a class="headerlink" href="#i2c" title="Permanent link">&para;</a></h3> <h3 id="i2c">通用 I2C 設定<a class="headerlink" href="#i2c" title="Permanent link">&para;</a></h3>
<p>以下參數通常適用於使用 I2C 總線的設備。</p> <p>以下參數通常適用於使用 I2C 總線的設備。</p>
<p>Note that Klipper's current micro-controller support for i2c is generally not tolerant to line noise. Unexpected errors on the i2c wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use i2c devices that are on the same printed circuit board as the micro-controller.</p> <p>Note that Klipper's current micro-controller support for I2C is generally not tolerant to line noise. Unexpected errors on the I2C wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use I2C devices that are on the same printed circuit board as the micro-controller.</p>
<p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000. The Klipper "linux" micro-controller supports a 400000 speed, but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "rp2040" micro-controller supports a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p> <p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000 (<em>standard mode</em>, 100kbit/s). The Klipper "Linux" micro-controller supports a 400000 speed (<em>fast mode</em>, 400kbit/s), but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "RP2040" micro-controller and ATmega AVR family support a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p>
<div class="highlight"><pre><span></span><code>#i2c_address: <div class="highlight"><pre><span></span><code>#i2c_address:
# The i2c address of the device. This must specified as a decimal # The i2c address of the device. This must specified as a decimal
# number (not in hex). The default depends on the type of device. # number (not in hex). The default depends on the type of device.
@ -7104,7 +7229,7 @@ cs_pin:
# The I2C speed (in Hz) to use when communicating with the device. # The I2C speed (in Hz) to use when communicating with the device.
# The Klipper implementation on most micro-controllers is hard-coded # The Klipper implementation on most micro-controllers is hard-coded
# to 100000 and changing this value has no effect. The default is # to 100000 and changing this value has no effect. The default is
# 100000. # 100000. Linux, RP2040 and ATmega support 400000.
</code></pre></div> </code></pre></div>

View file

@ -1505,7 +1505,7 @@ make build
<div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so <div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so
</code></pre></div> </code></pre></div>
<p>此命令應報告特定文件(例如 <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>)而不是錯誤。</p> <p>This command should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p>
<p>如果您在基於 Debian 的系統Debian、Ubuntu 等)上,您可以安裝以下軟件包並生成 *.deb 文件以在系統範圍內安裝 simulavr</p> <p>如果您在基於 Debian 的系統Debian、Ubuntu 等)上,您可以安裝以下軟件包並生成 *.deb 文件以在系統範圍內安裝 simulavr</p>
<div class="highlight"><pre><span></span><code>sudo apt update <div class="highlight"><pre><span></span><code>sudo apt update
sudo apt install g++ make cmake swig rst2pdf help2man texinfo sudo apt install g++ make cmake swig rst2pdf help2man texinfo

View file

@ -1307,7 +1307,7 @@
<p>Klipper 有幾個引人注目的功能:</p> <p>Klipper 有幾個引人注目的功能:</p>
<ul> <ul>
<li>High precision stepper movement. Klipper utilizes an application processor (such as a low-cost Raspberry Pi) when calculating printer movements. The application processor determines when to step each stepper motor, it compresses those events, transmits them to the micro-controller, and then the micro-controller executes each event at the requested time. Each stepper event is scheduled with a precision of 25 micro-seconds or better. The software does not use kinematic estimations (such as the Bresenham algorithm) - instead it calculates precise step times based on the physics of acceleration and the physics of the machine kinematics. More precise stepper movement provides quieter and more stable printer operation.</li> <li>High precision stepper movement. Klipper utilizes an application processor (such as a low-cost Raspberry Pi) when calculating printer movements. The application processor determines when to step each stepper motor, it compresses those events, transmits them to the micro-controller, and then the micro-controller executes each event at the requested time. Each stepper event is scheduled with a precision of 25 micro-seconds or better. The software does not use kinematic estimations (such as the Bresenham algorithm) - instead it calculates precise step times based on the physics of acceleration and the physics of the machine kinematics. More precise stepper movement provides quieter and more stable printer operation.</li>
<li>同類項目中最佳的效能。 Klipper 能夠在新舊微控制器上實現高步進速率。即使是舊的 8 位微控制器也可以發送超過每秒 175K 步的速率。在較新的微控制器上,每秒數百萬步也可以實現。更高的步進速率可以實現更高的列印速度。步進事件計時即使在高速下也能保持精確,提高了整體穩定性。</li> <li>Best in class performance. Klipper is able to achieve high stepping rates on both new and old micro-controllers. Even old 8-bit micro-controllers can obtain rates over 175K steps per second. On more recent micro-controllers, several million steps per second are possible. Higher stepper rates enable higher print velocities. The stepper event timing remains precise even at high speeds which improves overall stability.</li>
<li>Klipper 支援帶有多個微控制器的印表機。例如一個微控制器可以被用來控制擠出機而另一個用來控制加熱器並使用第三個來控制其他的印表機元件。Klipper 主機程式實現了時鐘同步,解決了微處理器之間的時鐘漂移。 啟用多個控制器只需要在配置檔案中新增幾行,不需要任何特殊程式碼。</li> <li>Klipper 支援帶有多個微控制器的印表機。例如一個微控制器可以被用來控制擠出機而另一個用來控制加熱器並使用第三個來控制其他的印表機元件。Klipper 主機程式實現了時鐘同步,解決了微處理器之間的時鐘漂移。 啟用多個控制器只需要在配置檔案中新增幾行,不需要任何特殊程式碼。</li>
<li>通過簡單的配置檔案進行配置。修改設定不需要重新刷寫微控制器。Klipper 的所有配置都被儲存在一個易編輯的配置檔案中,大大減少了配置與維護硬體的難度。</li> <li>通過簡單的配置檔案進行配置。修改設定不需要重新刷寫微控制器。Klipper 的所有配置都被儲存在一個易編輯的配置檔案中,大大減少了配置與維護硬體的難度。</li>
<li>Klipper 支援「平滑提前壓力」--一種考慮了擠出機內壓力影響的機制。這項技術可以減少噴嘴溢料並改善轉角的列印質量。Klipper 的實現不會引入瞬間擠出機速度變化,改善了整體穩定性和穩健性。</li> <li>Klipper 支援「平滑提前壓力」--一種考慮了擠出機內壓力影響的機制。這項技術可以減少噴嘴溢料並改善轉角的列印質量。Klipper 的實現不會引入瞬間擠出機速度變化,改善了整體穩定性和穩健性。</li>
@ -1424,6 +1424,11 @@
<td>1885K</td> <td>1885K</td>
</tr> </tr>
<tr> <tr>
<td>AR100</td>
<td>3529K</td>
<td>2507K</td>
</tr>
<tr>
<td>STM32F407</td> <td>STM32F407</td>
<td>3652K</td> <td>3652K</td>
<td>2459K</td> <td>2459K</td>

View file

@ -4424,7 +4424,7 @@
<h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3> <h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#bed_mesh">bed_mesh config section</a> 時,以下命令可用(另請參閱 <a href="Bed_Mesh.html">bed mesh guide</a>)。</p> <p>當啟用 <a href="Config_Reference.html#bed_mesh">bed_mesh config section</a> 時,以下命令可用(另請參閱 <a href="Bed_Mesh.html">bed mesh guide</a>)。</p>
<h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: 此命令使用通過配置參數指定並產生的探測點探測列印床。在探測后一個網格將被產生z 軸移動將根據網格調整。有關可選探測參數,請見 PROBE命令。如果指定 METHOD=manual ,則會啟動手動探測工具 - 有關此工具活躍時可用的額外命令,詳見 MANUAL_PROBE 命令。</p> <p><code>BED_MESH_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: This command probes the bed using generated points specified by the parameters in the config. After probing, a mesh is generated and z-movement is adjusted according to the mesh. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>:該命令將目前探測到的 Z 值和目前網格的值輸出到終端。如果指定 PGP=1則將bed_mesh產生的X、Y座標以及它們關聯的指數輸出到終端。</p> <p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>:該命令將目前探測到的 Z 值和目前網格的值輸出到終端。如果指定 PGP=1則將bed_mesh產生的X、Y座標以及它們關聯的指數輸出到終端。</p>
<h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4>
@ -4442,7 +4442,7 @@
<h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3> <h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#bed_tilt">bed_tilt config section</a> 時,以下命令可用。</p> <p>當啟用 <a href="Config_Reference.html#bed_tilt">bed_tilt config section</a> 時,以下命令可用。</p>
<h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_TILT_CALIBRATE [Method=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>:該命令將探測配置中指定的點然後建議更新X和Y的傾斜調整。有關可選探測參數的詳細資訊請參見PROBE命令。如果指定METHOD=manual那麼手動探測工具就會被啟用 - 關於該工具啟用時可用的附加命令請參見上面的MANUAL_PROBE命令。</p> <p><code>BED_TILT_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then recommend updated x and y tilt adjustments. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3> <h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#bltouch">bltouch config section</a> 時,以下命令可用(另請參閱 <a href="BLTouch.html">BL-Touch guide</a>)。</p> <p>當啟用 <a href="Config_Reference.html#bltouch">bltouch config section</a> 時,以下命令可用(另請參閱 <a href="BLTouch.html">BL-Touch guide</a>)。</p>
<h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4> <h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4>
@ -4460,7 +4460,7 @@
<h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3> <h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config section</a> 時,以下命令可用(另請參見 <a href="Delta_Calibrate.html">delta calibrate guide</a>)。</p> <p>當啟用 <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config section</a> 時,以下命令可用(另請參見 <a href="Delta_Calibrate.html">delta calibrate guide</a>)。</p>
<h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4> <h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4>
<p><code>DELTA_CALIBRATE [Method=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>:這條命令將探測床身的七個點並建議更新限位位置、塔架角度和半徑。有關可選探測參數的詳細資訊請參見PROBE命令。如果指定METHOD=manual那麼手動探測工具將被啟用 - 關於該工具啟用時可用的附加命令的詳細資訊請參見上面的MANUAL_PROBE命令。</p> <p><code>DELTA_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe seven points on the bed and recommend updated endstop positions, tower angles, and radius. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4> <h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4>
<p><code>DELTA_ANALYZE</code>:這個命令在增強的delta校準過程中使用。詳情見<a href="Delta_Calibrate.html">Delta Calibrate</a></p> <p><code>DELTA_ANALYZE</code>:這個命令在增強的delta校準過程中使用。詳情見<a href="Delta_Calibrate.html">Delta Calibrate</a></p>
<h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3> <h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3>
@ -4731,7 +4731,7 @@
<h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3> <h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust config section</a> 時,以下命令可用(另請參閱 [manual level guide](Manual_Level.md#adjusting-bed-leveling-screws-using-the-bed-probe ))。</p> <p>當啟用 <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust config section</a> 時,以下命令可用(另請參閱 [manual level guide](Manual_Level.md#adjusting-bed-leveling-screws-using-the-bed-probe ))。</p>
<h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4> <h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4>
<p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided.</p> <p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3> <h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3>
<p><a href="Config_Reference.html#sdcard_loop">sdcard_loop config section</a> 啟用時,以下擴展命令可用。</p> <p><a href="Config_Reference.html#sdcard_loop">sdcard_loop config section</a> 啟用時,以下擴展命令可用。</p>
<h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4> <h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4>
@ -4771,13 +4771,13 @@
<h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3> <h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3>
<p>當啟用任何 <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config sections</a> 時,以下命令可用。</p> <p>當啟用任何 <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config sections</a> 時,以下命令可用。</p>
<h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4> <h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4>
<p><code>DUMP_TMC STEPPER=&lt;name&gt;</code>。該命令將讀取TMC驅動暫存器並報告其值。</p> <p><code>DUMP_TMC STEPPER=&lt;name&gt; [REGISTER=&lt;name&gt;]</code>: This command will read all TMC driver registers and report their values. If a REGISTER is provided, only the specified register will be dumped.</p>
<h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4> <h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4>
<p><code>INIT_TMC STEPPER=&lt;名稱&gt;</code>:此命令將初始化 TMC 暫存器。如果晶片的電源關閉然後重新打開,則需要重新啟用該驅動。</p> <p><code>INIT_TMC STEPPER=&lt;名稱&gt;</code>:此命令將初始化 TMC 暫存器。如果晶片的電源關閉然後重新打開,則需要重新啟用該驅動。</p>
<h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_CURRENT STEPPER=&lt;名稱&gt; CURRENT=&lt;安培&gt; HOLDCURRENT=&lt;安培&gt;</code>該命令修改TMC驅動的執行和保持電流HOLDCURRENT 在 tmc2660 驅動上不起效)。</p> <p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: This will adjust the run and hold currents of the TMC driver. <code>HOLDCURRENT</code> is not applicable to tmc2660 drivers. When used on a driver which has the <code>globalscaler</code> field (tmc5160 and tmc2240), if StealthChop2 is used, the stepper must be held at standstill for &gt;130ms so that the driver executes the AT#1 calibration.</p>
<h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_FIELD STEPPER=&lt;名稱&gt; FIELD=&lt;欄位&gt; VALUE=&lt;&gt;</code>:這將修改指定 TMC 步進驅動暫存器欄位的值。該命令僅適用於低階別的診斷和除錯,因為在執行期間改變欄位可能會導致印表機出現不符合預期的、有潛在危險的行為。常規修改應當通過印表機配置檔案進行。該命令不會對給定的值進行越界檢查。</p> <p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt; VELOCITY=&lt;value&gt;</code>: This will alter the value of the specified register field of the TMC driver. This command is intended for low-level diagnostics and debugging only because changing the fields during run-time can lead to undesired and potentially dangerous behavior of your printer. Permanent changes should be made using the printer configuration file instead. No sanity checks are performed for the given values. A VELOCITY can also be specified instead of a VALUE. This velocity is converted to the 20bit TSTEP based value representation. Only use the VELOCITY argument for fields that represent velocities.</p>
<h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3> <h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3>
<p>模組toolhead已自動載入.</p> <p>模組toolhead已自動載入.</p>
<h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4> <h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4>
@ -4814,7 +4814,7 @@
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
<p>當啟用 <a href="Config_Reference.html#z_tilt">z_tilt config section</a> 時,以下命令可用。</p> <p>當啟用 <a href="Config_Reference.html#z_tilt">z_tilt config section</a> 時,以下命令可用。</p>
<h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4> <h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4>
<p><code>Z_TILT_ADJUST [&lt;probe_參數&gt;=&lt;&gt;]</code>該命令將探測配置中指定的座標並對每個Z步進電機進行獨立的調整以抵消傾斜。有關可選的探針參數詳見 PROBE 命令。</p> <p><code>Z_TILT_ADJUST [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then make independent adjustments to each Z stepper to compensate for tilt. See the PROBE command for details on the optional probe parameters. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
</article> </article>

View file

@ -1348,11 +1348,11 @@
<h1 id="_1">霍爾耗材線徑感測器<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1> <h1 id="_1">霍爾耗材線徑感測器<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1>
<p>本檔案介紹了耗材寬度感測器的主機模組。用於開發該主機模組的硬體基於兩個霍爾線性感測器例如ss49e。裝置內的兩個感測器位於兩側。工作原理兩個霍爾感測器以差分模式工作由於感測器的溫度漂移相同。不需要特殊的溫度補償。</p> <p>This document describes Filament Width Sensor host module. Hardware used for developing this host module is based on two Hall linear sensors (ss49e for example). Sensors in the body are located on opposite sides. Principle of operation: two hall sensors work in differential mode, temperature drift same for sensor. Special temperature compensation not needed.</p>
<p>你可以在<a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>上找到設計,在<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a>上也有一個裝配視訊</p> <p>你可以在<a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>上找到設計,在<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a>上也有一個裝配視訊</p>
<p>要使用霍爾耗材線徑感測器,請閱讀<a href="Config_Reference.html#hall_filament_width_sensor">配置參考</a><a href="G-Codes.html#hall_filament_width_sensor">G-Code 文件</a></p> <p>要使用霍爾耗材線徑感測器,請閱讀<a href="Config_Reference.html#hall_filament_width_sensor">配置參考</a><a href="G-Codes.html#hall_filament_width_sensor">G-Code 文件</a></p>
<h2 id="_2">它如何運作?<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">它如何運作?<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>感測器根據兩個模擬輸出計算出耗材直徑。檢測到的電壓之和始終對應耗材寬度。主機模組監測電壓變化並調整擠出倍率。我在類似ramps的控制板上使用aux2聯結器的 analog11和analog12引腳你也可以使用不同的引腳和不同的控制板。</p> <p>Sensor generates two analog output based on calculated filament width. Sum of output voltage always equals to detected filament width. Host module monitors voltage changes and adjusts extrusion multiplier. I use the aux2 connector on a ramps-like board with the analog11 and analog12 pins. You can use different pins and different boards.</p>
<h2 id="_3">菜單變數模板<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h2> <h2 id="_3">菜單變數模板<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h2>
<div class="highlight"><pre><span></span><code>[menu __main __filament __width_current] <div class="highlight"><pre><span></span><code>[menu __main __filament __width_current]
type: command type: command

View file

@ -735,6 +735,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -787,6 +807,33 @@
Configure ADXL345 With RPi Configure ADXL345 With RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1480,6 +1527,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -1532,6 +1599,33 @@
Configure ADXL345 With RPi Configure ADXL345 With RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1662,7 +1756,7 @@
<p>採購 ADXL345 時,請注意有各種不同的 PCB 板設計和它們的不同克隆。確保電路板支持 SPI 模式(通過將 SDO 拉至 GND 來為 I2C 硬配置少數電路板),如果要連接到 5V 打印機 MCU它有一個穩壓器和電平轉換器。</p> <p>採購 ADXL345 時,請注意有各種不同的 PCB 板設計和它們的不同克隆。確保電路板支持 SPI 模式(通過將 SDO 拉至 GND 來為 I2C 硬配置少數電路板),如果要連接到 5V 打印機 MCU它有一個穩壓器和電平轉換器。</p>
<h2 id="_2">安裝指南<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">安裝指南<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<h3 id="_3">接線<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3> <h3 id="_3">接線<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
<p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrety over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p> <p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrity over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p>
<p>Connect ethernet cable shielding to the controller board/RPI ground.</p> <p>Connect ethernet cable shielding to the controller board/RPI ground.</p>
<p><strong><em>Double-check your wiring before powering up to prevent damaging your MCU/Raspberry Pi or the accelerometer.</em></strong></p> <p><strong><em>Double-check your wiring before powering up to prevent damaging your MCU/Raspberry Pi or the accelerometer.</em></strong></p>
<h4 id="spi-accelerometers">SPI Accelerometers<a class="headerlink" href="#spi-accelerometers" title="Permanent link">&para;</a></h4> <h4 id="spi-accelerometers">SPI Accelerometers<a class="headerlink" href="#spi-accelerometers" title="Permanent link">&para;</a></h4>
@ -1673,7 +1767,8 @@ SCLK+CS
</code></pre></div> </code></pre></div>
<h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5> <h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and avaliable pins.</strong></p> <h6 id="direct-to-raspberry-pi">Direct to Raspberry Pi<a class="headerlink" href="#direct-to-raspberry-pi" title="Permanent link">&para;</a></h6>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and available pins.</strong></p>
<p>我們需要將ADXL345連線到樹莓派的SPI介面。注意儘管ADXL345文件推薦使用I2C但其數據吞吐能力不足<strong>不能</strong>實現共振測量的要求。推薦的接線圖為:</p> <p>我們需要將ADXL345連線到樹莓派的SPI介面。注意儘管ADXL345文件推薦使用I2C但其數據吞吐能力不足<strong>不能</strong>實現共振測量的要求。推薦的接線圖為:</p>
<table> <table>
<thead> <thead>
@ -1687,7 +1782,7 @@ SCLK+CS
<tr> <tr>
<td align="center">3V3 或 VCC</td> <td align="center">3V3 或 VCC</td>
<td align="center">01</td> <td align="center">01</td>
<td align="center">3.3v 直流DC電源</td> <td align="center">3.3V DC power</td>
</tr> </tr>
<tr> <tr>
<td align="center">GND</td> <td align="center">GND</td>
@ -1718,6 +1813,52 @@ SCLK+CS
</table> </table>
<p>部分ADXL345開發板的Fritzing接線圖如下</p> <p>部分ADXL345開發板的Fritzing接線圖如下</p>
<p><img alt="ADXL345-樹莓派" src="img/adxl345-fritzing.png" /></p> <p><img alt="ADXL345-樹莓派" src="img/adxl345-fritzing.png" /></p>
<h6 id="using-raspberry-pi-pico">Using Raspberry Pi Pico<a class="headerlink" href="#using-raspberry-pi-pico" title="Permanent link">&para;</a></h6>
<p>You may connect the ADXL345 to your Raspberry Pi Pico and then connect the Pico to your Raspberry Pi via USB. This makes it easy to reuse the accelerometer on other Klipper devices, as you can connect via USB instead of GPIO. The Pico does not have much processing power, so make sure it is only running the accelerometer and not performing any other duties.</p>
<p>In order to avoid damage to your RPi make sure to connect the ADXL345 to 3.3V only. Depending on the board's layout, a level shifter may be present, which makes 5V dangerous for your RPi.</p>
<table>
<thead>
<tr>
<th align="center">ADXL345引腳</th>
<th align="center">Pico pin</th>
<th align="center">Pico pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">3V3 或 VCC</td>
<td align="center">36</td>
<td align="center">3.3V DC power</td>
</tr>
<tr>
<td align="center">GND</td>
<td align="center">38</td>
<td align="center">GND</td>
</tr>
<tr>
<td align="center">CS晶片選定</td>
<td align="center">2</td>
<td align="center">GP1 (SPI0_CSn)</td>
</tr>
<tr>
<td align="center">SDO</td>
<td align="center">1</td>
<td align="center">GP0 (SPI0_RX)</td>
</tr>
<tr>
<td align="center">SDA</td>
<td align="center">5</td>
<td align="center">GP3 (SPI0_TX)</td>
</tr>
<tr>
<td align="center">SCL</td>
<td align="center">4</td>
<td align="center">GP2 (SPI0_SCK)</td>
</tr>
</tbody>
</table>
<p>Wiring diagrams for some of the ADXL345 boards:</p>
<p><img alt="ADXL345-Pico" src="img/adxl345-pico.png" /></p>
<h4 id="i2c-accelerometers">I2C Accelerometers<a class="headerlink" href="#i2c-accelerometers" title="Permanent link">&para;</a></h4> <h4 id="i2c-accelerometers">I2C Accelerometers<a class="headerlink" href="#i2c-accelerometers" title="Permanent link">&para;</a></h4>
<p>Suggested twisted pair order:</p> <p>Suggested twisted pair order:</p>
<div class="highlight"><pre><span></span><code>3.3V+SDA <div class="highlight"><pre><span></span><code>3.3V+SDA
@ -1826,6 +1967,47 @@ probe_points:
</code></pre></div> </code></pre></div>
<p>建議在測試開始前,用探針在熱床中央進行一次探測,觸發后稍微上移。</p> <p>建議在測試開始前,用探針在熱床中央進行一次探測,觸發后稍微上移。</p>
<h4 id="configure-adxl345-with-pi-pico">Configure ADXL345 With Pi Pico<a class="headerlink" href="#configure-adxl345-with-pi-pico" title="Permanent link">&para;</a></h4>
<h5 id="flash-the-pico-firmware">Flash the Pico Firmware<a class="headerlink" href="#flash-the-pico-firmware" title="Permanent link">&para;</a></h5>
<p>On your Raspberry Pi, compile the firmware for the Pico.</p>
<div class="highlight"><pre><span></span><code>cd ~/klipper
make clean
make menuconfig
</code></pre></div>
<p><img alt="Pico menuconfig" src="img/klipper_pico_menuconfig.png" /></p>
<p>Now, while holding down the <code>BOOTSEL</code> button on the Pico, connect the Pico to the Raspberry Pi via USB. Compile and flash the firmware.</p>
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=first
</code></pre></div>
<p>If that fails, you will be told which <code>FLASH_DEVICE</code> to use. In this example, that's <code>make flash FLASH_DEVICE=2e8a:0003</code>. <img alt="Determine flash device" src="img/flash_rp2040_FLASH_DEVICE.png" /></p>
<h5 id="configure-the-connection">Configure the Connection<a class="headerlink" href="#configure-the-connection" title="Permanent link">&para;</a></h5>
<p>The Pico will now reboot with the new firmware and should show up as a serial device. Find the pico serial device with <code>ls /dev/serial/by-id/*</code>. You can now add an <code>adxl.cfg</code> file with the following settings:</p>
<div class="highlight"><pre><span></span><code>[mcu adxl]
# Change &lt;mySerial&gt; to whatever you found above. For example,
# usb-Klipper_rp2040_E661640843545B2E-if00
serial: /dev/serial/by-id/usb-Klipper_rp2040_&lt;mySerial&gt;
[adxl345]
cs_pin: adxl:gpio1
spi_bus: spi0a
axes_map: x,z,y
[resonance_tester]
accel_chip: adxl345
probe_points:
# Somewhere slightly above the middle of your print bed
147,154, 20
[output_pin power_mode] # Improve power stability
pin: adxl:gpio23
</code></pre></div>
<p>If setting up the ADXL345 configuration in a separate file, as shown above, you'll also want to modify your <code>printer.cfg</code> file to include this:</p>
<div class="highlight"><pre><span></span><code>[include adxl.cfg] # Comment this out when you disconnect the accelerometer
</code></pre></div>
<p>通過<code>RESTART</code>命令重啟Klipper。</p>
<h4 id="configure-mpu-60009000-series-with-rpi">Configure MPU-6000/9000 series With RPi<a class="headerlink" href="#configure-mpu-60009000-series-with-rpi" title="Permanent link">&para;</a></h4> <h4 id="configure-mpu-60009000-series-with-rpi">Configure MPU-6000/9000 series With RPi<a class="headerlink" href="#configure-mpu-60009000-series-with-rpi" title="Permanent link">&para;</a></h4>
<p>Make sure the Linux I2C driver is enabled and the baud rate is set to 400000 (see <a href="RPi_microcontroller.html#optional-enabling-i2c">Enabling I2C</a> section for more details). Then, add the following to the printer.cfg:</p> <p>Make sure the Linux I2C driver is enabled and the baud rate is set to 400000 (see <a href="RPi_microcontroller.html#optional-enabling-i2c">Enabling I2C</a> section for more details). Then, add the following to the printer.cfg:</p>
<div class="highlight"><pre><span></span><code>[mcu rpi] <div class="highlight"><pre><span></span><code>[mcu rpi]
@ -1848,7 +2030,7 @@ serial: /dev/serial/by-id/&lt;your PICO&#39;s serial ID&gt;
[mpu9250] [mpu9250]
i2c_mcu: pico i2c_mcu: pico
i2c_bus: i2c1a i2c_bus: i2c0a
[resonance_tester] [resonance_tester]
accel_chip: mpu9250 accel_chip: mpu9250
@ -1871,7 +2053,7 @@ pin: pico:gpio23
<div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800 <div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800
</code></pre></div> </code></pre></div>
<p>如果輸出類似 <code>Invalid adxl345 id (got xx vs e5)</code>,其中'xx'為e5以外ID這表示出現連線問題連線錯誤、線纜電阻過大、干擾等或感測器錯誤殘次感測器 或 錯誤的感測器)。請在此檢查電源,接線(再三確定接線正確,沒有破損、鬆動的電線)或焊接問題。</p> <p>If you get an error like <code>Invalid adxl345 id (got xx vs e5)</code>, where <code>xx</code> is some other ID, immediately try again. There's an issue with SPI initialization. If you still get an error, it is indicative of the connection problem with ADXL345, or the faulty sensor. Double-check the power, the wiring (that it matches the schematics, no wire is broken or loose, etc.), and soldering quality.</p>
<p><strong>If you are using MPU-6000/9000 series accelerometer and it show up as <code>mpu-unknown</code>, use with caution! They are probably refurbished chips!</strong></p> <p><strong>If you are using MPU-6000/9000 series accelerometer and it show up as <code>mpu-unknown</code>, use with caution! They are probably refurbished chips!</strong></p>
<p>下一步在Octoprint中輸入 <code>MEASURE_AXES_NOISE</code>之後將會顯示各個軸的基準測量噪聲其值應在1-100之間。如果軸的噪聲極高例如 1000 或更高可能意味著3D印表機上存在感測器問題、電源問題或不平衡的風扇。</p> <p>下一步在Octoprint中輸入 <code>MEASURE_AXES_NOISE</code>之後將會顯示各個軸的基準測量噪聲其值應在1-100之間。如果軸的噪聲極高例如 1000 或更高可能意味著3D印表機上存在感測器問題、電源問題或不平衡的風扇。</p>
<h3 id="_8">測量共振值<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3> <h3 id="_8">測量共振值<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3>
@ -1923,7 +2105,7 @@ max_accel: 3000 # should not exceed the estimated max_accel for X and Y axes
</code></pre></div> </code></pre></div>
<p>或者您可以根據生成的圖表自行選擇其他配置:圖表上功率譜密度的峰值對應於打印機的共振頻率。</p> <p>或者您可以根據生成的圖表自行選擇其他配置:圖表上功率譜密度的峰值對應於打印機的共振頻率。</p>
<p>請注意,您也可以從 Klipper <a href="#input-shaper-auto-calibration">直接</a> 運行輸入整形器自動校準,例如,對於輸入整形器 [re-calibration](#input-shaper-re -校準)。</p> <p>Note that alternatively you can run the input shaper auto-calibration from Klipper <a href="#input-shaper-auto-calibration">directly</a>, which can be convenient, for example, for the input shaper <a href="#input-shaper-re-calibration">re-calibration</a>.</p>
<h3 id="bed-slinger">Bed-slinger打印機<a class="headerlink" href="#bed-slinger" title="Permanent link">&para;</a></h3> <h3 id="bed-slinger">Bed-slinger打印機<a class="headerlink" href="#bed-slinger" title="Permanent link">&para;</a></h3>
<p>如果您的打印機是拋床打印機,您將需要在 X 軸和 Y 軸測量值之間更改加速度計的位置:用連接到工具頭的加速度計測量 X 軸的共振和 Y 軸的共振 - 到床(通常的床吊具設置)。</p> <p>如果您的打印機是拋床打印機,您將需要在 X 軸和 Y 軸測量值之間更改加速度計的位置:用連接到工具頭的加速度計測量 X 軸的共振和 Y 軸的共振 - 到床(通常的床吊具設置)。</p>
<p>但是,您也可以同時連接兩個加速度計,儘管它們必須連接到不同的板(例如,連接到 RPi 和打印機 MCU 板),或者連接到同一板上的兩個不同的物理 SPI 接口(很少可用)。然後可以通過以下方式配置它們:</p> <p>但是,您也可以同時連接兩個加速度計,儘管它們必須連接到不同的板(例如,連接到 RPi 和打印機 MCU 板),或者連接到同一板上的兩個不同的物理 SPI 接口(很少可用)。然後可以通過以下方式配置它們:</p>
@ -2050,7 +2232,7 @@ Recommended shaper_type_y = mzv, shaper_freq_y = 36.8 Hz # 建議shaper_type_y =
<div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X <div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X
</code></pre></div> </code></pre></div>
<p><strong>警告!</strong>不建議非常頻繁地運行成型機自動校準例如在每次打印之前或每天。為了確定共振頻率自動校準會在每個軸上產生強烈的振動。通常3D 打印機的設計不能承受長時間暴露於共振頻率附近的振動。這樣做可能會增加打印機組件的磨損並縮短其使用壽命。某些零件擰鬆或鬆動的風險也會增加。每次自動調整後,請務必檢查打印機的所有部件(包括通常不會移動的部件)是否牢固地固定到位。</p> <p><strong>Warning!</strong> It is not advisable to run the shaper auto-calibration very frequently (e.g. before every print, or every day). In order to determine resonance frequencies, auto-calibration creates intensive vibrations on each of the axes. Generally, 3D printers are not designed to withstand a prolonged exposure to vibrations near the resonance frequencies. Doing so may increase wear of the printer components and reduce their lifespan. There is also an increased risk of some parts unscrewing or becoming loose. Always check that all parts of the printer (including the ones that may normally not move) are securely fixed in place after each auto-tuning.</p>
<p>此外,由於測量中的一些噪聲,調諧結果可能會從一次校準運行到另一次校準運行略有不同。不過,預計噪音不會對打印質量產生太大影響。但是,仍然建議仔細檢查建議的參數,並在使用前打印一些測試打印以確認它們是好的。</p> <p>此外,由於測量中的一些噪聲,調諧結果可能會從一次校準運行到另一次校準運行略有不同。不過,預計噪音不會對打印質量產生太大影響。但是,仍然建議仔細檢查建議的參數,並在使用前打印一些測試打印以確認它們是好的。</p>
<h2 id="_13">加速度計數據的離線處理<a class="headerlink" href="#_13" title="Permanent link">&para;</a></h2> <h2 id="_13">加速度計數據的離線處理<a class="headerlink" href="#_13" title="Permanent link">&para;</a></h2>
<p>可以生成原始加速度計數據並離線處理(例如在主機上),例如尋找共振。為此,請通過 Octoprint 終端運行以下命令:</p> <p>可以生成原始加速度計數據並離線處理(例如在主機上),例如尋找共振。為此,請通過 Octoprint 終端運行以下命令:</p>

View file

@ -1373,7 +1373,7 @@
<li><a href="Slicers.html">切片</a>:為 Klipper 配置切片軟體。</li> <li><a href="Slicers.html">切片</a>:為 Klipper 配置切片軟體。</li>
<li><a href="Skew_Correction.html">偏斜校正</a>:調整不完全垂直的軸(不完美的方形)。</li> <li><a href="Skew_Correction.html">偏斜校正</a>:調整不完全垂直的軸(不完美的方形)。</li>
<li><a href="Using_PWM_Tools.html">PWM 工具</a>:關於如何使用 PWM 控制的工具,例如鐳射器或電鉆頭。</li> <li><a href="Using_PWM_Tools.html">PWM 工具</a>:關於如何使用 PWM 控制的工具,例如鐳射器或電鉆頭。</li>
<li><a href="Exclude_Object.html">Exclude Object</a>: The guide to the Exclude Objecs implementation.</li> <li><a href="Exclude_Object.html">Exclude Object</a>: The guide to the Exclude Objects implementation.</li>
</ul> </ul>
<h2 id="_4">開發者文檔<a class="headerlink" href="#_4" title="Permanent link">&para;</a></h2> <h2 id="_4">開發者文檔<a class="headerlink" href="#_4" title="Permanent link">&para;</a></h2>
<ul> <ul>

View file

@ -1342,7 +1342,7 @@
<h2 id="_1">版本管理<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2> <h2 id="_1">版本管理<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2>
<p>如果你從 git 構建 Klipper 包,通常的做法是不提供 .git 目錄,所以版本管理必須在沒有 git 的情況下處理。要做到這一點,請使用 <code>scripts/make_version.py</code> 中提供的指令碼,該指令碼應按如下方式執行:<code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code></p> <p>如果你從 git 構建 Klipper 包,通常的做法是不提供 .git 目錄,所以版本管理必須在沒有 git 的情況下處理。要做到這一點,請使用 <code>scripts/make_version.py</code> 中提供的指令碼,該指令碼應按如下方式執行:<code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code></p>
<h2 id="_2">示例打包指令碼<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">示例打包指令碼<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>klipper-git 是 klipper 的 Arch Linux 軟體包,在<a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repositiory</a>上有一個 PKGBUILD軟體包構建指令碼</p> <p>klipper-git is packaged for Arch Linux, and has a PKGBUILD (package build script) available at <a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repository</a>.</p>
</article> </article>

View file

@ -1471,9 +1471,9 @@ optional arguments:
<p>可以指定以下欄位:</p> <p>可以指定以下欄位:</p>
<ul> <ul>
<li><code>mcu</code>:微控制器型別。這可以在使用<code>make menuconfig</code>配置構建配置后通過執行<code>cat .config | grep CONFIG_MCU</code>獲取。 此欄位是必需的。</li> <li><code>mcu</code>: The mcu type. This can be retrieved after configuring the build via <code>make menuconfig</code> by running <code>cat .config | grep CONFIG_MCU</code>. This field is required.</li>
<li><code>spi_bus</code>:連線到 SD 卡的 SPI 匯流排。 這應該從電路板的原理圖中檢索。 此欄位是必需的。</li> <li><code>spi_bus</code>: The SPI bus connected to the SD Card. This should be retrieved from the board's schematic. This field is required.</li>
<li><code>cs_pin</code>:連線到 SD 卡的晶片選擇引腳。 這應該從電路板原理圖中檢索。 此欄位是必需的。</li> <li><code>cs_pin</code>: The Chip Select Pin connected to the SD Card. This should be retrieved from the board schematic. This field is required.</li>
<li><code>firmware_path</code>SD 卡上韌體應傳輸的路徑。 預設是<code>firmware.bin</code></li> <li><code>firmware_path</code>SD 卡上韌體應傳輸的路徑。 預設是<code>firmware.bin</code></li>
<li><code>current_firmware_path</code>: The path on the SD Card where the renamed firmware file is located after a successful flash. The default is <code>firmware.cur</code>.</li> <li><code>current_firmware_path</code>: The path on the SD Card where the renamed firmware file is located after a successful flash. The default is <code>firmware.cur</code>.</li>
<li><code>skip_verify</code>: This defines a boolean value which tells the scripts to skip the firmware verification step during the flashing process. The default is <code>False</code>. It can be set to <code>True</code> for boards that require a manual power-cycle to complete flashing. To verify the firmware afterward, run the script again with the <code>-c</code> option to perform the verification step. <a href="#caveats">See caveats with SDIO cards</a></li> <li><code>skip_verify</code>: This defines a boolean value which tells the scripts to skip the firmware verification step during the flashing process. The default is <code>False</code>. It can be set to <code>True</code> for boards that require a manual power-cycle to complete flashing. To verify the firmware afterward, run the script again with the <code>-c</code> option to perform the verification step. <a href="#caveats">See caveats with SDIO cards</a></li>

View file

@ -889,6 +889,13 @@
禁用任何"提前擠出壓力"的設定 禁用任何"提前擠出壓力"的設定
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1356,6 +1363,13 @@
禁用任何"提前擠出壓力"的設定 禁用任何"提前擠出壓力"的設定
</a> </a>
</li>
<li class="md-nav__item">
<a href="#start_print-macros" class="md-nav__link">
START_PRINT macros
</a>
</li> </li>
</ul> </ul>
@ -1398,6 +1412,21 @@
<p>一些切片軟體宣傳有 "高級擠出機壓力調整 "的功能。建議在使用 Klipper 時禁用這些功能,因為它們很可能會降低列印質量。考慮使用 Klipper 的<a href="Pressure_Advance.html">壓力提前</a>代替。</p> <p>一些切片軟體宣傳有 "高級擠出機壓力調整 "的功能。建議在使用 Klipper 時禁用這些功能,因為它們很可能會降低列印質量。考慮使用 Klipper 的<a href="Pressure_Advance.html">壓力提前</a>代替。</p>
<p>具體來說這些切片軟體的設定產生的命令會韌體對擠出率進行劇烈的改變希望韌體能接近這些請求值使印表機獲得一個大致理想的擠出機壓力。然而Klipper利用精確的運動學計算和計時。當Klipper被命令對擠出率進行重大改變時它將計劃出速度、加速度和擠出機運動的相應變化--這不是切片軟體的意圖。切片軟體甚至可能產生過大的擠出速度以至於觸發Klipper的最大擠出截面檢查。</p> <p>具體來說這些切片軟體的設定產生的命令會韌體對擠出率進行劇烈的改變希望韌體能接近這些請求值使印表機獲得一個大致理想的擠出機壓力。然而Klipper利用精確的運動學計算和計時。當Klipper被命令對擠出率進行重大改變時它將計劃出速度、加速度和擠出機運動的相應變化--這不是切片軟體的意圖。切片軟體甚至可能產生過大的擠出速度以至於觸發Klipper的最大擠出截面檢查。</p>
<p>相反,使用切片軟體的"回抽"、"擦拭 "和/或 "縮回時擦拭 "設定通常是有益的。</p> <p>相反,使用切片軟體的"回抽"、"擦拭 "和/或 "縮回時擦拭 "設定通常是有益的。</p>
<h2 id="start_print-macros">START_PRINT macros<a class="headerlink" href="#start_print-macros" title="Permanent link">&para;</a></h2>
<p>When using a START_PRINT macro or similar, it is useful to sometimes pass through parameters from the slicer variables to the macro.</p>
<p>In Cura, to pass through temperatures, the following start gcode would be used:</p>
<div class="highlight"><pre><span></span><code>START_PRINT BED_TEMP={material_bed_temperature_layer_0} EXTRUDER_TEMP={material_print_temperature_layer_0}
</code></pre></div>
<p>In slic3r derivatives such as PrusaSlicer and SuperSlicer, the following would be used:</p>
<p>START_PRINT EXTRUDER_TEMP=[first_layer_temperature] BED_TEMP=[first_layer_bed_temperature]</p>
<p>Also note that these slicers will insert their own heating codes when certain conditions are not met. In Cura, the existence of the <code>{material_bed_temperature_layer_0}</code> and <code>{material_print_temperature_layer_0}</code> variables is enough to mitigate this. In slic3r derivatives, you would use:</p>
<div class="highlight"><pre><span></span><code>M140 S0
M104 S0
</code></pre></div>
<p>before the macro call. Also note that SuperSlicer has a "custom gcode only" button option, which achieves the same outcome.</p>
<p>An example of a START_PRINT macro using these paramaters can be found in config/sample-macros.cfg</p>
</article> </article>

View file

@ -1010,6 +1010,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1771,6 +1778,13 @@
servo servo
</a> </a>
</li>
<li class="md-nav__item">
<a href="#stepper_enable" class="md-nav__link">
stepper_enable
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1949,6 +1963,7 @@
<ul> <ul>
<li><code>pressure_advance</code>: The current <a href="Pressure_Advance.html">pressure advance</a> value.</li> <li><code>pressure_advance</code>: The current <a href="Pressure_Advance.html">pressure advance</a> value.</li>
<li><code>smooth_time</code>: The current pressure advance smooth time.</li> <li><code>smooth_time</code>: The current pressure advance smooth time.</li>
<li><code>motion_queue</code>: The name of the extruder that this extruder stepper is currently synchronized to. This is reported as <code>None</code> if the extruder stepper is not currently associated with an extruder.</li>
</ul> </ul>
<h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2> <h2 id="fan">fan<a class="headerlink" href="#fan" title="Permanent link">&para;</a></h2>
<p><a href="Config_Reference.html#fan">fan</a><a href="Config_Reference.html#heater_fan">heater_fan some_name</a><a href="Config_Reference.html#controller_fan">controller_fan some_name</a>對像提供了以下資訊:</p> <p><a href="Config_Reference.html#fan">fan</a><a href="Config_Reference.html#heater_fan">heater_fan some_name</a><a href="Config_Reference.html#controller_fan">controller_fan some_name</a>對像提供了以下資訊:</p>
@ -2072,6 +2087,7 @@
<h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2> <h2 id="probe">probe<a class="headerlink" href="#probe" title="Permanent link">&para;</a></h2>
<p><a href="Config_Reference.html#probe">probe</a> 對像中提供了以下資訊(如果定義了 <a href="Config_Reference.html#bltouch">bltouch</a> 配置分段,則此對象也可用):</p> <p><a href="Config_Reference.html#probe">probe</a> 對像中提供了以下資訊(如果定義了 <a href="Config_Reference.html#bltouch">bltouch</a> 配置分段,則此對象也可用):</p>
<ul> <ul>
<li><code>name</code>: Returns the name of the probe in use.</li>
<li><code>last_query</code>:如果探針在上一個 QUERY_PROBE 命令期間報告為"已觸發",則返回 True。請注意如果在宏中使用它根據模板展開的順序必須在包含此引用的宏之前執行 QUERY_PROBE 命令。</li> <li><code>last_query</code>:如果探針在上一個 QUERY_PROBE 命令期間報告為"已觸發",則返回 True。請注意如果在宏中使用它根據模板展開的順序必須在包含此引用的宏之前執行 QUERY_PROBE 命令。</li>
<li><code>last_z_result</code>:返回上一次 PROBE 命令的結果 Z 值。請注意,由於模板展開的順序,在宏中使用時必須在包含此引用的宏之前執行 PROBE或類似命令。</li> <li><code>last_z_result</code>:返回上一次 PROBE 命令的結果 Z 值。請注意,由於模板展開的順序,在宏中使用時必須在包含此引用的宏之前執行 PROBE或類似命令。</li>
</ul> </ul>
@ -2089,13 +2105,11 @@
<p>The following information is available in the <code>screws_tilt_adjust</code> object:</p> <p>The following information is available in the <code>screws_tilt_adjust</code> object:</p>
<ul> <ul>
<li><code>error</code>: Returns True if the most recent <code>SCREWS_TILT_CALCULATE</code> command included the <code>MAX_DEVIATION</code> parameter and any of the probed screw points exceeded the specified <code>MAX_DEVIATION</code>.</li> <li><code>error</code>: Returns True if the most recent <code>SCREWS_TILT_CALCULATE</code> command included the <code>MAX_DEVIATION</code> parameter and any of the probed screw points exceeded the specified <code>MAX_DEVIATION</code>.</li>
<li><code>results</code>: A list of the probed screw locations. Each entry in the list will be a dictionary containing the following keys:<ul> <li><code>results["&lt;screw&gt;"]</code>: A dictionary containing the following keys:<ul>
<li><code>name</code>: The name of the screw as specified in the config file.</li>
<li><code>x</code>: The X coordinate of the screw as specified in the config file.</li>
<li><code>y</code>: The Y coordinate of the screw as specified in the config file.</li>
<li><code>z</code>: The measured Z height of the screw location.</li> <li><code>z</code>: The measured Z height of the screw location.</li>
<li><code>sign</code>: A string specifying the direction to turn to screw for the necessary adjustment. Either "CW" for clockwise or "CCW" for counterclockwise. The base screw will not have a <code>sign</code> key.</li> <li><code>sign</code>: A string specifying the direction to turn to screw for the necessary adjustment. Either "CW" for clockwise or "CCW" for counterclockwise.</li>
<li><code>adjust</code>: The number of screw turns to adjust the screw, given in the format "HH:MM," where "HH" is the number of full screw turns and "MM" is the number of "minutes of a clock face" representing a partial screw turn. (E.g. "01:15" would mean to turn the screw one and a quarter revolutions.)</li> <li><code>adjust</code>: The number of screw turns to adjust the screw, given in the format "HH:MM," where "HH" is the number of full screw turns and "MM" is the number of "minutes of a clock face" representing a partial screw turn. (E.g. "01:15" would mean to turn the screw one and a quarter revolutions.)</li>
<li><code>is_base</code>: Returns True if this is the base screw.</li>
</ul> </ul>
</li> </li>
</ul> </ul>
@ -2104,6 +2118,11 @@
<ul> <ul>
<li><code>printer["servo &lt;配置名&gt;"].value</code>:與指定伺服相關 PWM 引腳的上一次設定的值0.0 和 1.0 之間的值)。</li> <li><code>printer["servo &lt;配置名&gt;"].value</code>:與指定伺服相關 PWM 引腳的上一次設定的值0.0 和 1.0 之間的值)。</li>
</ul> </ul>
<h2 id="stepper_enable">stepper_enable<a class="headerlink" href="#stepper_enable" title="Permanent link">&para;</a></h2>
<p>The following information is available in the <code>stepper_enable</code> object (this object is available if any stepper is defined):</p>
<ul>
<li><code>steppers["&lt;stepper&gt;"]</code>: Returns True if the given stepper is enabled.</li>
</ul>
<h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2> <h2 id="system_stats">system_stats<a class="headerlink" href="#system_stats" title="Permanent link">&para;</a></h2>
<p><code>system_stats</code> 對像提供了以下資訊(該對像始終可用):</p> <p><code>system_stats</code> 對像提供了以下資訊(該對像始終可用):</p>
<ul> <ul>

View file

@ -990,8 +990,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-shorttognd-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC 報告錯誤: ... ShortToGND 或著 LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1649,8 +1649,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#tmc-shorttognd-lowsideshort" class="md-nav__link"> <a href="#tmc-reports-error-shorttognd-or-shorttosupply" class="md-nav__link">
TMC 報告錯誤: ... ShortToGND 或著 LowSideShort TMC reports error: ... ShortToGND OR ShortToSupply
</a> </a>
</li> </li>
@ -1897,7 +1897,7 @@ gcode:
<p>一些常見的錯誤和診斷的技巧:</p> <p>一些常見的錯誤和診斷的技巧:</p>
<h4 id="tmc-ot1overtemperror">TMC 報告錯誤: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-ot1overtemperror" title="Permanent link">&para;</a></h4> <h4 id="tmc-ot1overtemperror">TMC 報告錯誤: <code>... ot=1(OvertempError!)</code><a class="headerlink" href="#tmc-ot1overtemperror" title="Permanent link">&para;</a></h4>
<p>這表明電機驅動器因溫度過高而自我禁用。典型的解決方案是降低步進電機的電流,增加步進電機驅動器的冷卻,和/或增加步進電機的冷卻。</p> <p>這表明電機驅動器因溫度過高而自我禁用。典型的解決方案是降低步進電機的電流,增加步進電機驅動器的冷卻,和/或增加步進電機的冷卻。</p>
<h4 id="tmc-shorttognd-lowsideshort">TMC 報告錯誤: <code>... ShortToGND</code> 或著 <code>LowSideShort</code><a class="headerlink" href="#tmc-shorttognd-lowsideshort" title="Permanent link">&para;</a></h4> <h4 id="tmc-reports-error-shorttognd-or-shorttosupply">TMC reports error: <code>... ShortToGND</code> OR <code>ShortToSupply</code><a class="headerlink" href="#tmc-reports-error-shorttognd-or-shorttosupply" title="Permanent link">&para;</a></h4>
<p>這表明驅動器已自行禁用,因為它檢測到通過驅動器的電流非常高。這可能表明連線到步進電機或者部件電機內部的電線鬆動或短路了。</p> <p>這表明驅動器已自行禁用,因為它檢測到通過驅動器的電流非常高。這可能表明連線到步進電機或者部件電機內部的電線鬆動或短路了。</p>
<p>如果使用stealthChop模式並且TMC驅動器不能準確地預測電機的機械負載也可能發生這種錯誤。(如果驅動器預測不準確,那麼它可能輸出過高電流到電機,並觸發自己的過電流檢測)。要測試這個請禁用stealthChop模式再檢查錯誤是否繼續發生。</p> <p>如果使用stealthChop模式並且TMC驅動器不能準確地預測電機的機械負載也可能發生這種錯誤。(如果驅動器預測不準確,那麼它可能輸出過高電流到電機,並觸發自己的過電流檢測)。要測試這個請禁用stealthChop模式再檢查錯誤是否繼續發生。</p>
<h4 id="tmc-reset1reset-cs_actual0reset-se0reset">TMC報告錯誤<code>... reset=1(Reset)</code><code>CS_ACTUAL=0(Reset?)</code><code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-reset1reset-cs_actual0reset-se0reset" title="Permanent link">&para;</a></h4> <h4 id="tmc-reset1reset-cs_actual0reset-se0reset">TMC報告錯誤<code>... reset=1(Reset)</code><code>CS_ACTUAL=0(Reset?)</code><code>SE=0(Reset?)</code><a class="headerlink" href="#tmc-reset1reset-cs_actual0reset-se0reset" title="Permanent link">&para;</a></h4>

File diff suppressed because one or more lines are too long

View file

@ -2,252 +2,252 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
<url> <url>
<loc>None</loc> <loc>None</loc>
<lastmod>2023-04-16</lastmod> <lastmod>2023-04-17</lastmod>
<changefreq>daily</changefreq> <changefreq>daily</changefreq>
</url> </url>
</urlset> </urlset>

Binary file not shown.

View file

@ -730,8 +730,8 @@
<ul class="md-nav__list"> <ul class="md-nav__list">
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#loading-the-default-profile" class="md-nav__link"> <a href="#_13" class="md-nav__link">
Loading the default profile 加载默认配置文件
</a> </a>
</li> </li>
@ -742,14 +742,14 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#_13" class="md-nav__link"> <a href="#_14" class="md-nav__link">
输出 输出
</a> </a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#_14" class="md-nav__link"> <a href="#_15" class="md-nav__link">
清除网格状态 清除网格状态
</a> </a>
@ -1497,8 +1497,8 @@
<ul class="md-nav__list"> <ul class="md-nav__list">
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#loading-the-default-profile" class="md-nav__link"> <a href="#_13" class="md-nav__link">
Loading the default profile 加载默认配置文件
</a> </a>
</li> </li>
@ -1509,14 +1509,14 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#_13" class="md-nav__link"> <a href="#_14" class="md-nav__link">
输出 输出
</a> </a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#_14" class="md-nav__link"> <a href="#_15" class="md-nav__link">
清除网格状态 清除网格状态
</a> </a>
@ -1552,7 +1552,7 @@
<h1 id="_1">床网<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1> <h1 id="_1">床网<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1>
<p>网床 插件可用于补偿热床表面的不规则性,以保证在打印过程中获得更好的第一层。 需要注意的是,基于软件的校正还不能达到完美的程度,它只能尽可能达到床的形状。网床 也无法补偿机械和电气导致的问题。 如果机器没装好结构歪了或探针不准确,则 网床 模块将无法从探测过程中获得令人满意的结果。</p> <p>床网模块可以用于补偿床面的不规则性,以实现更好的首层均一性。需要注意的是,基于软件的校正无法达到完美的结果,它只能近似地模拟床面的形状。床网模块也无法对机械和电气问题进行补偿。如果一个轴倾斜或探针不准确,那么床网模块将无法从探测过程中获得准确的结果。</p>
<p>在进行网格校准之前,需要先校准探针的 Z 偏移。如果使用限位开关进行Z轴定位也需要对其进行校准。请参阅<a href="Probe_Calibrate.html">探针校准</a><a href="Manual_Level.html">手动调平</a>中的 Z_ENDSTOP_CALIBRATE 获取更多信息。</p> <p>在进行网格校准之前,需要先校准探针的 Z 偏移。如果使用限位开关进行Z轴定位也需要对其进行校准。请参阅<a href="Probe_Calibrate.html">探针校准</a><a href="Manual_Level.html">手动调平</a>中的 Z_ENDSTOP_CALIBRATE 获取更多信息。</p>
<h2 id="_2">基本配置<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">基本配置<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<h3 id="_3">矩形床<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3> <h3 id="_3">矩形床<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
@ -1569,7 +1569,7 @@ probe_count: 5, 3
<li><code>speed: 120</code> <em>默认值50</em> 探针在两个点之间移动的速度。</li> <li><code>speed: 120</code> <em>默认值50</em> 探针在两个点之间移动的速度。</li>
<li><code>horizontal_move_z: 5</code> <em>默认值5</em> 探针前往下一个点之前Z需要抬升的高度。</li> <li><code>horizontal_move_z: 5</code> <em>默认值5</em> 探针前往下一个点之前Z需要抬升的高度。</li>
<li><code>mesh_min: 35,6</code> <em>(必须存在)</em>第一个探测的坐标,距离原点最近。该坐标就是探针所在的位置。</li> <li><code>mesh_min: 35,6</code> <em>(必须存在)</em>第一个探测的坐标,距离原点最近。该坐标就是探针所在的位置。</li>
<li><code>mesh_max: 240,198</code> <em>须配置</em> 距离原点最远的探测坐标。 这不一定是最后一个探测点,因为探测会以锯齿形的方式运动。 <code>mesh_min</code> 一样,这个坐标相对于探针</li> <li><code>mesh_max: 240, 198</code> <em></em> 探测坐标最远离原点的点。这不一定是最后一个被探测到的点,因为探测过程是以锯齿形进行的。<code>mesh_min</code> 一样,此坐标相对于探针位置</li>
<li><code>probe_count: 5, 3</code> <em>默认值3, 3</em> 每个轴上要探测的点数,指定为 X, Y 整数值。 在本示例中,将沿 X 轴探测 5 个点,沿 Y 轴探测 3 个点,总共探测 15 个点。 请注意,如果您想要一个方形网格,例如 3x3可以将指定其为一个整数值比如 <code>probe_count: 3</code>。 请注意,网格需要沿每个轴的最小 probe_count 为3。</li> <li><code>probe_count: 5, 3</code> <em>默认值3, 3</em> 每个轴上要探测的点数,指定为 X, Y 整数值。 在本示例中,将沿 X 轴探测 5 个点,沿 Y 轴探测 3 个点,总共探测 15 个点。 请注意,如果您想要一个方形网格,例如 3x3可以将指定其为一个整数值比如 <code>probe_count: 3</code>。 请注意,网格需要沿每个轴的最小 probe_count 为3。</li>
</ul> </ul>
<p>下图演示了如何使用 <code>mesh_min</code><code>mesh_max</code><code>probe_count</code> 选项来生成探测点。 箭头表示探测过程的运动方向从“mesh_min”开始。 图中所示当探针位于“mesh_min”时喷嘴将位于 (11, 1)当探针位于“mesh_max”时喷嘴将位于 (206, 193)。</p> <p>下图演示了如何使用 <code>mesh_min</code><code>mesh_max</code><code>probe_count</code> 选项来生成探测点。 箭头表示探测过程的运动方向从“mesh_min”开始。 图中所示当探针位于“mesh_min”时喷嘴将位于 (11, 1)当探针位于“mesh_max”时喷嘴将位于 (206, 193)。</p>
@ -1589,12 +1589,12 @@ round_probe_count: 5
<li><code>mesh_origin: 0, 0</code> <em>默认值0, 0</em> 探测网格的中心点。 该坐标相对于探针的位置。 虽然默认值为 0,0但如果希望探测床的边角可以修改该值。 请参阅下图。</li> <li><code>mesh_origin: 0, 0</code> <em>默认值0, 0</em> 探测网格的中心点。 该坐标相对于探针的位置。 虽然默认值为 0,0但如果希望探测床的边角可以修改该值。 请参阅下图。</li>
<li><code>round_probe_count: 5</code> <em>默认值: 5</em> 这是一个整数值,用于限制沿 X 轴和 Y 轴的最大探测点数。 “最大”是指沿网格原点探测的点数。 该值必须是奇数,因为需要探测网格的中心。</li> <li><code>round_probe_count: 5</code> <em>默认值: 5</em> 这是一个整数值,用于限制沿 X 轴和 Y 轴的最大探测点数。 “最大”是指沿网格原点探测的点数。 该值必须是奇数,因为需要探测网格的中心。</li>
</ul> </ul>
<p>下图展示了如何生成探测点。 如您所见,将 <code>mesh_origin</code> 设置为 (-10, 0) 允许我们指定更大的网格半径 85mm</p> <p>面的插图展示了如何生成探测点。如您所见,将 <code>mesh_origin</code> 设置为 (-10, 0) 允许我们指定更大的网格半径 85。</p>
<p><img alt="圆形网床基本配置" src="img/bedmesh_round_basic.svg" /></p> <p><img alt="圆形网床基本配置" src="img/bedmesh_round_basic.svg" /></p>
<h2 id="_5">高级配置<a class="headerlink" href="#_5" title="Permanent link">&para;</a></h2> <h2 id="_5">高级配置<a class="headerlink" href="#_5" title="Permanent link">&para;</a></h2>
<p>下面详细解释了更高级的配置选项。 每个示例都将建立在上面显示的基本矩形床配置之上。 每个高级选项都以相同的方式应用于圆床。</p> <p>下面详细解释了更高级的配置选项。 每个示例都将建立在上面显示的基本矩形床配置之上。 每个高级选项都以相同的方式应用于圆床。</p>
<h3 id="_6">网格插值<a class="headerlink" href="#_6" title="Permanent link">&para;</a></h3> <h3 id="_6">网格插值<a class="headerlink" href="#_6" title="Permanent link">&para;</a></h3>
<p>虽然可以使用简单的双线性插值直接对探测网格的数据进行采样以确定探测点之间的 Z 值,但使用更高级的插值算法来插入额外的点以增加网格密度通常很有用。 这些算法向网格添加曲率,试图模拟床的材料属性。床提供拉格朗日和双三次插值来实现这一点。</p> <p>虽然可以直接使用简单的双线性插值来对探测矩阵进行采样,以确定探测点之间的 Z 值,但通常使用更高级的插值算法来插值额外的点,以增加网格密度,效果通常很好。这些算法会向网格添加曲率,试图模拟床的材料属性。床提供拉格朗日和双三次插值来实现这一点。</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1629,7 +1629,7 @@ split_delta_z: .025
<li><code>move_check_distance: 5</code> <em>默认值5</em> 在执行拆分之前检查 Z 中需要变化的最小距离。 在此示例中,算法将遍历超过 5 毫米的移动。 每 5mm 将查找一次网格的Z ,并将其与前一次移动的 Z 值进行比较。 如果三角洲满足 <code>split_delta_z</code> 设置的阈值,则移动将被拆分并继续遍历。 重复此过程,直到到达移动结束处,在此将应用最终调整。 比 <code>move_check_distance</code> 短的移动将正确的 Z 调整直接应用于移动,无需遍历或拆分。</li> <li><code>move_check_distance: 5</code> <em>默认值5</em> 在执行拆分之前检查 Z 中需要变化的最小距离。 在此示例中,算法将遍历超过 5 毫米的移动。 每 5mm 将查找一次网格的Z ,并将其与前一次移动的 Z 值进行比较。 如果三角洲满足 <code>split_delta_z</code> 设置的阈值,则移动将被拆分并继续遍历。 重复此过程,直到到达移动结束处,在此将应用最终调整。 比 <code>move_check_distance</code> 短的移动将正确的 Z 调整直接应用于移动,无需遍历或拆分。</li>
<li><code>split_delta_z: .025</code> <em>默认值:.025</em> 如上所述,这是触发移动拆分所需的最小偏差。 在上面的示例中,任何偏差为 +/- .025 mm的 Z 值都将触发拆分。</li> <li><code>split_delta_z: .025</code> <em>默认值:.025</em> 如上所述,这是触发移动拆分所需的最小偏差。 在上面的示例中,任何偏差为 +/- .025 mm的 Z 值都将触发拆分。</li>
</ul> </ul>
<p>一般来说,这些选项的默认值就足够了,但事实上,<code>move_check_distance</code> 的默认值 5mm 可能会有点过度矫正。 所以,高端可能希望尝试使用这个选项来获得挤出最佳的第一层</p> <p>通常这些选项的默认值已经足够了,事实上 <code>move_check_distance</code> 的默认值 5mm 可能过于保守。但是,高级用户可能希望尝试这些选项,以获取最佳的第一层效果</p>
<h3 id="_8">网格淡出<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3> <h3 id="_8">网格淡出<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3>
<p>启用“网格淡出”后Z 轴的调整将在配置中定义的距离范围内逐步消失。 这是通过对层高进行小幅调整来实现的,根据床的形状增加或减少。 网格淡出完成后,不再使用 Z 调整,使打印的表面是平坦的而不是床弯曲的形状。 网格淡出也可能会产生一些不良表现,如果网格淡出过快,可能会导致打印件上出现可见的瑕疵(伪影)。 此外,如果您的床明显变形,网格淡出会缩小或拉伸打印件的 Z 高度。 因此,默认情况下禁用网格淡出。</p> <p>启用“网格淡出”后Z 轴的调整将在配置中定义的距离范围内逐步消失。 这是通过对层高进行小幅调整来实现的,根据床的形状增加或减少。 网格淡出完成后,不再使用 Z 调整,使打印的表面是平坦的而不是床弯曲的形状。 网格淡出也可能会产生一些不良表现,如果网格淡出过快,可能会导致打印件上出现可见的瑕疵(伪影)。 此外,如果您的床明显变形,网格淡出会缩小或拉伸打印件的 Z 高度。 因此,默认情况下禁用网格淡出。</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
@ -1646,10 +1646,10 @@ fade_target: 0
<ul> <ul>
<li><code>fade_start: 1</code> <em>默认值1</em> 开始网格淡出的值在设定的fade_start值之后逐步停止调整Z的高度。 建议在打印几层之后再开始淡出层高。</li> <li><code>fade_start: 1</code> <em>默认值1</em> 开始网格淡出的值在设定的fade_start值之后逐步停止调整Z的高度。 建议在打印几层之后再开始淡出层高。</li>
<li><code>fade_end: 10</code> <em>默认值0</em> 网格淡出完成的 Z 高度。 如果此值低于<code>fade_start</code>,则禁用网格淡出。 该值可以根据打印表面的弯曲程度进行调整。 明显弯曲的表面应该在将网格淡出的距离长。 接近平坦的表面可能能够降低该值以更快地逐步淘汰。 如果对 <code>fade_start</code> 使用默认值 1则 10mm 是一个合理的值。</li> <li><code>fade_end: 10</code> <em>默认值0</em> 网格淡出完成的 Z 高度。 如果此值低于<code>fade_start</code>,则禁用网格淡出。 该值可以根据打印表面的弯曲程度进行调整。 明显弯曲的表面应该在将网格淡出的距离长。 接近平坦的表面可能能够降低该值以更快地逐步淘汰。 如果对 <code>fade_start</code> 使用默认值 1则 10mm 是一个合理的值。</li>
<li><code>fade_target: 0</code> <em>默认值:热床网格的平均Z</em> <code>fade_target</code> 是在网格淡出完成后应用于整个床的额外 Z 偏移。一 般来说,这个值是 0但有些情况下它需要改动。 例如,您在热床的归位位置与床的平均探测高度有偏差,它比床的平均探测高度低 0.2 mm。 如果 <code>fade_target</code> 为 0出会将整个床的打印平均缩小 0.2 mm。 通过将 <code>fade_target</code> 设置为 0.2归位的位置将扩大 0.2 毫米,但床的其余部分将具有准确的尺寸。 一般来说,最好不要修改 <code>fade_target</code> 而修正机器本身导致的误差,以便使用网格的平均高度,但是如果想要在床的特定部分打印,可能需要手动调整网格淡出</li> <li><code>fade_target: 0</code> <em>默认值:网格的平均 Z </em> <code>fade_target</code> 可以被视为在淡化完成后应用于整个床面的额外 Z 偏移量。一般来说,我们希望这个值为 0但有些情况下不应该是这样的。例如假设您在床上的归位位置是一个异常值比床面的平均探测高度低 0.2 毫米。如果 <code>fade_target</code> 为 0化将会使整个床面平均降低 0.2 毫米。通过将 <code>fade_target</code> 设置为 0.2淡化区域将会提高到 0.2 毫米,但是,床面的其余部分将保持原大小。通常最好将 <code>fade_target</code> 留在配置中,以便使用网格的平均高度,但是如果您想在床面的特定部分上打印,则可能需要手动调整淡化目标</li>
</ul> </ul>
<h3 id="_9">相对参考索引<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3> <h3 id="_9">相对参考索引<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3>
<p>部分探针检测到的值容易产生误差,即:由温度或探测介质干扰产生的探测误差。 这加大探针Z偏移的看计算难度尤其是在不同的热床温度下。 因此,一些打印机使用限位开关来归位 Z 轴,并使用探针来校准网格。 这些打印机可以从配置中的相对参考索引relative_reference_index中寻找帮助</p> <p>多数探针容易出现漂移,即由于热量或干扰而引入的探测不准确。这可能会使计算探针的 z 偏移量变得困难,特别是在不同的床温度下。因此,一些打印机使用一个终点开关归位 Z 轴,使用探针探测网格。这些打印机可以通过配置相对参考指数来获益</p>
<div class="highlight"><pre><span></span><code>[bed_mesh] <div class="highlight"><pre><span></span><code>[bed_mesh]
speed: 120 speed: 120
horizontal_move_z: 5 horizontal_move_z: 5
@ -1717,19 +1717,19 @@ faulty_region_4_max: 45.0, 210.0
<p><code>BED_MESH_PROFILE SAVE=&lt;名称&gt; LOAD=&lt;名称&gt; REMOVE=&lt;名称&gt;</code></p> <p><code>BED_MESH_PROFILE SAVE=&lt;名称&gt; LOAD=&lt;名称&gt; REMOVE=&lt;名称&gt;</code></p>
<p>在执行 BED_MESH_CALIBRATE 后,可以将当前网格状态保存到一个命名的配置中。这样不需要重新探测打印床就可以载入一个网格。在使用<code>BED_MESH_PROFILE SAVE=&lt;名称&gt;</code>保存了一个配置文件后,可以执行<code>SAVE_CONFIG</code> G代码将配置写入 printer.cfg。</p> <p>在执行 BED_MESH_CALIBRATE 后,可以将当前网格状态保存到一个命名的配置中。这样不需要重新探测打印床就可以载入一个网格。在使用<code>BED_MESH_PROFILE SAVE=&lt;名称&gt;</code>保存了一个配置文件后,可以执行<code>SAVE_CONFIG</code> G代码将配置写入 printer.cfg。</p>
<p>可以通过运行 <code>BED_MESH_PROFILE LOAD=&lt;名称&gt;</code> 来载入配置。</p> <p>可以通过运行 <code>BED_MESH_PROFILE LOAD=&lt;名称&gt;</code> 来载入配置。</p>
<p>请注意,每次运行 BED_MESH_CALIBRATE 后,当前状态会被保存到 <em>default</em> 配置。如果这个配置在配置文件中存在,它会在 Klipper 启动时自动载入。如果不希望这种行为,可以通过以下命令删除 <em>default</em> 配置:</p> <p>需要注意的是,每次进行 BED_MESH_CALIBRATE 时,当前状态会自动保存到 <em>default</em> 配置文件中。可以按以下方式删除 <em>default</em> 配置文件</p>
<p><code>BED_MESH_PROFILE REMOVE=default</code></p> <p><code>BED_MESH_PROFILE REMOVE=default</code></p>
<p>任何其他保存的配置也可以用相同的方式删除,用你想删除的配置名称替换<em>default</em></p> <p>任何其他保存的配置也可以用相同的方式删除,用你想删除的配置名称替换<em>default</em></p>
<h4 id="loading-the-default-profile">Loading the default profile<a class="headerlink" href="#loading-the-default-profile" title="Permanent link">&para;</a></h4> <h4 id="_13">加载默认配置文件<a class="headerlink" href="#_13" title="Permanent link">&para;</a></h4>
<p>Previous versions of <code>bed_mesh</code> always loaded the profile named <em>default</em> on startup if it was present. This behavior has been removed in favor of allowing the user to determine when a profile is loaded. If a user wishes to load the <code>default</code> profile it is recommended to add <code>BED_MESH_PROFILE LOAD=default</code> to either their <code>START_PRINT</code> macro or their slicer's "Start G-Code" configuration, whichever is applicable.</p> <p>以前版本的<code>bed_mesh</code>如果(default)默认配置存在,则始终在启动时加载名为<em>default</em>的配置文件。现已删除此行为,以允许用户确定何时加载配置文件。如果用户希望加载<code>default</code>配置文件,则建议将 <code>BED_MESH_PROFILE LOAD=default</code> 添加到其 <code>START_PRINT</code> 宏或其切片软件的“启动 G代码”配置中视情况而定。</p>
<p>Alternatively the old behavior of loading a profile at startup can be restored with a <code>[delayed_gcode]</code>:</p> <p>或者可以通过添加<code>[delayed_gcode]</code>恢复在启动时加载配置文件的旧行为:</p>
<div class="highlight"><pre><span></span><code><span class="k">[delayed_gcode bed_mesh_init]</span> <div class="highlight"><pre><span></span><code><span class="k">[delayed_gcode bed_mesh_init]</span>
<span class="na">initial_duration</span><span class="o">:</span><span class="w"> </span><span class="s">.01</span> <span class="na">initial_duration</span><span class="o">:</span><span class="w"> </span><span class="s">.01</span>
<span class="na">gcode</span><span class="o">:</span> <span class="na">gcode</span><span class="o">:</span>
<span class="w"> </span><span class="na">BED_MESH_PROFILE LOAD</span><span class="o">=</span><span class="s">default</span> <span class="w"> </span><span class="na">BED_MESH_PROFILE LOAD</span><span class="o">=</span><span class="s">default</span>
</code></pre></div> </code></pre></div>
<h3 id="_13">输出<a class="headerlink" href="#_13" title="Permanent link">&para;</a></h3> <h3 id="_14">输出<a class="headerlink" href="#_14" title="Permanent link">&para;</a></h3>
<p><code>BED_MESH_OUTPUT PGP=[0 | 1]</code></p> <p><code>BED_MESH_OUTPUT PGP=[0 | 1]</code></p>
<p>将当前网格状态输出到终端。请注意,输出的是网格本身</p> <p>将当前网格状态输出到终端。请注意,输出的是网格本身</p>
<p>PGP 参数是“打印生成的点”的简写。如果设置了<code>PGP=1</code>,生成的探测点将输出到终端:</p> <p>PGP 参数是“打印生成的点”的简写。如果设置了<code>PGP=1</code>,生成的探测点将输出到终端:</p>
@ -1753,7 +1753,7 @@ faulty_region_4_max: 45.0, 210.0
</code></pre></div> </code></pre></div>
<p>"Tool Adjusted"(工具调整)点指每个点的喷嘴位置,"Probe"(探针)点指探头位置。请注意,手动探测时"Probe"(探针)点时将同时指工具和喷嘴位置。</p> <p>"Tool Adjusted"(工具调整)点指每个点的喷嘴位置,"Probe"(探针)点指探头位置。请注意,手动探测时"Probe"(探针)点时将同时指工具和喷嘴位置。</p>
<h3 id="_14">清除网格状态<a class="headerlink" href="#_14" title="Permanent link">&para;</a></h3> <h3 id="_15">清除网格状态<a class="headerlink" href="#_15" title="Permanent link">&para;</a></h3>
<p><code>BED_MESH_CLEAR</code></p> <p><code>BED_MESH_CLEAR</code></p>
<p>此 gcode 可用于清除内部网格状态。</p> <p>此 gcode 可用于清除内部网格状态。</p>
<h3 id="xy">应用X/Y偏移量<a class="headerlink" href="#xy" title="Permanent link">&para;</a></h3> <h3 id="xy">应用X/Y偏移量<a class="headerlink" href="#xy" title="Permanent link">&para;</a></h3>

View file

@ -1134,6 +1134,13 @@
SAMD51 步速率基准测试 SAMD51 步速率基准测试
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100" class="md-nav__link">
AR100 步进率基准测试
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1503,6 +1510,13 @@
SAMD51 步速率基准测试 SAMD51 步速率基准测试
</a> </a>
</li>
<li class="md-nav__item">
<a href="#ar100" class="md-nav__link">
AR100 步进率基准测试
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2005,6 +2019,34 @@ finalize_config crc=0
</tr> </tr>
</tbody> </tbody>
</table> </table>
<h3 id="ar100">AR100 步进率基准测试<a class="headerlink" href="#ar100" title="Permanent link">&para;</a></h3>
<p>以下配置顺序被用于AR100 CPU全志A64</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3
config_stepper oid=0 step_pin=PL10 dir_pin=PE14 invert_step=-1 step_pulse_ticks=0
config_stepper oid=1 step_pin=PL11 dir_pin=PE15 invert_step=-1 step_pulse_ticks=0
config_stepper oid=2 step_pin=PL12 dir_pin=PE16 invert_step=-1 step_pulse_ticks=0
finalize_config crc=0
</code></pre></div>
<p>该测试最后一次运行在提交<code>08d037c6</code> gcc版本<code>or1k-linux-musl-gccGCC9.2.0</code> 全志A64-H微控制器上进行。</p>
<table>
<thead>
<tr>
<th>AR100 R_PIO</th>
<th>ticks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1个步进电机</td>
<td>85</td>
</tr>
<tr>
<td>3个步进电机</td>
<td>359</td>
</tr>
</tbody>
</table>
<h3 id="rp2040">RP2040 步速率基准测试<a class="headerlink" href="#rp2040" title="Permanent link">&para;</a></h3> <h3 id="rp2040">RP2040 步速率基准测试<a class="headerlink" href="#rp2040" title="Permanent link">&para;</a></h3>
<p>RP2040 上使用以下配置序列:</p> <p>RP2040 上使用以下配置序列:</p>
<div class="highlight"><pre><span></span><code>allocate_oids count=3 <div class="highlight"><pre><span></span><code>allocate_oids count=3
@ -2105,6 +2147,12 @@ get_uptime
<td>avr-gcc (GCC) 5.4.0</td> <td>avr-gcc (GCC) 5.4.0</td>
</tr> </tr>
<tr> <tr>
<td>ar100 (串行)</td>
<td>138K</td>
<td>08d037c6</td>
<td>or1k-linux-musl-gcc 9.3.0</td>
</tr>
<tr>
<td>samd21 (USB)</td> <td>samd21 (USB)</td>
<td>223K</td> <td>223K</td>
<td>01d2183f</td> <td>01d2183f</td>

View file

@ -1776,7 +1776,7 @@ stm32flash -w generic_boot20_pc13.bin -v -g 0 /dev/ttyAMA0
<p>启动引导程序通常只在启动后的一小段时间运行。在输入以上命令的时候需要确保启动引导程序还在运行启动引导程序运行的时候会控制板上的led闪烁。此外启动后如果设置“boot 0”引脚为低设置“boot 1”引脚为高则可以一直停留在启动引导程序。</p> <p>启动引导程序通常只在启动后的一小段时间运行。在输入以上命令的时候需要确保启动引导程序还在运行启动引导程序运行的时候会控制板上的led闪烁。此外启动后如果设置“boot 0”引脚为低设置“boot 1”引脚为高则可以一直停留在启动引导程序。</p>
<h3 id="hid-stm32f103">带有 HID 引导程序的STM32F103<a class="headerlink" href="#hid-stm32f103" title="Permanent link">&para;</a></h3> <h3 id="hid-stm32f103">带有 HID 引导程序的STM32F103<a class="headerlink" href="#hid-stm32f103" title="Permanent link">&para;</a></h3>
<p><a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a>是一个紧凑的、不包含驱动的启动引导程序能够通过USB进行刷写。此外还有一个<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">针对SKR Mini E3 1.2构建的分支</a></p> <p><a href="https://github.com/Serasidis/STM32_HID_Bootloader">HID bootloader</a>是一个紧凑的、不包含驱动的启动引导程序能够通过USB进行刷写。此外还有一个<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">针对SKR Mini E3 1.2构建的分支</a></p>
<p>对于常见的STM32F103板如Blue Pill和 stm32duino 章节中一样,可以通过 3.3v 串行用stm32flash 刷写启动引导程序,将文件名替换为所需的 hid引导程序二进制文件例如Blue Pill 使用的 hid_generic_pc13.bin)。</p> <p>对于常见的 STM32F103 板如Blue Pill可以使用 stm32flash 通过 3.3V 串行刷写引导程序,如上面 stm32duino 章节所述,将文件名替换为所需的 hid 引导程序二进制文件hid_generic_pc13.bin 适用于 Blue Pill)。</p>
<p>SKR Mini E3无法使用stm32flash 因为boot 0引脚被直接接到GND且没有跳线断开。推荐使用STLink V2通过STM32Cubeprogrammer刷写启动引导程序。如果你没有STLink ,也可以按照以下芯片配置使用<a href="#running-openocd-on-the-raspberry-pi">树莓派和OpenOCD</a> 刷写:</p> <p>SKR Mini E3无法使用stm32flash 因为boot 0引脚被直接接到GND且没有跳线断开。推荐使用STLink V2通过STM32Cubeprogrammer刷写启动引导程序。如果你没有STLink ,也可以按照以下芯片配置使用<a href="#running-openocd-on-the-raspberry-pi">树莓派和OpenOCD</a> 刷写:</p>
<div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg] <div class="highlight"><pre><span></span><code>source [find target/stm32f1x.cfg]
</code></pre></div> </code></pre></div>
@ -1829,10 +1829,10 @@ make
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0 <div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=/dev/ttyACM0
</code></pre></div> </code></pre></div>
<p>可能需要手动进入引导程序,这可以通过设置 "boot 0 "的低电平和 "boot 1 "的高电平来完成。在SKR Mini E3上"Boot 1 "是不可用的,所以如果你写入过"hid_btt_skr_mini_e3.bin"可以通过设置PA2的低电平来完成。在SKR Mini E3的 "PIN "文件中这个引脚在TFT插座上被标记为 "TX0"。在PA2旁边有一个接地引脚你可以用它来把PA2拉低。</p> <p>可能需要手动进入引导程序,可以通过将 "boot 0"配置为低电平和 "boot 1"为高电平来完成。在SKR Mini E3上不能调整"Boot 1",所以如果你刷写过 "hid_btt_skr_mini_e3.bin"可以通过设置PA2低电平来完成。在SKR Mini E3的引脚文档中这个引脚在TFT头中被标为 "TX0"。在PA2旁边有一个接地引脚你可以用它来把PA2拉低。</p>
<h3 id="mscstm32f103stm32f072">带MSC引导程序的STM32F103/STM32F072<a class="headerlink" href="#mscstm32f103stm32f072" title="Permanent link">&para;</a></h3> <h3 id="mscstm32f103stm32f072">带MSC引导程序的STM32F103/STM32F072<a class="headerlink" href="#mscstm32f103stm32f072" title="Permanent link">&para;</a></h3>
<p><a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC 引导程序</a> 是一个能够进行 USB 刷写的免驱引导程序。</p> <p><a href="https://github.com/Telekatz/MSC-stm32f103-bootloader">MSC 引导程序</a> 是一个能够进行 USB 刷写的免驱引导程序。</p>
<p>可以使用 stm32flash 通过 3.3v 串行刷写引导程序,如上面的 stm32duino 章节所述,将文件名替换为所需的 MSC 引导加载程序二进制文件例如Blue Pill 使用 MSCboot-Bluepill.bin)。</p> <p>可以通过3.3V串口刷写引导程序使用stm32flash如上面stm32duino章节所述将文件名替换为所需的MSC引导程序二进制文件MSCboot-Bluepill.bin用于blue pill)。</p>
<p>STM32F072板也可以通过USB通过DFU刷写引导程序如下所示</p> <p>STM32F072板也可以通过USB通过DFU刷写引导程序如下所示</p>
<div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave <div class="highlight"><pre><span></span><code> dfu-util -d 0483:df11 -a 0 -R -D MSCboot-STM32F072.bin -s0x08000000:leave
</code></pre></div> </code></pre></div>
@ -1841,7 +1841,7 @@ make
<p>可以通过按两次电路板上的复位按钮来激活引导程序。一旦启动引导程序,该板就会显示为一个 USB 闪存驱动器,可以将 klipper.bin 文件复制到该驱动器上。</p> <p>可以通过按两次电路板上的复位按钮来激活引导程序。一旦启动引导程序,该板就会显示为一个 USB 闪存驱动器,可以将 klipper.bin 文件复制到该驱动器上。</p>
<h3 id="canbootstm32f103stm32f0x2">带有CanBoot引导程序的STM32F103/STM32F0x2<a class="headerlink" href="#canbootstm32f103stm32f0x2" title="Permanent link">&para;</a></h3> <h3 id="canbootstm32f103stm32f0x2">带有CanBoot引导程序的STM32F103/STM32F0x2<a class="headerlink" href="#canbootstm32f103stm32f0x2" title="Permanent link">&para;</a></h3>
<p><a href="https://github.com/Arksine/CanBoot">CanBoot</a>引导程序提供了一个通过CANBUS上传Klipper固件的选项。该引导程序本身来自Klipper的源代码。目前CanBoot支持STM32F103、STM32F042和STM32F072型号。</p> <p><a href="https://github.com/Arksine/CanBoot">CanBoot</a>引导程序提供了一个通过CANBUS上传Klipper固件的选项。该引导程序本身来自Klipper的源代码。目前CanBoot支持STM32F103、STM32F042和STM32F072型号。</p>
<p>建议使用ST-Link编程器来刷写CanBoot然而在STM32F103设备上使用<code>stm32flash</code>在STM32F042/STM32F072设备上使用<code>dfu-util</code>应该是可以刷写。关于这些刷写方法的说明,请参见本文的前几节,在适当的地方用<code>canboot.bin</code>代替文件名。上面链接的CanBoot repo提供了构建引导程序的说明。</p> <p>建议使用ST-Link编程器来刷写CanBoot然而在STM32F103设备上使用<code>stm32flash</code> 在STM32F042/STM32F072设备上使用<code>dfu-util</code> 应该是可以刷写。关于这些刷写方法的说明,请参见本文的前几节,在适当的地方用<code>canboot.bin</code> 代替文件名。上面链接的CanBoot资源库提供了构建引导程序的说明。</p>
<p>在CanBoot第一次被写入时应该检测到没有应用程序并进入引导程序。如果没有出现这种情况可以通过连续按两次复位按钮进入引导程序。</p> <p>在CanBoot第一次被写入时应该检测到没有应用程序并进入引导程序。如果没有出现这种情况可以通过连续按两次复位按钮进入引导程序。</p>
<p><code>flash_can.py</code><code>lib/canboot</code>文件夹中提供的工具可以用来上传Klipper固件。设备的UUID对于写入固件来说是必要的。如果你没有UUID可以查询当前运行引导程序的节点</p> <p><code>flash_can.py</code><code>lib/canboot</code>文件夹中提供的工具可以用来上传Klipper固件。设备的UUID对于写入固件来说是必要的。如果你没有UUID可以查询当前运行引导程序的节点</p>
<div class="highlight"><pre><span></span><code>python3 flash_can.py -q <div class="highlight"><pre><span></span><code>python3 flash_can.py -q
@ -1855,8 +1855,8 @@ make
<p>其中<code>aabbccddeeff</code>被你的UUID取代。注意选项<code>-i</code><code>-f</code>可以被省略,它们分别默认为<code>can0</code><code>~/klipper/out/klipper.bin</code></p> <p>其中<code>aabbccddeeff</code>被你的UUID取代。注意选项<code>-i</code><code>-f</code>可以被省略,它们分别默认为<code>can0</code><code>~/klipper/out/klipper.bin</code></p>
<p>当构建Klipper与CanBoot一起使用时选择8 KiB Bootloader选项。</p> <p>当构建Klipper与CanBoot一起使用时选择8 KiB Bootloader选项。</p>
<h2 id="stm32f4-skr-pro-11">STM32F4 微控制器 (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2> <h2 id="stm32f4-skr-pro-11">STM32F4 微控制器 (SKR Pro 1.1)<a class="headerlink" href="#stm32f4-skr-pro-11" title="Permanent link">&para;</a></h2>
<p>STM32F4微控制器配备了一个内置的系统引导程序能够通过USB通过DFU、3.3v串口和其他各种方法进行刷写更多信息见STM文件AN2606。一些STM32F4板如SKR Pro 1.1不能进入DFU引导程序。基于STM32F405/407的板子可以使用HID引导程序如果用户愿意通过USB刷写而不是使用SD卡。请注意你可能需针对你的板子配置和构建一个特定的版本,<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">针对SKR Pro 1.1的构建可以在这里找到</a></p> <p>STM32F4 微控制器配备了一个内置系统引导加载程序,可通过 USB通过 DFU、3.3V 串行和其他各种方法(有关更多信息,请参见 STM 文档 AN2606进行烧录。一些 STM32F4 板,例如 SKR Pro 1.1,无法进入 DFU 引导加载程序。针对基于 STM32F405/407 的板,提供了 HID 引导加载程序,用户可以选择通过 USB 进行烧录而不使用 sdcard。请注意您可能需要配置和构建适用于您的板的特定版本,<a href="https://github.com/Arksine/STM32_HID_Bootloader/releases/latest">此处提供了 SKR Pro 1.1 的构建版本</a></p>
<p>除非你的板子有DFU功能否则最容易的写入方法可能是通过3.3v的串口,这与<a href="#stm32f103-micro-controllers-blue-pill-devices">使用stm32flash刷写STM32F103</a>的步骤相同。例如:</p> <p>除非您的控制板支持 DFU否则最易于访问的烧录方法可能是通过 3.3V 串口进行烧录,其遵循与 <a href="#stm32f103-micro-controllers-blue-pill-devices">使用 stm32flash 烧录 STM32F103</a> 相同的过程。例如:</p>
<div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin <div class="highlight"><pre><span></span><code>wget https://github.com/Arksine/STM32_HID_Bootloader/releases/download/v0.5-beta/hid_bootloader_SKR_PRO.bin
stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0 stm32flash -w hid_bootloader_SKR_PRO.bin -v -g 0 /dev/ttyAMA0

View file

@ -1466,15 +1466,15 @@
<td>Bed leveling, MCU flashing</td> <td>Bed leveling, MCU flashing</td>
</tr> </tr>
<tr> <tr>
<td>James Hartley</td>
<td>@JamesH1978</td>
<td>Configuration files</td>
</tr>
<tr>
<td>Kevin O'Connor</td> <td>Kevin O'Connor</td>
<td>@KevinOConnor</td> <td>@KevinOConnor</td>
<td>Core motion system, Micro-controller code</td> <td>Core motion system, Micro-controller code</td>
</tr> </tr>
<tr>
<td>Paul McGowan</td>
<td>@mental405</td>
<td>Configuration files, documentation</td>
</tr>
</tbody> </tbody>
</table> </table>
<p>Please do not "ping" any of the reviewers and please do not direct submissions at them. All of the reviewers monitor the forums and PRs, and will take on reviews when they have time to.</p> <p>Please do not "ping" any of the reviewers and please do not direct submissions at them. All of the reviewers monitor the forums and PRs, and will take on reviews when they have time to.</p>

View file

@ -1293,9 +1293,11 @@
<p>本文档涵盖了软件更新中对配置文件不向后兼容的部分。在升级 Klipper 时,最好也查看一下这份文档。</p> <p>本文档涵盖了软件更新中对配置文件不向后兼容的部分。在升级 Klipper 时,最好也查看一下这份文档。</p>
<p>文档的所有日期都是大概时间。</p> <p>文档的所有日期都是大概时间。</p>
<h2 id="_2">变更<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">变更<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>20230201: The <code>[bed_mesh]</code> module no longer loads the <code>default</code> profile on startup. It is recommended that users who use the <code>default</code> profile add <code>BED_MESH_PROFILE LOAD=default</code> to their <code>START_PRINT</code> macro (or to their slicer's "Start G-Code" configuration when applicable).</p> <p>20230304:<code>SET_TMC_CURRENT</code> 命令现在可以正确地调整有globalscalar的驱动的globalscalar。这消除了一个限制即在 tmc5160 上,使用<code>SET_TMC_CURRENT</code> 所提高的电流不能高于配置文件中设置的<code>run_current</code> 值。然而这有一个副作用如果使用StealthChop2在运行<code>SET_TMC_CURRENT</code> 之后步进电机必须保持在静止状态至少130ms这样AT#1校准才会被驱动执行。</p>
<p>20230103: It is now possible with the flash-sdcard.sh script to flash both variants of the Bigtreetech SKR-2, STM32F407 and STM32F429. This means that the original tag of btt-skr2 now has changed to either btt-skr-2-f407 or btt-skr-2-f429.</p> <p>20230202<code>printer.screw_tilt_adjust</code> 状态信息的格式已经改变。该信息现在是以screws的字典形式存储的并附有测量结果。详情见<a href="Status_Reference.html#screws_tilt_adjust">状态参考文档</a></p>
<p>20221128: Klipper v0.11.0 released.</p> <p>20230201<code>[bed_mesh]</code> 模块在启动时不再加载<code>default</code> 配置文件。建议使用<code>default</code> 配置的用户将<code>BED_MESH_PROFILE LOAD=default</code> 添加到他们的<code>START_PRINT</code> 宏中(或者在适用时添加到他们的切片软件的 "启动G代码 "配置中)。</p>
<p>20230103: 现在可以用flash-sdcard.sh脚本对Bigtreetech SKR-2的两个变体STM32F407和STM32F429进行刷写。这意味着原来的标签 btt-skr2 现在变成了btt-skr-2-f407 或 btt-skr-2-f429。</p>
<p>20221128: Klipper v0.11.0发布。</p>
<p>20221122原先使用safe_z_home时g28归位后的 z_hop 有可能会向负Z方向移动。现在g28之后的 z_hop 只有在产生抬升(正方向)时才会被执行,这镜像了 g28 归位之前发生的 z_hop 的行为。</p> <p>20221122原先使用safe_z_home时g28归位后的 z_hop 有可能会向负Z方向移动。现在g28之后的 z_hop 只有在产生抬升(正方向)时才会被执行,这镜像了 g28 归位之前发生的 z_hop 的行为。</p>
<p>20220616以前可以通过运行<code>make flash FLASH_DEVICE=first</code>在引导程序模式下刷写rp2040。新的等效命令是<code>make flash FLASH_DEVICE=2e8a:0003</code></p> <p>20220616以前可以通过运行<code>make flash FLASH_DEVICE=first</code>在引导程序模式下刷写rp2040。新的等效命令是<code>make flash FLASH_DEVICE=2e8a:0003</code></p>
<p>20220612: 实现了rp2040上"rp2040-e5"USB数据错误的一个解决办法。这应该使最初的 USB 连接更加可靠。然而它可能会导致gpio15引脚的行为发生变化。gpio15的行为变化不太可能有明显影响。</p> <p>20220612: 实现了rp2040上"rp2040-e5"USB数据错误的一个解决办法。这应该使最初的 USB 连接更加可靠。然而它可能会导致gpio15引脚的行为发生变化。gpio15的行为变化不太可能有明显影响。</p>

View file

@ -557,8 +557,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#deltesian-kinematics" class="md-nav__link"> <a href="#delta" class="md-nav__link">
Deltesian Kinematics Delta 运动学
</a> </a>
</li> </li>
@ -1337,6 +1337,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -2478,8 +2485,8 @@
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#deltesian-kinematics" class="md-nav__link"> <a href="#delta" class="md-nav__link">
Deltesian Kinematics Delta 运动学
</a> </a>
</li> </li>
@ -3258,6 +3265,13 @@
[tmc2660] [tmc2660]
</a> </a>
</li>
<li class="md-nav__item">
<a href="#tmc2240" class="md-nav__link">
[tmc2240]
</a>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -3814,7 +3828,7 @@ radius:
# 默认值为5。 # 默认值为5。
</code></pre></div> </code></pre></div>
<h3 id="deltesian-kinematics">Deltesian Kinematics<a class="headerlink" href="#deltesian-kinematics" title="Permanent link">&para;</a></h3> <h3 id="delta">Delta 运动学<a class="headerlink" href="#delta" title="Permanent link">&para;</a></h3>
<p>See <a href="https://github.com/Klipper3d/klipper/blob/master/config/example-deltesian.cfg">example-deltesian.cfg</a> for an example deltesian kinematics config file.</p> <p>See <a href="https://github.com/Klipper3d/klipper/blob/master/config/example-deltesian.cfg">example-deltesian.cfg</a> for an example deltesian kinematics config file.</p>
<p>Only parameters specific to deltesian printers are described here - see <a href="#common-kinematic-settings">common kinematic settings</a> for available parameters.</p> <p>Only parameters specific to deltesian printers are described here - see <a href="#common-kinematic-settings">common kinematic settings</a> for available parameters.</p>
<div class="highlight"><pre><span></span><code>[printer] <div class="highlight"><pre><span></span><code>[printer]
@ -3836,7 +3850,7 @@ max_z_velocity:
#min_angle: 5 #min_angle: 5
# This represents the minimum angle (in degrees) relative to horizontal # This represents the minimum angle (in degrees) relative to horizontal
# that the deltesian arms are allowed to achieve. This parameter is # that the deltesian arms are allowed to achieve. This parameter is
# intended to restrict the arms from becomming completely horizontal, # intended to restrict the arms from becoming completely horizontal,
# which would risk accidental inversion of the XZ axis. The default is 5. # which would risk accidental inversion of the XZ axis. The default is 5.
#print_width: #print_width:
# The distance (in mm) of valid toolhead X coordinates. One may use # The distance (in mm) of valid toolhead X coordinates. One may use
@ -3873,7 +3887,7 @@ arm_x_length:
# for stepper_right, this parameter defaults to the value specified for # for stepper_right, this parameter defaults to the value specified for
# stepper_left. # stepper_left.
# The stepper_right section is used to desribe the stepper controlling the # The stepper_right section is used to describe the stepper controlling the
# right tower. # right tower.
[stepper_right] [stepper_right]
@ -4443,12 +4457,12 @@ max_temp:
# The height (in mm) that the head should be commanded to move to # The height (in mm) that the head should be commanded to move to
# just prior to starting a probe operation. The default is 5. # just prior to starting a probe operation. The default is 5.
#screw_thread: CW-M3 #screw_thread: CW-M3
# The type of screw used for bed level, M3, M4 or M5 and the # The type of screw used for bed leveling, M3, M4, or M5, and the
# direction of the knob used to level the bed, clockwise decrease # rotation direction of the knob that is used to level the bed.
# counter-clockwise decrease.
# Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5. # Accepted values: CW-M3, CCW-M3, CW-M4, CCW-M4, CW-M5, CCW-M5.
# Default value is CW-M3, most printers use an M3 screw and # Default value is CW-M3 which most printers use. A clockwise
# turning the knob clockwise decrease distance. # rotation of the knob decreases the gap between the nozzle and the
# bed. Conversely, a counter-clockwise rotation increases the gap.
</code></pre></div> </code></pre></div>
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
@ -5577,26 +5591,22 @@ pin:
#tachometer_ppr: #tachometer_ppr:
#tachometer_poll_interval: #tachometer_poll_interval:
#enable_pin: #enable_pin:
# See the &quot;fan&quot; section for a description of the above parameters. # 请参阅“fan”分段了解上述参数的描述。
#fan_speed: 1.0 #fan_speed: 1.0
# The fan speed (expressed as a value from 0.0 to 1.0) that the fan # 当加热器或步进驱动器活跃时,将设置风扇速度(表示为从 0.0 到 1.0 的值)。
# will be set to when a heater or stepper driver is active. # 默认值为 1.0。
# The default is 1.0
#idle_timeout: #idle_timeout:
# The amount of time (in seconds) after a stepper driver or heater # 在步进驱动器或加热器不再活跃后风扇应保持运行的时间(以秒为单位)。
# was active and the fan should be kept running. The default # 默认值为 30 秒。
# is 30 seconds.
#idle_speed: #idle_speed:
# The fan speed (expressed as a value from 0.0 to 1.0) that the fan # 当步进驱动器或加热器不再活跃后并且达到 idle_timeout 之前,将设置风扇速度
# will be set to when a heater or stepper driver was active and # (表示为从 0.0 到 1.0 的值)。
# before the idle_timeout is reached. The default is fan_speed. # 默认值为 fan_speed。
#heater: #heater:
#stepper: #stepper:
# Name of the config section defining the heater/stepper that this fan # 定义与此风扇相关联的加热器/步进器的配置分段的名称。如果在此处提供了逗号分隔的
# is associated with. If a comma separated list of heater/stepper names # 加热器/步进器名称列表,则当任何给定的加热器/步进器启用时,将启用该风扇。
# is provided here, then the fan will be enabled when any of the given # 默认加热器为 &quot;extruder&quot;,默认步进器为所有步进器。
# heaters/steppers are enabled. The default heater is &quot;extruder&quot;, the
# default stepper is all of them.
</code></pre></div> </code></pre></div>
<h3 id="temperature_fan">[temperature_fan]<a class="headerlink" href="#temperature_fan" title="Permanent link">&para;</a></h3> <h3 id="temperature_fan">[temperature_fan]<a class="headerlink" href="#temperature_fan" title="Permanent link">&para;</a></h3>
@ -5667,7 +5677,7 @@ pin:
#tachometer_ppr: #tachometer_ppr:
#tachometer_poll_interval: #tachometer_poll_interval:
#enable_pin: #enable_pin:
# See the &quot;fan&quot; section for a description of the above parameters. # 请参阅“fan&quot;分段,了解上述参数的描述。
</code></pre></div> </code></pre></div>
<h2 id="leds">LEDs<a class="headerlink" href="#leds" title="Permanent link">&para;</a></h2> <h2 id="leds">LEDs<a class="headerlink" href="#leds" title="Permanent link">&para;</a></h2>
@ -6147,6 +6157,120 @@ run_current:
# HDEC) is interpreted as the MSB of HSTRT in this case). # HDEC) is interpreted as the MSB of HSTRT in this case).
</code></pre></div> </code></pre></div>
<h3 id="tmc2240">[tmc2240]<a class="headerlink" href="#tmc2240" title="Permanent link">&para;</a></h3>
<p>通过 SPI 总线配置 TMC2240 步进电机驱动器。要使用此功能,请定义一个配置分段,其前缀为 "tmc2240",后跟相应步进配置分段的名称(例如,"[tmc2240 stepper_x]")。</p>
<div class="highlight"><pre><span></span><code>[tmc2240 stepper_x]
cs_pin:
# The pin corresponding to the TMC2240 chip select line. This pin
# will be set to low at the start of SPI messages and raised to high
# after the message completes. This parameter must be provided.
#spi_speed:
#spi_bus:
#spi_software_sclk_pin:
#spi_software_mosi_pin:
#spi_software_miso_pin:
# See the &quot;common SPI settings&quot; section for a description of the
# above parameters.
#chain_position:
#chain_length:
# These parameters configure an SPI daisy chain. The two parameters
# define the stepper position in the chain and the total chain length.
# Position 1 corresponds to the stepper that connects to the MOSI signal.
# The default is to not use an SPI daisy chain.
#interpolate: True
# If true, enable step interpolation (the driver will internally
# step at a rate of 256 micro-steps). The default is True.
run_current:
# The amount of current (in amps RMS) to configure the driver to use
# during stepper movement. This parameter must be provided.
#hold_current:
# The amount of current (in amps RMS) to configure the driver to use
# when the stepper is not moving. Setting a hold_current is not
# recommended (see TMC_Drivers.md for details). The default is to
# not reduce the current.
#rref: 12000
# The resistance (in ohms) of the resistor between IREF and GND. The
# default is 12000.
#stealthchop_threshold: 0
# The velocity (in mm/s) to set the &quot;stealthChop&quot; threshold to. When
# set, &quot;stealthChop&quot; mode will be enabled if the stepper motor
# velocity is below this value. The default is 0, which disables
# &quot;stealthChop&quot; mode.
#driver_MSLUT0: 2863314260
#driver_MSLUT1: 1251300522
#driver_MSLUT2: 608774441
#driver_MSLUT3: 269500962
#driver_MSLUT4: 4227858431
#driver_MSLUT5: 3048961917
#driver_MSLUT6: 1227445590
#driver_MSLUT7: 4211234
#driver_W0: 2
#driver_W1: 1
#driver_W2: 1
#driver_W3: 1
#driver_X1: 128
#driver_X2: 255
#driver_X3: 255
#driver_START_SIN: 0
#driver_START_SIN90: 247
#driver_OFFSET_SIN90: 0
# These fields control the Microstep Table registers directly. The optimal
# wave table is specific to each motor and might vary with current. An
# optimal configuration will have minimal print artifacts caused by
# non-linear stepper movement. The values specified above are the default
# values used by the driver. The value must be specified as a decimal integer
# (hex form is not supported). In order to compute the wave table fields,
# see the tmc2130 &quot;Calculation Sheet&quot; from the Trinamic website.
# Additionally, this driver also has the OFFSET_SIN90 field which can be used
# to tune a motor with unbalanced coils. See the `Sine Wave Lookup Table`
# section in the datasheet for information about this field and how to tune
# it.
#driver_IHOLDDELAY: 6
#driver_IRUNDELAY: 4
#driver_TPOWERDOWN: 10
#driver_TBL: 2
#driver_TOFF: 3
#driver_HEND: 2
#driver_HSTRT: 5
#driver_FD3: 0
#driver_TPFD: 4
#driver_CHM: 0
#driver_VHIGHFS: 0
#driver_VHIGHCHM: 0
#driver_DISS2G: 0
#driver_DISS2VS: 0
#driver_PWM_AUTOSCALE: True
#driver_PWM_AUTOGRAD: True
#driver_PWM_FREQ: 0
#driver_FREEWHEEL: 0
#driver_PWM_GRAD: 0
#driver_PWM_OFS: 29
#driver_PWM_REG: 4
#driver_PWM_LIM: 12
#driver_SGT: 0
#driver_SEMIN: 0
#driver_SEUP: 0
#driver_SEMAX: 0
#driver_SEDN: 0
#driver_SEIMIN: 0
#driver_SFILT: 0
#driver_SG4_ANGLE_OFFSET: 1
# Set the given register during the configuration of the TMC2240
# chip. This may be used to set custom motor parameters. The
# defaults for each parameter are next to the parameter name in the
# above list.
#diag0_pin:
#diag1_pin:
# The micro-controller pin attached to one of the DIAG lines of the
# TMC2240 chip. Only a single diag pin should be specified. The pin
# is &quot;active low&quot; and is thus normally prefaced with &quot;^!&quot;. Setting
# this creates a &quot;tmc2240_stepper_x:virtual_endstop&quot; virtual pin
# which may be used as the stepper&#39;s endstop_pin. Doing this enables
# &quot;sensorless homing&quot;. (Be sure to also set driver_SGT to an
# appropriate sensitivity value.) The default is to not enable
# sensorless homing.
</code></pre></div>
<h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3> <h3 id="tmc5160">[tmc5160]<a class="headerlink" href="#tmc5160" title="Permanent link">&para;</a></h3>
<p>通过 SPI 总线配置 TMC5160 步进电机驱动。要使用此功能,请定义一个带有 “tmc5160” 前缀并后跟步进驱动配置分段相应名称的配置分段(例如,“[tmc5160 stepper_x]”)。</p> <p>通过 SPI 总线配置 TMC5160 步进电机驱动。要使用此功能,请定义一个带有 “tmc5160” 前缀并后跟步进驱动配置分段相应名称的配置分段(例如,“[tmc5160 stepper_x]”)。</p>
<div class="highlight"><pre><span></span><code>[tmc5160 stepper_x] <div class="highlight"><pre><span></span><code>[tmc5160 stepper_x]
@ -6944,20 +7068,17 @@ host_mcu:
<p>如果使用 OctoPrint 并通过串行端口流式传输 G-Code而不通过 virtual_sd 打印,将 * 设置&gt;串行连接&gt;固件和协议 * 中的“暂停命令” 设置为<strong>M1</strong><strong>M0</strong> 可以避免在开始打印时需要在Palette 2 上选择开始打印并在 OctoPrint 中取消暂停。</p> <p>如果使用 OctoPrint 并通过串行端口流式传输 G-Code而不通过 virtual_sd 打印,将 * 设置&gt;串行连接&gt;固件和协议 * 中的“暂停命令” 设置为<strong>M1</strong><strong>M0</strong> 可以避免在开始打印时需要在Palette 2 上选择开始打印并在 OctoPrint 中取消暂停。</p>
<div class="highlight"><pre><span></span><code>[palette2] <div class="highlight"><pre><span></span><code>[palette2]
serial: serial:
# 连接到 Palette 2 的串口。 # The serial port to connect to the Palette 2.
#baud: 115200 #baud: 115200
# 使用的波特率。 # The baud rate to use. The default is 115200.
# 默认为115200。
#feedrate_splice: 0.8 #feedrate_splice: 0.8
# 融接时的给进率 # The feedrate to use when splicing, default is 0.8
# 默认为0.8。
#feedrate_normal: 1.0 #feedrate_normal: 1.0
# 不在融接时的给进率 1.0 # The feedrate to use after splicing, default is 1.0
#auto_load_speed: 2 #auto_load_speed: 2
# 自动换料时的给近率 # Extrude feedrate when autoloading, default is 2 (mm/s)
# 默认 2 (mm/s)
#auto_cancel_variation: 0.1 #auto_cancel_variation: 0.1
# # 当 ping 值变化高于此阈值时自动取消打印 # Auto cancel print when ping variation is above this threshold
</code></pre></div> </code></pre></div>
<h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3> <h3 id="angle">[angle]<a class="headerlink" href="#angle" title="Permanent link">&para;</a></h3>
@ -7006,22 +7127,23 @@ cs_pin:
<h3 id="i2c">常见的I2C设置<a class="headerlink" href="#i2c" title="Permanent link">&para;</a></h3> <h3 id="i2c">常见的I2C设置<a class="headerlink" href="#i2c" title="Permanent link">&para;</a></h3>
<p>以下参数一般适用于使用I2C总线的设备。</p> <p>以下参数一般适用于使用I2C总线的设备。</p>
<p>请注意Klipper目前的i2c微控制器实现没有对线路噪音容忍的能力。i2c线路上的意外错误可能会导致Klipper产生一个运行时错误。Klipper对从错误恢复的支持因每个微控制器类型而异。一般建议只使用与微控制器在同一印刷电路板上的i2c设备。</p> <p>Note that Klipper's current micro-controller support for I2C is generally not tolerant to line noise. Unexpected errors on the I2C wires may result in Klipper raising a run-time error. Klipper's support for error recovery varies between each micro-controller type. It is generally recommended to only use I2C devices that are on the same printed circuit board as the micro-controller.</p>
<p>大多数Klipper微控制器的实现只支持100000的<code>i2c_speed</code> 。Klipper 的 "linux "微控制器支持400000的速度但是必须<a href="RPi_microcontroller.html#optional-enabling-i2c">在操作系统中修改设置</a>,否则<code>i2c_speed</code> 参数会被忽略。Klipper "rp2040 "微控制器通过<code>i2c_speed</code> 参数支持400000的速率。所有其他Klipper微控制器使用100000速率并忽略<code>i2c_speed</code> 参数。</p> <p>Most Klipper micro-controller implementations only support an <code>i2c_speed</code> of 100000 (<em>standard mode</em>, 100kbit/s). The Klipper "Linux" micro-controller supports a 400000 speed (<em>fast mode</em>, 400kbit/s), but it must be <a href="RPi_microcontroller.html#optional-enabling-i2c">set in the operating system</a> and the <code>i2c_speed</code> parameter is otherwise ignored. The Klipper "RP2040" micro-controller and ATmega AVR family support a rate of 400000 via the <code>i2c_speed</code> parameter. All other Klipper micro-controllers use a 100000 rate and ignore the <code>i2c_speed</code> parameter.</p>
<div class="highlight"><pre><span></span><code>#i2c_address <div class="highlight"><pre><span></span><code>#i2c_address:
# 设备的i2c地址。必须是一个十进制的数字(不是十六进制)。 # The i2c address of the device. This must specified as a decimal
# 默认值取决于设备的类型。 # number (not in hex). The default depends on the type of device.
#i2c_mcu: #i2c_mcu:
# 芯片所连接的微控制器的名称。 # The name of the micro-controller that the chip is connected to.
# 默认为 &quot;mcu&quot; # The default is &quot;mcu&quot;.
#i2c_bus: #i2c_bus:
# 如果微控制器支持多个I2C总线那么可以在这里指定 # If the micro-controller supports multiple I2C busses then one may
# 微控制器的总线名称。 # specify the micro-controller bus name here. The default depends on
# 默认值取决于微控制器的类型。 # the type of micro-controller.
#i2c_speed: #i2c_speed:
# 与设备通信时使用的I2C速度(Hz)。大多数微控制器上 # The I2C speed (in Hz) to use when communicating with the device.
# 的Klipper实现被硬编码为100000因此改变这个值没有作用。 # The Klipper implementation on most micro-controllers is hard-coded
# 默认值是100000. # to 100000 and changing this value has no effect. The default is
# 100000. Linux, RP2040 and ATmega support 400000.
</code></pre></div> </code></pre></div>

View file

@ -452,7 +452,7 @@
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#klipper-github" class="md-nav__link"> <a href="#klipper-github" class="md-nav__link">
Klipper github Klipper GitHub
</a> </a>
</li> </li>
@ -1365,7 +1365,7 @@
<li class="md-nav__item"> <li class="md-nav__item">
<a href="#klipper-github" class="md-nav__link"> <a href="#klipper-github" class="md-nav__link">
Klipper github Klipper GitHub
</a> </a>
</li> </li>
@ -1436,14 +1436,14 @@
<li>最好使用 zip 或 gzip 压缩日志文件。</li> <li>最好使用 zip 或 gzip 压缩日志文件。</li>
</ol> </ol>
</li> </li>
<li>Open a new topic on the <a href="#community-forum">Klipper Community Forum</a> and provide a clear description of the problem. Other Klipper contributors will need to understand what steps were taken, what the desired outcome was, and what outcome actually occurred. The compressed Klipper log file should be attached to that topic.</li> <li><a href="#community-forum">Klipper社区论坛</a>上发起一个新话题并对问题进行清晰的描述。其他Klipper贡献者需要了解你采取了哪些步骤期望的结果是什么以及实际发生的结果是什么。在话题中应当附上压缩的Klipper日志文件。</li>
</ol> </ol>
<h2 id="klipper_2">我正在进行一些我想添加到 Klipper 中的改进<a class="headerlink" href="#klipper_2" title="Permanent link">&para;</a></h2> <h2 id="klipper_2">我正在进行一些我想添加到 Klipper 中的改进<a class="headerlink" href="#klipper_2" title="Permanent link">&para;</a></h2>
<p>Klipper 是开源软件,我们非常感谢新的贡献。</p> <p>Klipper 是开源软件,我们非常感谢新的贡献。</p>
<p>新的贡献(包括代码和文档)需要通过拉取请求(PR)提交。重要信息请参见<a href="CONTRIBUTING.html">贡献文档</a></p> <p>新的贡献(包括代码和文档)需要通过拉取请求(PR)提交。重要信息请参见<a href="CONTRIBUTING.html">贡献文档</a></p>
<p>There are several <a href="Overview.html#developer-documentation">documents for developers</a>. If you have questions on the code then you can also ask in the <a href="#community-forum">Klipper Community Forum</a> or on the <a href="#discord-chat">Klipper Community Discord</a>.</p> <p>有几个<a href="Overview.html#developer-documentation">开发者文档</a>。如果你对代码有疑问,那么你也可以在<a href="#community-forum">Klipper社区论坛</a><a href="#discord-chat">Klipper社区Discord</a>上提问。</p>
<h2 id="klipper-github">Klipper github<a class="headerlink" href="#klipper-github" title="Permanent link">&para;</a></h2> <h2 id="klipper-github">Klipper GitHub<a class="headerlink" href="#klipper-github" title="Permanent link">&para;</a></h2>
<p>Klipper github may be used by contributors to share the status of their work to improve Klipper. It is expected that the person opening a github ticket is actively working on the given task and will be the one performing all the work necessary to accomplish it. The Klipper github is not used for requests, nor to report bugs, nor to ask questions. Use the <a href="#community-forum">Klipper Community Forum</a> or the <a href="#discord-chat">Klipper Community Discord</a> instead.</p> <p>Klipper GitHub可以被贡献者用来分享他们改进Klipper的工作状态。我们希望创建GitHub Ticket的人正在积极地处理给定的任务并将执行所有必要工作以完成该任务。Klipper GitHub不用于功能请求也不用于报告bug更不用于提问。请使用<a href="#community-forum">Klipper社区论坛</a><a href="#discord-chat">Klipper社区Discord</a>来代替。</p>
</article> </article>

View file

@ -1505,7 +1505,7 @@ make build
<div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so <div class="highlight"><pre><span></span><code>ls ./build/pysimulavr/_pysimulavr.*.so
</code></pre></div> </code></pre></div>
<p>This commmand should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p> <p>This command should report a specific file (e.g. <strong>./build/pysimulavr/_pysimulavr.cpython-39-x86_64-linux-gnu.so</strong>) and not an error.</p>
<p>If you are on a Debian-based system (Debian, Ubuntu, etc.) you can install the following packages and generate *.deb files for system-wide installation of simulavr:</p> <p>If you are on a Debian-based system (Debian, Ubuntu, etc.) you can install the following packages and generate *.deb files for system-wide installation of simulavr:</p>
<div class="highlight"><pre><span></span><code>sudo apt update <div class="highlight"><pre><span></span><code>sudo apt update
sudo apt install g++ make cmake swig rst2pdf help2man texinfo sudo apt install g++ make cmake swig rst2pdf help2man texinfo

View file

@ -1307,7 +1307,7 @@
<p>Klipper 有几个引人注目的功能:</p> <p>Klipper 有几个引人注目的功能:</p>
<ul> <ul>
<li>高精度步进运动。Klipper使用一个应用处理器例如低成本的树莓派来计算打印机运动。应用处理器决定何时对每个步进电机发出步进信号压缩这些事件并将它们发送到微控制器。微处理器将会把每个事件按请求时间执行。每一个步进事件被以25毫秒或更高的精度安排。Klipper不使用运动估计例如 Bresenham算法而是通过加速度与机械运动物理计算精确的步进时间。更精准的步进电机运动意味着打印机更安静和稳定的运行。</li> <li>高精度步进运动。Klipper使用一个应用处理器例如低成本的树莓派来计算打印机运动。应用处理器决定何时对每个步进电机发出步进信号压缩这些事件并将它们发送到微控制器。微处理器将会把每个事件按请求时间执行。每一个步进事件被以25毫秒或更高的精度安排。Klipper不使用运动估计例如 Bresenham算法而是通过加速度与机械运动物理计算精确的步进时间。更精准的步进电机运动意味着打印机更安静和稳定的运行。</li>
<li>同类项目中最佳的性能。 Klipper 能够在新旧微控制器上实现高步进速率。即使是旧的 8 位微控制器也可以发送超过每秒 175K 步的速率。在较新的微控制器上,每秒数百万步也可以实现。更高的步进速率可以实现更高的打印速度。步进事件计时即使在高速下也能保持精确,提高了整体稳定性。</li> <li>最佳表现。Klipper 能够在新旧微控制器上实现高步进速率。即使是老的 8 位微控制器也可以获得超过 175K 步/秒的速率。在较新的微控制器上,数百万步/秒也是可能的。更高的步进速率使打印速度更快。即使在高速运行时,步进电机的事件定时仍然保持精确,从而提高了整体稳定性。</li>
<li>Klipper 支持带有多个微控制器的打印机。例如一个微控制器可以被用来控制挤出机而另一个用来控制加热器并使用第三个来控制其他的打印机组件。Klipper 主机程序实现了时钟同步,解决了微处理器之间的时钟漂移。 启用多个控制器只需要在配置文件中添加几行,不需要任何特殊代码。</li> <li>Klipper 支持带有多个微控制器的打印机。例如一个微控制器可以被用来控制挤出机而另一个用来控制加热器并使用第三个来控制其他的打印机组件。Klipper 主机程序实现了时钟同步,解决了微处理器之间的时钟漂移。 启用多个控制器只需要在配置文件中添加几行,不需要任何特殊代码。</li>
<li>通过简单的配置文件进行配置。修改设置不需要重新刷写微控制器。Klipper 的所有配置都被存储在一个易编辑的配置文件中,大大减少了配置与维护硬件的难度。</li> <li>通过简单的配置文件进行配置。修改设置不需要重新刷写微控制器。Klipper 的所有配置都被存储在一个易编辑的配置文件中,大大减少了配置与维护硬件的难度。</li>
<li>Klipper 支持“平滑提前压力”--一种考虑了挤出机内压力影响的机制。这项技术可以减少喷嘴溢料并改善转角的打印质量。Klipper 的实现不会引入瞬间挤出机速度变化,改善了整体稳定性和稳健性。</li> <li>Klipper 支持“平滑提前压力”--一种考虑了挤出机内压力影响的机制。这项技术可以减少喷嘴溢料并改善转角的打印质量。Klipper 的实现不会引入瞬间挤出机速度变化,改善了整体稳定性和稳健性。</li>
@ -1424,6 +1424,11 @@
<td>1885K</td> <td>1885K</td>
</tr> </tr>
<tr> <tr>
<td>AR100</td>
<td>3529K</td>
<td>2507K</td>
</tr>
<tr>
<td>STM32F407</td> <td>STM32F407</td>
<td>3652K</td> <td>3652K</td>
<td>2459K</td> <td>2459K</td>

View file

@ -4424,7 +4424,7 @@
<h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3> <h3 id="bed_mesh">[bed_mesh]<a class="headerlink" href="#bed_mesh" title="Permanent link">&para;</a></h3>
<p>The following commands are available when the <a href="Config_Reference.html#bed_mesh">bed_mesh config section</a> is enabled (also see the <a href="Bed_Mesh.html">bed mesh guide</a>).</p> <p>The following commands are available when the <a href="Config_Reference.html#bed_mesh">bed_mesh config section</a> is enabled (also see the <a href="Bed_Mesh.html">bed mesh guide</a>).</p>
<h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_calibrate">BED_MESH_CALIBRATE<a class="headerlink" href="#bed_mesh_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_CALIBRATE [METHOD=manual] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: 此命令使用通过配置参数指定并生成的探测点探测打印床。在探测后一个网格将被生成z 轴移动将根据网格调整。有关可选探测参数,请见 PROBE命令。如果指定 METHOD=manual ,则会启动手动探测工具 - 有关此工具活跃时可用的额外命令,详见 MANUAL_PROBE 命令。</p> <p><code>BED_MESH_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;] [&lt;mesh_parameter&gt;=&lt;value&gt;]</code>: This command probes the bed using generated points specified by the parameters in the config. After probing, a mesh is generated and z-movement is adjusted according to the mesh. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_output">BED_MESH_OUTPUT<a class="headerlink" href="#bed_mesh_output" title="Permanent link">&para;</a></h4>
<p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>:该命令将当前探测到的 Z 值和当前网格的值输出到终端。如果指定 PGP=1则将bed_mesh产生的X、Y坐标以及它们关联的指数输出到终端。</p> <p><code>BED_MESH_OUTPUT PGP=[&lt;0:1&gt;]</code>:该命令将当前探测到的 Z 值和当前网格的值输出到终端。如果指定 PGP=1则将bed_mesh产生的X、Y坐标以及它们关联的指数输出到终端。</p>
<h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4> <h4 id="bed_mesh_map">BED_MESH_MAP<a class="headerlink" href="#bed_mesh_map" title="Permanent link">&para;</a></h4>
@ -4442,7 +4442,7 @@
<h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3> <h3 id="bed_tilt">[bed_tilt]<a class="headerlink" href="#bed_tilt" title="Permanent link">&para;</a></h3>
<p>The following commands are available when the <a href="Config_Reference.html#bed_tilt">bed_tilt config section</a> is enabled.</p> <p>The following commands are available when the <a href="Config_Reference.html#bed_tilt">bed_tilt config section</a> is enabled.</p>
<h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4> <h4 id="bed_tilt_calibrate">BED_TILT_CALIBRATE<a class="headerlink" href="#bed_tilt_calibrate" title="Permanent link">&para;</a></h4>
<p><code>BED_TILT_CALIBRATE [Method=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>:该命令将探测配置中指定的点然后建议更新X和Y的倾斜调整。有关可选探测参数的详细信息请参见PROBE命令。如果指定METHOD=manual那么手动探测工具就会被激活 - 关于该工具激活时可用的附加命令请参见上面的MANUAL_PROBE命令。</p> <p><code>BED_TILT_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then recommend updated x and y tilt adjustments. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3> <h3 id="bltouch">[bltouch]<a class="headerlink" href="#bltouch" title="Permanent link">&para;</a></h3>
<p><a href="Config_Reference.html#bltouch">bltouch 配置分段</a>被启用时,以下命令可用(也可参见<a href="BLTouch.html">BL-Touch guide</a>)。</p> <p><a href="Config_Reference.html#bltouch">bltouch 配置分段</a>被启用时,以下命令可用(也可参见<a href="BLTouch.html">BL-Touch guide</a>)。</p>
<h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4> <h4 id="bltouch_debug">BLTOUCH_DEBUG<a class="headerlink" href="#bltouch_debug" title="Permanent link">&para;</a></h4>
@ -4460,7 +4460,7 @@
<h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3> <h3 id="delta_calibrate">[delta_calibrate]<a class="headerlink" href="#delta_calibrate" title="Permanent link">&para;</a></h3>
<p>The following commands are available when the <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config section</a> is enabled (also see the <a href="Delta_Calibrate.html">delta calibrate guide</a>).</p> <p>The following commands are available when the <a href="Config_Reference.html#linear-delta-kinematics">delta_calibrate config section</a> is enabled (also see the <a href="Delta_Calibrate.html">delta calibrate guide</a>).</p>
<h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4> <h4 id="delta_calibrate_1">DELTA_CALIBRATE<a class="headerlink" href="#delta_calibrate_1" title="Permanent link">&para;</a></h4>
<p><code>DELTA_CALIBRATE [Method=manual] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>:这条命令将探测床身的七个点并建议更新限位位置、塔架角度和半径。有关可选探测参数的详细信息请参见PROBE命令。如果指定METHOD=manual那么手动探测工具将被激活 - 关于该工具激活时可用的附加命令的详细信息请参见上面的MANUAL_PROBE命令。</p> <p><code>DELTA_CALIBRATE [METHOD=manual] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe seven points on the bed and recommend updated endstop positions, tower angles, and radius. See the PROBE command for details on the optional probe parameters. If METHOD=manual is specified then the manual probing tool is activated - see the MANUAL_PROBE command above for details on the additional commands available while this tool is active. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4> <h4 id="delta_analyze">DELTA_ANALYZE<a class="headerlink" href="#delta_analyze" title="Permanent link">&para;</a></h4>
<p><code>DELTA_ANALYZE</code>:这个命令在增强的delta校准过程中使用。详情见<a href="Delta_Calibrate.html">Delta Calibrate</a></p> <p><code>DELTA_ANALYZE</code>:这个命令在增强的delta校准过程中使用。详情见<a href="Delta_Calibrate.html">Delta Calibrate</a></p>
<h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3> <h3 id="display">[display]<a class="headerlink" href="#display" title="Permanent link">&para;</a></h3>
@ -4731,7 +4731,7 @@
<h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3> <h3 id="screws_tilt_adjust">[screws_tilt_adjust]<a class="headerlink" href="#screws_tilt_adjust" title="Permanent link">&para;</a></h3>
<p>The following commands are available when the <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust config section</a> is enabled (also see the <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">manual level guide</a>).</p> <p>The following commands are available when the <a href="Config_Reference.html#screws_tilt_adjust">screws_tilt_adjust config section</a> is enabled (also see the <a href="Manual_Level.html#adjusting-bed-leveling-screws-using-the-bed-probe">manual level guide</a>).</p>
<h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4> <h4 id="screws_tilt_calculate">SCREWS_TILT_CALCULATE<a class="headerlink" href="#screws_tilt_calculate" title="Permanent link">&para;</a></h4>
<p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;&gt;] [&lt;探针参数名&gt;=&lt;&gt;]</code>这个命令将调用床身螺丝调整工具。它将命令喷嘴到不同的位置如配置文件中定义的探测z高度并计算出调整床面水平的旋钮旋转次数。如果指定了DIRECTION方向旋钮的转动方向会是固定的顺时针CW或逆时针CCW。有关可选探针参数的详细信息请参见PROBE命令。重要的是在使用这条命令之前必须先做一个G28。如果指定了MAX_DEVIATION如果螺杆高度相对于基础螺杆高度的任何差异大于所提供的值该命令将引发一个G代码错误。</p> <p><code>SCREWS_TILT_CALCULATE [DIRECTION=CW|CCW] [MAX_DEVIATION=&lt;value&gt;] [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will invoke the bed screws adjustment tool. It will command the nozzle to different locations (as defined in the config file) probing the z height and calculate the number of knob turns to adjust the bed level. If DIRECTION is specified, the knob turns will all be in the same direction, clockwise (CW) or counterclockwise (CCW). See the PROBE command for details on the optional probe parameters. IMPORTANT: You MUST always do a G28 before using this command. If MAX_DEVIATION is specified, the command will raise a gcode error if any difference in the screw height relative to the base screw height is greater than the value provided. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
<h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3> <h3 id="sdcard_loop">[sdcard_loop]<a class="headerlink" href="#sdcard_loop" title="Permanent link">&para;</a></h3>
<p>When the <a href="Config_Reference.html#sdcard_loop">sdcard_loop config section</a> is enabled, the following extended commands are available.</p> <p>When the <a href="Config_Reference.html#sdcard_loop">sdcard_loop config section</a> is enabled, the following extended commands are available.</p>
<h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4> <h4 id="sdcard_loop_begin">SDCARD_LOOP_BEGIN<a class="headerlink" href="#sdcard_loop_begin" title="Permanent link">&para;</a></h4>
@ -4771,13 +4771,13 @@
<h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3> <h3 id="tmcxxxx">[tmcXXXX]<a class="headerlink" href="#tmcxxxx" title="Permanent link">&para;</a></h3>
<p>The following commands are available when any of the <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config sections</a> are enabled.</p> <p>The following commands are available when any of the <a href="Config_Reference.html#tmc-stepper-driver-configuration">tmcXXXX config sections</a> are enabled.</p>
<h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4> <h4 id="dump_tmc">DUMP_TMC<a class="headerlink" href="#dump_tmc" title="Permanent link">&para;</a></h4>
<p><code>DUMP_TMC STEPPER=&lt;name&gt;</code>。该命令将读取TMC驱动寄存器并报告其值。</p> <p><code>DUMP_TMC STEPPER=&lt;name&gt; [REGISTER=&lt;name&gt;]</code>: This command will read all TMC driver registers and report their values. If a REGISTER is provided, only the specified register will be dumped.</p>
<h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4> <h4 id="init_tmc">INIT_TMC<a class="headerlink" href="#init_tmc" title="Permanent link">&para;</a></h4>
<p><code>INIT_TMC STEPPER=&lt;名称&gt;</code>:此命令将初始化 TMC 寄存器。如果芯片的电源关闭然后重新打开,则需要重新启用该驱动。</p> <p><code>INIT_TMC STEPPER=&lt;名称&gt;</code>:此命令将初始化 TMC 寄存器。如果芯片的电源关闭然后重新打开,则需要重新启用该驱动。</p>
<h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_current">SET_TMC_CURRENT<a class="headerlink" href="#set_tmc_current" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_CURRENT STEPPER=&lt;名称&gt; CURRENT=&lt;安培&gt; HOLDCURRENT=&lt;安培&gt;</code>该命令修改TMC驱动的运行和保持电流HOLDCURRENT 在 tmc2660 驱动上不起效)。</p> <p><code>SET_TMC_CURRENT STEPPER=&lt;name&gt; CURRENT=&lt;amps&gt; HOLDCURRENT=&lt;amps&gt;</code>: This will adjust the run and hold currents of the TMC driver. <code>HOLDCURRENT</code> is not applicable to tmc2660 drivers. When used on a driver which has the <code>globalscaler</code> field (tmc5160 and tmc2240), if StealthChop2 is used, the stepper must be held at standstill for &gt;130ms so that the driver executes the AT#1 calibration.</p>
<h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4> <h4 id="set_tmc_field">SET_TMC_FIELD<a class="headerlink" href="#set_tmc_field" title="Permanent link">&para;</a></h4>
<p><code>SET_TMC_FIELD STEPPER=&lt;名称&gt; FIELD=&lt;字段&gt; VALUE=&lt;&gt;</code>:这将修改指定 TMC 步进驱动寄存器字段的值。该命令仅适用于低级别的诊断和调试,因为在运行期间改变字段可能会导致打印机出现不符合预期的、有潜在危险的行为。常规修改应当通过打印机配置文件进行。该命令不会对给定的值进行越界检查。</p> <p><code>SET_TMC_FIELD STEPPER=&lt;name&gt; FIELD=&lt;field&gt; VALUE=&lt;value&gt; VELOCITY=&lt;value&gt;</code>: This will alter the value of the specified register field of the TMC driver. This command is intended for low-level diagnostics and debugging only because changing the fields during run-time can lead to undesired and potentially dangerous behavior of your printer. Permanent changes should be made using the printer configuration file instead. No sanity checks are performed for the given values. A VELOCITY can also be specified instead of a VALUE. This velocity is converted to the 20bit TSTEP based value representation. Only use the VELOCITY argument for fields that represent velocities.</p>
<h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3> <h3 id="toolhead">[toolhead]<a class="headerlink" href="#toolhead" title="Permanent link">&para;</a></h3>
<p>The toolhead module is automatically loaded.</p> <p>The toolhead module is automatically loaded.</p>
<h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4> <h4 id="set_velocity_limit">SET_VELOCITY_LIMIT<a class="headerlink" href="#set_velocity_limit" title="Permanent link">&para;</a></h4>
@ -4814,7 +4814,7 @@
<h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3> <h3 id="z_tilt">[z_tilt]<a class="headerlink" href="#z_tilt" title="Permanent link">&para;</a></h3>
<p>The following commands are available when the <a href="Config_Reference.html#z_tilt">z_tilt config section</a> is enabled.</p> <p>The following commands are available when the <a href="Config_Reference.html#z_tilt">z_tilt config section</a> is enabled.</p>
<h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4> <h4 id="z_tilt_adjust">Z_TILT_ADJUST<a class="headerlink" href="#z_tilt_adjust" title="Permanent link">&para;</a></h4>
<p><code>Z_TILT_ADJUST [&lt;probe_参数&gt;=&lt;&gt;]</code>该命令将探测配置中指定的坐标并对每个Z步进电机进行独立的调整以抵消倾斜。有关可选的探针参数详见 PROBE 命令。</p> <p><code>Z_TILT_ADJUST [HORIZONTAL_MOVE_Z=&lt;value&gt;] [&lt;probe_parameter&gt;=&lt;value&gt;]</code>: This command will probe the points specified in the config and then make independent adjustments to each Z stepper to compensate for tilt. See the PROBE command for details on the optional probe parameters. The optional <code>HORIZONTAL_MOVE_Z</code> value overrides the <code>horizontal_move_z</code> option specified in the config file.</p>
</article> </article>

View file

@ -1348,11 +1348,11 @@
<h1 id="_1">霍尔耗材线径传感器<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1> <h1 id="_1">霍尔耗材线径传感器<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h1>
<p>本文件介绍了耗材宽度传感器的主机模块。用于开发该主机模块的硬件基于两个霍尔线性传感器例如ss49e设备内的两个传感器位于两侧。工作原理:两个霍尔传感器以差分模式工作,由于传感器的温度漂移相同不需要特殊的温度补偿。</p> <p>本文件介绍了耗材直径传感器的主机模块。用于开发该主机模块的硬件基于两个霍尔线性传感器例如ss49e霍尔传感器位于相对耗材直径模块的两侧。工作原理:两个霍尔传感器以差分模式工作,由于传感器的温度漂移相同不需要特殊的温度补偿。</p>
<p>你可以在<a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>上找到设计,在<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a>上也有一个装配视频</p> <p>你可以在<a href="https://www.thingiverse.com/thing:4138933">Thingiverse</a>上找到设计,在<a href="https://www.youtube.com/watch?v=TDO9tME8vp4">Youtube</a>上也有一个装配视频</p>
<p>要使用霍尔耗材线径传感器,请阅读<a href="Config_Reference.html#hall_filament_width_sensor">配置参考</a><a href="G-Codes.html#hall_filament_width_sensor">G-Code 文档</a></p> <p>要使用霍尔耗材线径传感器,请阅读<a href="Config_Reference.html#hall_filament_width_sensor">配置参考</a><a href="G-Codes.html#hall_filament_width_sensor">G-Code 文档</a></p>
<h2 id="_2">它如何运作?<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">它如何运作?<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>传感器根据两个模拟输出计算出耗材直径。检测到的电压之和始终对应耗材宽度。主机模块监测电压变化并调整挤出倍率。我在类似ramps的控制板上使用aux2连接器的 analog11和analog12引脚你也可以使用不同的引脚和不同的控制板。</p> <p>传感器基于两个模拟输出计算出耗材直径。检测到的电压之和始终对应耗材直径。主机模块监测电压变化并调整挤出倍率。例如可以在类似ramps的控制板上使用 aux2 连接器的 analog11和analog12引脚你也可以使用不同的引脚和不同的控制板。</p>
<h2 id="_3">菜单变量模板<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h2> <h2 id="_3">菜单变量模板<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h2>
<div class="highlight"><pre><span></span><code>[menu __main __filament __width_current] <div class="highlight"><pre><span></span><code>[menu __main __filament __width_current]
type: command type: command

View file

@ -735,6 +735,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -787,6 +807,33 @@
Configure ADXL345 With RPi Configure ADXL345 With RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1480,6 +1527,26 @@
ADXL345 ADXL345
</a> </a>
<nav class="md-nav" aria-label="ADXL345">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#direct-to-raspberry-pi" class="md-nav__link">
Direct to Raspberry Pi
</a>
</li>
<li class="md-nav__item">
<a href="#using-raspberry-pi-pico" class="md-nav__link">
Using Raspberry Pi Pico
</a>
</li>
</ul>
</nav>
</li> </li>
</ul> </ul>
@ -1532,6 +1599,33 @@
Configure ADXL345 With RPi Configure ADXL345 With RPi
</a> </a>
</li>
<li class="md-nav__item">
<a href="#configure-adxl345-with-pi-pico" class="md-nav__link">
Configure ADXL345 With Pi Pico
</a>
<nav class="md-nav" aria-label="Configure ADXL345 With Pi Pico">
<ul class="md-nav__list">
<li class="md-nav__item">
<a href="#flash-the-pico-firmware" class="md-nav__link">
Flash the Pico Firmware
</a>
</li>
<li class="md-nav__item">
<a href="#configure-the-connection" class="md-nav__link">
Configure the Connection
</a>
</li>
</ul>
</nav>
</li> </li>
<li class="md-nav__item"> <li class="md-nav__item">
@ -1662,7 +1756,7 @@
<p>When sourcing ADXL345, be aware that there is a variety of different PCB board designs and different clones of them. Make sure that the board supports SPI mode (small number of boards appear to be hard-configured for I2C by pulling SDO to GND), and, if it is going to be connected to a 5V printer MCU, that it has a voltage regulator and a level shifter.</p> <p>When sourcing ADXL345, be aware that there is a variety of different PCB board designs and different clones of them. Make sure that the board supports SPI mode (small number of boards appear to be hard-configured for I2C by pulling SDO to GND), and, if it is going to be connected to a 5V printer MCU, that it has a voltage regulator and a level shifter.</p>
<h2 id="_2">安装指南<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">安装指南<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<h3 id="_3">接线<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3> <h3 id="_3">接线<a class="headerlink" href="#_3" title="Permanent link">&para;</a></h3>
<p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrety over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p> <p>An ethernet cable with shielded twisted pairs (cat5e or better) is recommended for signal integrity over a long distance. If you still experience signal integrity issues (SPI/I2C errors), shorten the cable.</p>
<p>Connect ethernet cable shielding to the controller board/RPI ground.</p> <p>Connect ethernet cable shielding to the controller board/RPI ground.</p>
<p><strong><em>Double-check your wiring before powering up to prevent damaging your MCU/Raspberry Pi or the accelerometer.</em></strong></p> <p><strong><em>Double-check your wiring before powering up to prevent damaging your MCU/Raspberry Pi or the accelerometer.</em></strong></p>
<h4 id="spi-accelerometers">SPI Accelerometers<a class="headerlink" href="#spi-accelerometers" title="Permanent link">&para;</a></h4> <h4 id="spi-accelerometers">SPI Accelerometers<a class="headerlink" href="#spi-accelerometers" title="Permanent link">&para;</a></h4>
@ -1673,7 +1767,8 @@ SCLK+CS
</code></pre></div> </code></pre></div>
<h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5> <h5 id="adxl345">ADXL345<a class="headerlink" href="#adxl345" title="Permanent link">&para;</a></h5>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and avaliable pins.</strong></p> <h6 id="direct-to-raspberry-pi">Direct to Raspberry Pi<a class="headerlink" href="#direct-to-raspberry-pi" title="Permanent link">&para;</a></h6>
<p><strong>Note: Many MCUs will work with an ADXL345 in SPI mode(eg Pi Pico), wiring and configuration will vary according to your specific board and available pins.</strong></p>
<p>我们需要将ADXL345连接到树莓派的SPI接口。注意尽管ADXL345文档推荐使用I2C但其数据吞吐能力不足<strong>不能</strong>实现共振测量的要求。推荐的接线图为:</p> <p>我们需要将ADXL345连接到树莓派的SPI接口。注意尽管ADXL345文档推荐使用I2C但其数据吞吐能力不足<strong>不能</strong>实现共振测量的要求。推荐的接线图为:</p>
<table> <table>
<thead> <thead>
@ -1687,7 +1782,7 @@ SCLK+CS
<tr> <tr>
<td align="center">3V3 或 VCC</td> <td align="center">3V3 或 VCC</td>
<td align="center">01</td> <td align="center">01</td>
<td align="center">3.3v 直流DC电源</td> <td align="center">3.3V DC power</td>
</tr> </tr>
<tr> <tr>
<td align="center">GND</td> <td align="center">GND</td>
@ -1695,7 +1790,7 @@ SCLK+CS
<td align="center">GND</td> <td align="center">GND</td>
</tr> </tr>
<tr> <tr>
<td align="center">CS(芯片选定)</td> <td align="center">CS</td>
<td align="center">24</td> <td align="center">24</td>
<td align="center">GPIO08 (SPI0_CE0_N)</td> <td align="center">GPIO08 (SPI0_CE0_N)</td>
</tr> </tr>
@ -1718,6 +1813,52 @@ SCLK+CS
</table> </table>
<p>部分ADXL345开发板的Fritzing接线图如下</p> <p>部分ADXL345开发板的Fritzing接线图如下</p>
<p><img alt="ADXL345-树莓派" src="img/adxl345-fritzing.png" /></p> <p><img alt="ADXL345-树莓派" src="img/adxl345-fritzing.png" /></p>
<h6 id="using-raspberry-pi-pico">Using Raspberry Pi Pico<a class="headerlink" href="#using-raspberry-pi-pico" title="Permanent link">&para;</a></h6>
<p>You may connect the ADXL345 to your Raspberry Pi Pico and then connect the Pico to your Raspberry Pi via USB. This makes it easy to reuse the accelerometer on other Klipper devices, as you can connect via USB instead of GPIO. The Pico does not have much processing power, so make sure it is only running the accelerometer and not performing any other duties.</p>
<p>In order to avoid damage to your RPi make sure to connect the ADXL345 to 3.3V only. Depending on the board's layout, a level shifter may be present, which makes 5V dangerous for your RPi.</p>
<table>
<thead>
<tr>
<th align="center">ADXL345引脚</th>
<th align="center">Pico pin</th>
<th align="center">Pico pin name</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">3V3 或 VCC</td>
<td align="center">36</td>
<td align="center">3.3V DC power</td>
</tr>
<tr>
<td align="center">GND</td>
<td align="center">38</td>
<td align="center">GND</td>
</tr>
<tr>
<td align="center">CS</td>
<td align="center">2</td>
<td align="center">GP1 (SPI0_CSn)</td>
</tr>
<tr>
<td align="center">SDO</td>
<td align="center">1</td>
<td align="center">GP0 (SPI0_RX)</td>
</tr>
<tr>
<td align="center">SDA</td>
<td align="center">5</td>
<td align="center">GP3 (SPI0_TX)</td>
</tr>
<tr>
<td align="center">SCL</td>
<td align="center">4</td>
<td align="center">GP2 (SPI0_SCK)</td>
</tr>
</tbody>
</table>
<p>Wiring diagrams for some of the ADXL345 boards:</p>
<p><img alt="ADXL345-Pico" src="img/adxl345-pico.png" /></p>
<h4 id="i2c-accelerometers">I2C Accelerometers<a class="headerlink" href="#i2c-accelerometers" title="Permanent link">&para;</a></h4> <h4 id="i2c-accelerometers">I2C Accelerometers<a class="headerlink" href="#i2c-accelerometers" title="Permanent link">&para;</a></h4>
<p>Suggested twisted pair order:</p> <p>Suggested twisted pair order:</p>
<div class="highlight"><pre><span></span><code>3.3V+SDA <div class="highlight"><pre><span></span><code>3.3V+SDA
@ -1826,6 +1967,47 @@ probe_points:
</code></pre></div> </code></pre></div>
<p>建议在测试开始前,用探针在热床中央进行一次探测,触发后稍微上移。</p> <p>建议在测试开始前,用探针在热床中央进行一次探测,触发后稍微上移。</p>
<h4 id="configure-adxl345-with-pi-pico">Configure ADXL345 With Pi Pico<a class="headerlink" href="#configure-adxl345-with-pi-pico" title="Permanent link">&para;</a></h4>
<h5 id="flash-the-pico-firmware">Flash the Pico Firmware<a class="headerlink" href="#flash-the-pico-firmware" title="Permanent link">&para;</a></h5>
<p>On your Raspberry Pi, compile the firmware for the Pico.</p>
<div class="highlight"><pre><span></span><code>cd ~/klipper
make clean
make menuconfig
</code></pre></div>
<p><img alt="Pico menuconfig" src="img/klipper_pico_menuconfig.png" /></p>
<p>Now, while holding down the <code>BOOTSEL</code> button on the Pico, connect the Pico to the Raspberry Pi via USB. Compile and flash the firmware.</p>
<div class="highlight"><pre><span></span><code>make flash FLASH_DEVICE=first
</code></pre></div>
<p>If that fails, you will be told which <code>FLASH_DEVICE</code> to use. In this example, that's <code>make flash FLASH_DEVICE=2e8a:0003</code>. <img alt="Determine flash device" src="img/flash_rp2040_FLASH_DEVICE.png" /></p>
<h5 id="configure-the-connection">Configure the Connection<a class="headerlink" href="#configure-the-connection" title="Permanent link">&para;</a></h5>
<p>The Pico will now reboot with the new firmware and should show up as a serial device. Find the pico serial device with <code>ls /dev/serial/by-id/*</code>. You can now add an <code>adxl.cfg</code> file with the following settings:</p>
<div class="highlight"><pre><span></span><code>[mcu adxl]
# Change &lt;mySerial&gt; to whatever you found above. For example,
# usb-Klipper_rp2040_E661640843545B2E-if00
serial: /dev/serial/by-id/usb-Klipper_rp2040_&lt;mySerial&gt;
[adxl345]
cs_pin: adxl:gpio1
spi_bus: spi0a
axes_map: x,z,y
[resonance_tester]
accel_chip: adxl345
probe_points:
# Somewhere slightly above the middle of your print bed
147,154, 20
[output_pin power_mode] # Improve power stability
pin: adxl:gpio23
</code></pre></div>
<p>If setting up the ADXL345 configuration in a separate file, as shown above, you'll also want to modify your <code>printer.cfg</code> file to include this:</p>
<div class="highlight"><pre><span></span><code>[include adxl.cfg] # Comment this out when you disconnect the accelerometer
</code></pre></div>
<p>通过<code>RESTART</code>命令重启Klipper。</p>
<h4 id="configure-mpu-60009000-series-with-rpi">Configure MPU-6000/9000 series With RPi<a class="headerlink" href="#configure-mpu-60009000-series-with-rpi" title="Permanent link">&para;</a></h4> <h4 id="configure-mpu-60009000-series-with-rpi">Configure MPU-6000/9000 series With RPi<a class="headerlink" href="#configure-mpu-60009000-series-with-rpi" title="Permanent link">&para;</a></h4>
<p>Make sure the Linux I2C driver is enabled and the baud rate is set to 400000 (see <a href="RPi_microcontroller.html#optional-enabling-i2c">Enabling I2C</a> section for more details). Then, add the following to the printer.cfg:</p> <p>Make sure the Linux I2C driver is enabled and the baud rate is set to 400000 (see <a href="RPi_microcontroller.html#optional-enabling-i2c">Enabling I2C</a> section for more details). Then, add the following to the printer.cfg:</p>
<div class="highlight"><pre><span></span><code>[mcu rpi] <div class="highlight"><pre><span></span><code>[mcu rpi]
@ -1848,7 +2030,7 @@ serial: /dev/serial/by-id/&lt;your PICO&#39;s serial ID&gt;
[mpu9250] [mpu9250]
i2c_mcu: pico i2c_mcu: pico
i2c_bus: i2c1a i2c_bus: i2c0a
[resonance_tester] [resonance_tester]
accel_chip: mpu9250 accel_chip: mpu9250
@ -1871,7 +2053,7 @@ pin: pico:gpio23
<div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800 <div class="highlight"><pre><span></span><code>Recv: // adxl345 values (x, y, z): 470.719200, 941.438400, 9728.196800
</code></pre></div> </code></pre></div>
<p>如果输出类似 <code>Invalid adxl345 id (got xx vs e5)</code>,其中'xx'为e5以外ID这表示出现连接问题连接错误、线缆电阻过大、干扰等或传感器错误残次传感器 或 错误的传感器)。请在此检查电源,接线(再三确定接线正确,没有破损、松动的电线)或焊接问题。</p> <p>If you get an error like <code>Invalid adxl345 id (got xx vs e5)</code>, where <code>xx</code> is some other ID, immediately try again. There's an issue with SPI initialization. If you still get an error, it is indicative of the connection problem with ADXL345, or the faulty sensor. Double-check the power, the wiring (that it matches the schematics, no wire is broken or loose, etc.), and soldering quality.</p>
<p><strong>If you are using MPU-6000/9000 series accelerometer and it show up as <code>mpu-unknown</code>, use with caution! They are probably refurbished chips!</strong></p> <p><strong>If you are using MPU-6000/9000 series accelerometer and it show up as <code>mpu-unknown</code>, use with caution! They are probably refurbished chips!</strong></p>
<p>下一步在Octoprint中输入 <code>MEASURE_AXES_NOISE</code>之后将会显示各个轴的基准测量噪声其值应在1-100之间。如果轴的噪声极高例如 1000 或更高可能意味着3D打印机上存在传感器问题、电源问题或不平衡的风扇。</p> <p>下一步在Octoprint中输入 <code>MEASURE_AXES_NOISE</code>之后将会显示各个轴的基准测量噪声其值应在1-100之间。如果轴的噪声极高例如 1000 或更高可能意味着3D打印机上存在传感器问题、电源问题或不平衡的风扇。</p>
<h3 id="_8">测量共振值<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3> <h3 id="_8">测量共振值<a class="headerlink" href="#_8" title="Permanent link">&para;</a></h3>
@ -1923,7 +2105,7 @@ max_accel: 3000 # should not exceed the estimated max_accel for X and Y axes
</code></pre></div> </code></pre></div>
<p>也可以根据生成的图表自己选择一些其他配置:图表上的功率谱密度的峰值对应于打印机的共振频率。</p> <p>也可以根据生成的图表自己选择一些其他配置:图表上的功率谱密度的峰值对应于打印机的共振频率。</p>
<p>请注意,可以<a href="#input-shaper-auto-calibration">直接</a>在Klipper中运行输入整形器自动校准这可能更方便例如对于输入整形器<a href="#input-shaper-re-calibration">重新校准</a></p> <p>Note that alternatively you can run the input shaper auto-calibration from Klipper <a href="#input-shaper-auto-calibration">directly</a>, which can be convenient, for example, for the input shaper <a href="#input-shaper-re-calibration">re-calibration</a>.</p>
<h3 id="_9">平行于喷嘴移动打印床的打印机<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3> <h3 id="_9">平行于喷嘴移动打印床的打印机<a class="headerlink" href="#_9" title="Permanent link">&para;</a></h3>
<p>如果打印机的打印床可以平行于喷嘴移动测量X和Y轴时需要改变加速度计的安装位置。安装加速度计到打印头以测量X轴共振安装到打印床以测量Y轴该类打印机的常见配置</p> <p>如果打印机的打印床可以平行于喷嘴移动测量X和Y轴时需要改变加速度计的安装位置。安装加速度计到打印头以测量X轴共振安装到打印床以测量Y轴该类打印机的常见配置</p>
<p>也可以同时连接两个加速度计尽管它们必须连接到不同的主板例如连接到树莓派和MCU或者连接到同一板上两个不同的物理SPI接口大多数情况下不可用。然后可以按以下方式配置它们</p> <p>也可以同时连接两个加速度计尽管它们必须连接到不同的主板例如连接到树莓派和MCU或者连接到同一板上两个不同的物理SPI接口大多数情况下不可用。然后可以按以下方式配置它们</p>
@ -2050,7 +2232,7 @@ Recommended shaper_type_y = mzv, shaper_freq_y = 36.8 Hz
<div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X <div class="highlight"><pre><span></span><code>SHAPER_CALIBRATE AXIS=X
</code></pre></div> </code></pre></div>
<p><strong>警告! </strong>不建议非常频繁地运行成型机自动校准例如在每次打印之前或每天。为了确定共振频率自动校准会在每个轴上产生强烈的振动。通常3D 打印机的设计不能承受长时间暴露于共振频率附近的振动。这样做可能会增加打印机组件的磨损并缩短其使用寿命。某些零件拧松或松动的风险也会增加。每次自动调整后,请务必检查打印机的所有部件(包括通常不会移动的部件)是否牢固地固定到位。</p> <p><strong>Warning!</strong> It is not advisable to run the shaper auto-calibration very frequently (e.g. before every print, or every day). In order to determine resonance frequencies, auto-calibration creates intensive vibrations on each of the axes. Generally, 3D printers are not designed to withstand a prolonged exposure to vibrations near the resonance frequencies. Doing so may increase wear of the printer components and reduce their lifespan. There is also an increased risk of some parts unscrewing or becoming loose. Always check that all parts of the printer (including the ones that may normally not move) are securely fixed in place after each auto-tuning.</p>
<p>此外,由于测量中的一些噪音,每次校准得到的调谐结果会略有不同。不过,这些噪音一般不会对打印质量产生太大影响。然而,我们仍然建议仔细检查建议的参数,并在使用前打印一些测试件以确认它们是正确的。</p> <p>此外,由于测量中的一些噪音,每次校准得到的调谐结果会略有不同。不过,这些噪音一般不会对打印质量产生太大影响。然而,我们仍然建议仔细检查建议的参数,并在使用前打印一些测试件以确认它们是正确的。</p>
<h2 id="_14">离线处理加速计数据<a class="headerlink" href="#_14" title="Permanent link">&para;</a></h2> <h2 id="_14">离线处理加速计数据<a class="headerlink" href="#_14" title="Permanent link">&para;</a></h2>
<p>It is possible to generate the raw accelerometer data and process it offline (e.g. on a host machine), for example to find resonances. In order to do so, run the following commands via Octoprint terminal:</p> <p>It is possible to generate the raw accelerometer data and process it offline (e.g. on a host machine), for example to find resonances. In order to do so, run the following commands via Octoprint terminal:</p>

View file

@ -1342,7 +1342,7 @@
<h2 id="_1">版本管理<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2> <h2 id="_1">版本管理<a class="headerlink" href="#_1" title="Permanent link">&para;</a></h2>
<p>如果你从 git 构建 Klipper 包,通常的做法是不提供 .git 目录,所以版本管理必须在没有 git 的情况下处理。要做到这一点,请使用 <code>scripts/make_version.py</code> 中提供的脚本,该脚本应按如下方式运行:<code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code></p> <p>如果你从 git 构建 Klipper 包,通常的做法是不提供 .git 目录,所以版本管理必须在没有 git 的情况下处理。要做到这一点,请使用 <code>scripts/make_version.py</code> 中提供的脚本,该脚本应按如下方式运行:<code>python2 scripts/make_version.py YOURDISTRONAME &gt; klippy/.version</code></p>
<h2 id="_2">示例打包脚本<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2> <h2 id="_2">示例打包脚本<a class="headerlink" href="#_2" title="Permanent link">&para;</a></h2>
<p>klipper-git 是 klipper 的 Arch Linux 软件包,<a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch User Repositiory</a>上有一个 PKGBUILD软件包构建脚本</p> <p>klipper-git已经为Arch Linux打包并且<a href="https://aur.archlinux.org/cgit/aur.git/tree/PKGBUILD?h=klipper-git">Arch用户存储库</a>中提供了PKGBUILD软件包构建脚本</p>
</article> </article>

Some files were not shown because too many files have changed in this diff Show more