mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-06 22:47:32 -06:00

* Revert "Fixed an bug that filament_minimal_purge_on_wipe_tower option doesn't work for soluable filament (#8397)"
This reverts commit fcc5489911
.
* Fixed an bug that filament_minimal_purge_on_wipe_tower option doesn't work for soluable filament (#8397)
---------
Co-authored-by: SoftFever <softfeverever@gmail.com>
1745 lines
79 KiB
C++
1745 lines
79 KiB
C++
// Orca: WipeTower2 for all non bbl printers, support all MMU device and toolchanger.
|
|
#include "WipeTower2.hpp"
|
|
|
|
#include <cassert>
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <numeric>
|
|
#include <memory>
|
|
#include <sstream>
|
|
#include <iomanip>
|
|
|
|
#include "ClipperUtils.hpp"
|
|
#include "GCodeProcessor.hpp"
|
|
#include "BoundingBox.hpp"
|
|
#include "LocalesUtils.hpp"
|
|
#include "Geometry.hpp"
|
|
#include "PrintConfig.hpp"
|
|
#include "Surface.hpp"
|
|
#include "Fill/FillRectilinear.hpp"
|
|
|
|
#include <boost/algorithm/string/predicate.hpp>
|
|
|
|
|
|
namespace Slic3r
|
|
{
|
|
|
|
// Calculates length of extrusion line to extrude given volume
|
|
static float volume_to_length(float volume, float line_width, float layer_height)
|
|
{
|
|
return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))));
|
|
}
|
|
|
|
static float length_to_volume(float length, float line_width, float layer_height)
|
|
{
|
|
return std::max(0.f, length * layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f)));
|
|
}
|
|
|
|
|
|
|
|
|
|
class WipeTowerWriter2
|
|
{
|
|
public:
|
|
WipeTowerWriter2(float layer_height, float line_width, GCodeFlavor flavor, const std::vector<WipeTower2::FilamentParameters>& filament_parameters) :
|
|
m_current_pos(std::numeric_limits<float>::max(), std::numeric_limits<float>::max()),
|
|
m_current_z(0.f),
|
|
m_current_feedrate(0.f),
|
|
m_layer_height(layer_height),
|
|
m_extrusion_flow(0.f),
|
|
m_preview_suppressed(false),
|
|
m_elapsed_time(0.f),
|
|
m_gcode_flavor(flavor),
|
|
m_filpar(filament_parameters)
|
|
{
|
|
// ORCA: This class is only used by non BBL printers, so set the parameter appropriately.
|
|
// This fixes an issue where the wipe tower was using BBL tags resulting in statistics for purging in the purge tower not being displayed.
|
|
GCodeProcessor::s_IsBBLPrinter = false;
|
|
// adds tag for analyzer:
|
|
std::ostringstream str;
|
|
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) << m_layer_height << "\n"; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming
|
|
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role) << ExtrusionEntity::role_to_string(erWipeTower) << "\n";
|
|
m_gcode += str.str();
|
|
change_analyzer_line_width(line_width);
|
|
}
|
|
|
|
WipeTowerWriter2& change_analyzer_line_width(float line_width) {
|
|
// adds tag for analyzer:
|
|
std::stringstream str;
|
|
str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) << line_width << "\n";
|
|
m_gcode += str.str();
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) {
|
|
m_wipe_tower_width = width;
|
|
m_wipe_tower_depth = depth;
|
|
m_internal_angle = internal_angle;
|
|
m_start_pos = this->rotate(pos);
|
|
m_current_pos = pos;
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& set_position(const Vec2f &pos) { m_current_pos = pos; return *this; }
|
|
|
|
WipeTowerWriter2& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; }
|
|
|
|
WipeTowerWriter2& set_z(float z)
|
|
{ m_current_z = z; return *this; }
|
|
|
|
WipeTowerWriter2& set_extrusion_flow(float flow)
|
|
{ m_extrusion_flow = flow; return *this; }
|
|
|
|
WipeTowerWriter2& set_y_shift(float shift) {
|
|
m_current_pos.y() -= shift-m_y_shift;
|
|
m_y_shift = shift;
|
|
return (*this);
|
|
}
|
|
|
|
WipeTowerWriter2& disable_linear_advance() {
|
|
if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware)
|
|
m_gcode += (std::string("M572 D") + std::to_string(m_current_tool) + " S0\n");
|
|
else if (m_gcode_flavor == gcfKlipper)
|
|
m_gcode += "SET_PRESSURE_ADVANCE ADVANCE=0\n";
|
|
else
|
|
m_gcode += "M900 K0\n";
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& switch_filament_monitoring(bool enable) {
|
|
m_gcode += std::string("G4 S0\n") + "M591 " + (enable ? "R" : "S0") + "\n";
|
|
return *this;
|
|
}
|
|
|
|
// Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various
|
|
// filament loading and cooling moves from normal extrusion moves. Therefore the writer
|
|
// is asked to suppres output of some lines, which look like extrusions.
|
|
WipeTowerWriter2& suppress_preview() { m_preview_suppressed = true; return *this; }
|
|
WipeTowerWriter2& resume_preview() { m_preview_suppressed = false; return *this; }
|
|
|
|
WipeTowerWriter2& feedrate(float f)
|
|
{
|
|
if (f != m_current_feedrate) {
|
|
m_gcode += "G1" + set_format_F(f) + "\n";
|
|
m_current_feedrate = f;
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
const std::string& gcode() const { return m_gcode; }
|
|
const std::vector<WipeTower::Extrusion>& extrusions() const { return m_extrusions; }
|
|
float x() const { return m_current_pos.x(); }
|
|
float y() const { return m_current_pos.y(); }
|
|
const Vec2f& pos() const { return m_current_pos; }
|
|
const Vec2f start_pos_rotated() const { return m_start_pos; }
|
|
const Vec2f pos_rotated() const { return this->rotate(m_current_pos); }
|
|
float elapsed_time() const { return m_elapsed_time; }
|
|
float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; }
|
|
|
|
// Extrude with an explicitely provided amount of extrusion.
|
|
WipeTowerWriter2& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
|
|
{
|
|
if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate))
|
|
// Neither extrusion nor a travel move.
|
|
return *this;
|
|
|
|
float dx = x - m_current_pos.x();
|
|
float dy = y - m_current_pos.y();
|
|
float len = std::sqrt(dx*dx+dy*dy);
|
|
if (record_length)
|
|
m_used_filament_length += e;
|
|
|
|
// Now do the "internal rotation" with respect to the wipe tower center
|
|
Vec2f rotated_current_pos(this->pos_rotated());
|
|
Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go
|
|
|
|
if (! m_preview_suppressed && e > 0.f && len > 0.f) {
|
|
// Width of a squished extrusion, corrected for the roundings of the squished extrusions.
|
|
// This is left zero if it is a travel move.
|
|
float width = e * m_filpar[0].filament_area / (len * m_layer_height);
|
|
// Correct for the roundings of a squished extrusion.
|
|
width += m_layer_height * float(1. - M_PI / 4.);
|
|
if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos)
|
|
m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool));
|
|
m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool));
|
|
}
|
|
|
|
m_gcode += "G1";
|
|
if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON)
|
|
m_gcode += set_format_X(rot.x());
|
|
|
|
if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON)
|
|
m_gcode += set_format_Y(rot.y());
|
|
|
|
|
|
if (e != 0.f)
|
|
m_gcode += set_format_E(e);
|
|
|
|
if (f != 0.f && f != m_current_feedrate) {
|
|
if (limit_volumetric_flow) {
|
|
float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f);
|
|
f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed);
|
|
}
|
|
m_gcode += set_format_F(f);
|
|
}
|
|
|
|
// Append newline if at least one of X,Y,E,F was changed.
|
|
// Otherwise, remove the "G1".
|
|
if (! boost::ends_with(m_gcode, "G1"))
|
|
m_gcode += "\n";
|
|
else
|
|
m_gcode.erase(m_gcode.end()-2, m_gcode.end());
|
|
|
|
m_current_pos.x() = x;
|
|
m_current_pos.y() = y;
|
|
|
|
// Update the elapsed time with a rough estimate.
|
|
m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f;
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true)
|
|
{ return extrude_explicit(dest.x(), dest.y(), e, f, record_length); }
|
|
|
|
// Travel to a new XY position. f=0 means use the current value.
|
|
WipeTowerWriter2& travel(float x, float y, float f = 0.f)
|
|
{ return extrude_explicit(x, y, 0.f, f); }
|
|
|
|
WipeTowerWriter2& travel(const Vec2f &dest, float f = 0.f)
|
|
{ return extrude_explicit(dest.x(), dest.y(), 0.f, f); }
|
|
|
|
// Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow.
|
|
WipeTowerWriter2& extrude(float x, float y, float f = 0.f)
|
|
{
|
|
float dx = x - m_current_pos.x();
|
|
float dy = y - m_current_pos.y();
|
|
return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true);
|
|
}
|
|
|
|
WipeTowerWriter2& extrude(const Vec2f &dest, const float f = 0.f)
|
|
{ return extrude(dest.x(), dest.y(), f); }
|
|
|
|
WipeTowerWriter2& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f)
|
|
{
|
|
Vec2f corners[4];
|
|
corners[0] = ld;
|
|
corners[1] = ld + Vec2f(width,0.f);
|
|
corners[2] = ld + Vec2f(width,height);
|
|
corners[3] = ld + Vec2f(0.f,height);
|
|
int index_of_closest = 0;
|
|
if (x()-ld.x() > ld.x()+width-x()) // closer to the right
|
|
index_of_closest = 1;
|
|
if (y()-ld.y() > ld.y()+height-y()) // closer to the top
|
|
index_of_closest = (index_of_closest==0 ? 3 : 2);
|
|
|
|
travel(corners[index_of_closest].x(), y()); // travel to the closest corner
|
|
travel(x(),corners[index_of_closest].y());
|
|
|
|
int i = index_of_closest;
|
|
do {
|
|
++i;
|
|
if (i==4) i=0;
|
|
extrude(corners[i], f);
|
|
} while (i != index_of_closest);
|
|
return (*this);
|
|
}
|
|
|
|
WipeTowerWriter2& rectangle(const WipeTower::box_coordinates& box, const float f = 0.f)
|
|
{
|
|
rectangle(Vec2f(box.ld.x(), box.ld.y()),
|
|
box.ru.x() - box.lu.x(),
|
|
box.ru.y() - box.rd.y(), f);
|
|
return (*this);
|
|
}
|
|
|
|
WipeTowerWriter2& load(float e, float f = 0.f)
|
|
{
|
|
if (e == 0.f && (f == 0.f || f == m_current_feedrate))
|
|
return *this;
|
|
m_gcode += "G1";
|
|
if (e != 0.f)
|
|
m_gcode += set_format_E(e);
|
|
if (f != 0.f && f != m_current_feedrate)
|
|
m_gcode += set_format_F(f);
|
|
m_gcode += "\n";
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& retract(float e, float f = 0.f)
|
|
{ return load(-e, f); }
|
|
|
|
// Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary)
|
|
WipeTowerWriter2& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f)
|
|
{
|
|
float time = std::abs(loading_dist / loading_speed); // time that the move must take
|
|
float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel
|
|
float x_speed = x_distance / time; // x-speed to do it in that time
|
|
|
|
if (x_speed > max_x_speed) {
|
|
// Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time.
|
|
x_distance = max_x_speed * time;
|
|
x_speed = max_x_speed;
|
|
}
|
|
|
|
float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance;
|
|
return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false);
|
|
}
|
|
|
|
// Loads filament while also moving towards given point in x-axis. Unlike the previous function, this one respects
|
|
// both the loading_speed and x_speed. Can shorten the move.
|
|
WipeTowerWriter2& load_move_x_advanced_there_and_back(float farthest_x, float e_dist, float e_speed, float x_speed)
|
|
{
|
|
float old_x = x();
|
|
float time = std::abs(e_dist / e_speed); // time that the whole move must take
|
|
float x_max_dist = std::abs(farthest_x - x()); // max x-distance that we can travel
|
|
float x_dist = x_speed * time; // totel x-distance to travel during the move
|
|
int n = int(x_dist / (2*x_max_dist) + 1.f); // how many there and back moves should we do
|
|
float r = 2*n*x_max_dist / x_dist; // actual/required dist if the move is not shortened
|
|
|
|
float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_max_dist / r;
|
|
for (int i=0; i<n; ++i) {
|
|
extrude_explicit(end_point, y(), e_dist/(2.f*n), x_speed * 60.f, false, false);
|
|
extrude_explicit(old_x, y(), e_dist/(2.f*n), x_speed * 60.f, false, false);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Elevate the extruder head above the current print_z position.
|
|
WipeTowerWriter2& z_hop(float hop, float f = 0.f)
|
|
{
|
|
m_gcode += std::string("G1") + set_format_Z(m_current_z + hop);
|
|
if (f != 0 && f != m_current_feedrate)
|
|
m_gcode += set_format_F(f);
|
|
m_gcode += "\n";
|
|
return *this;
|
|
}
|
|
|
|
// Lower the extruder head back to the current print_z position.
|
|
WipeTowerWriter2& z_hop_reset(float f = 0.f)
|
|
{ return z_hop(0, f); }
|
|
|
|
// Move to x1, +y_increment,
|
|
// extrude quickly amount e to x2 with feed f.
|
|
WipeTowerWriter2& ram(float x1, float x2, float dy, float e0, float e, float f)
|
|
{
|
|
extrude_explicit(x1, m_current_pos.y() + dy, e0, f, true, false);
|
|
extrude_explicit(x2, m_current_pos.y(), e, 0.f, true, false);
|
|
return *this;
|
|
}
|
|
|
|
// Let the end of the pulled out filament cool down in the cooling tube
|
|
// by moving up and down and moving the print head left / right
|
|
// at the current Y position to spread the leaking material.
|
|
WipeTowerWriter2& cool(float x1, float x2, float e1, float e2, float f)
|
|
{
|
|
extrude_explicit(x1, m_current_pos.y(), e1, f, false, false);
|
|
extrude_explicit(x2, m_current_pos.y(), e2, false, false);
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& set_tool(size_t tool)
|
|
{
|
|
m_current_tool = tool;
|
|
return *this;
|
|
}
|
|
|
|
// Set extruder temperature, don't wait by default.
|
|
WipeTowerWriter2& set_extruder_temp(int temperature, bool wait = false)
|
|
{
|
|
m_gcode += "G4 S0\n"; // to flush planner queue
|
|
m_gcode += "M" + std::to_string(wait ? 109 : 104) + " S" + std::to_string(temperature) + "\n";
|
|
return *this;
|
|
}
|
|
|
|
// Wait for a period of time (seconds).
|
|
WipeTowerWriter2& wait(float time)
|
|
{
|
|
if (time==0.f)
|
|
return *this;
|
|
m_gcode += "G4 S" + Slic3r::float_to_string_decimal_point(time, 3) + "\n";
|
|
return *this;
|
|
}
|
|
|
|
// Set speed factor override percentage.
|
|
WipeTowerWriter2& speed_override(int speed)
|
|
{
|
|
m_gcode += "M220 S" + std::to_string(speed) + "\n";
|
|
return *this;
|
|
}
|
|
|
|
// Let the firmware back up the active speed override value.
|
|
WipeTowerWriter2& speed_override_backup()
|
|
{
|
|
// This is only supported by Prusa at this point (https://github.com/prusa3d/PrusaSlicer/issues/3114)
|
|
if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware)
|
|
m_gcode += "M220 B\n";
|
|
return *this;
|
|
}
|
|
|
|
// Let the firmware restore the active speed override value.
|
|
WipeTowerWriter2& speed_override_restore()
|
|
{
|
|
if (m_gcode_flavor == gcfMarlinLegacy || m_gcode_flavor == gcfMarlinFirmware)
|
|
m_gcode += "M220 R\n";
|
|
return *this;
|
|
}
|
|
|
|
// Set digital trimpot motor
|
|
WipeTowerWriter2& set_extruder_trimpot(int current)
|
|
{
|
|
if (m_gcode_flavor == gcfKlipper)
|
|
return *this;
|
|
if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware)
|
|
m_gcode += "M906 E";
|
|
else
|
|
m_gcode += "M907 E";
|
|
m_gcode += std::to_string(current) + "\n";
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& flush_planner_queue()
|
|
{
|
|
m_gcode += "G4 S0\n";
|
|
return *this;
|
|
}
|
|
|
|
// Reset internal extruder counter.
|
|
WipeTowerWriter2& reset_extruder()
|
|
{
|
|
m_gcode += "G92 E0\n";
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& comment_with_value(const char *comment, int value)
|
|
{
|
|
m_gcode += std::string(";") + comment + std::to_string(value) + "\n";
|
|
return *this;
|
|
}
|
|
|
|
|
|
WipeTowerWriter2& set_fan(unsigned speed)
|
|
{
|
|
if (speed == m_last_fan_speed)
|
|
return *this;
|
|
if (speed == 0)
|
|
m_gcode += "M107\n";
|
|
else
|
|
m_gcode += "M106 S" + std::to_string(unsigned(255.0 * speed / 100.0)) + "\n";
|
|
m_last_fan_speed = speed;
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& append(const std::string& text) { m_gcode += text; return *this; }
|
|
|
|
const std::vector<Vec2f>& wipe_path() const
|
|
{
|
|
return m_wipe_path;
|
|
}
|
|
|
|
WipeTowerWriter2& add_wipe_point(const Vec2f& pt)
|
|
{
|
|
m_wipe_path.push_back(rotate(pt));
|
|
return *this;
|
|
}
|
|
|
|
WipeTowerWriter2& add_wipe_point(float x, float y)
|
|
{
|
|
return add_wipe_point(Vec2f(x, y));
|
|
}
|
|
|
|
private:
|
|
Vec2f m_start_pos;
|
|
Vec2f m_current_pos;
|
|
std::vector<Vec2f> m_wipe_path;
|
|
float m_current_z;
|
|
float m_current_feedrate;
|
|
size_t m_current_tool;
|
|
float m_layer_height;
|
|
float m_extrusion_flow;
|
|
bool m_preview_suppressed;
|
|
std::string m_gcode;
|
|
std::vector<WipeTower::Extrusion> m_extrusions;
|
|
float m_elapsed_time;
|
|
float m_internal_angle = 0.f;
|
|
float m_y_shift = 0.f;
|
|
float m_wipe_tower_width = 0.f;
|
|
float m_wipe_tower_depth = 0.f;
|
|
unsigned m_last_fan_speed = 0;
|
|
int current_temp = -1;
|
|
float m_used_filament_length = 0.f;
|
|
GCodeFlavor m_gcode_flavor;
|
|
const std::vector<WipeTower2::FilamentParameters>& m_filpar;
|
|
|
|
std::string set_format_X(float x)
|
|
{
|
|
m_current_pos.x() = x;
|
|
return " X" + Slic3r::float_to_string_decimal_point(x, 3);
|
|
}
|
|
|
|
std::string set_format_Y(float y) {
|
|
m_current_pos.y() = y;
|
|
return " Y" + Slic3r::float_to_string_decimal_point(y, 3);
|
|
}
|
|
|
|
std::string set_format_Z(float z) {
|
|
return " Z" + Slic3r::float_to_string_decimal_point(z, 3);
|
|
}
|
|
|
|
std::string set_format_E(float e) {
|
|
return " E" + Slic3r::float_to_string_decimal_point(e, 4);
|
|
}
|
|
|
|
std::string set_format_F(float f) {
|
|
char buf[64];
|
|
sprintf(buf, " F%d", int(floor(f + 0.5f)));
|
|
m_current_feedrate = f;
|
|
return buf;
|
|
}
|
|
|
|
WipeTowerWriter2& operator=(const WipeTowerWriter2 &rhs);
|
|
|
|
// Rotate the point around center of the wipe tower about given angle (in degrees)
|
|
Vec2f rotate(Vec2f pt) const
|
|
{
|
|
pt.x() -= m_wipe_tower_width / 2.f;
|
|
pt.y() += m_y_shift - m_wipe_tower_depth / 2.f;
|
|
double angle = m_internal_angle * float(M_PI/180.);
|
|
double c = cos(angle);
|
|
double s = sin(angle);
|
|
return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f);
|
|
}
|
|
|
|
}; // class WipeTowerWriter2
|
|
|
|
|
|
|
|
WipeTower::ToolChangeResult WipeTower2::construct_tcr(WipeTowerWriter2& writer,
|
|
bool priming,
|
|
size_t old_tool,
|
|
bool is_finish) const
|
|
{
|
|
WipeTower::ToolChangeResult result;
|
|
result.priming = priming;
|
|
result.initial_tool = int(old_tool);
|
|
result.new_tool = int(m_current_tool);
|
|
result.print_z = m_z_pos;
|
|
result.layer_height = m_layer_height;
|
|
result.elapsed_time = writer.elapsed_time();
|
|
result.start_pos = writer.start_pos_rotated();
|
|
result.end_pos = priming ? writer.pos() : writer.pos_rotated();
|
|
result.gcode = std::move(writer.gcode());
|
|
result.extrusions = std::move(writer.extrusions());
|
|
result.wipe_path = std::move(writer.wipe_path());
|
|
result.is_finish_first = is_finish;
|
|
return result;
|
|
}
|
|
|
|
|
|
|
|
WipeTower2::WipeTower2(const PrintConfig& config, const PrintRegionConfig& default_region_config,int plate_idx, Vec3d plate_origin, const std::vector<std::vector<float>>& wiping_matrix, size_t initial_tool) :
|
|
m_semm(config.single_extruder_multi_material.value),
|
|
m_enable_filament_ramming(config.enable_filament_ramming.value),
|
|
m_wipe_tower_pos(config.wipe_tower_x.get_at(plate_idx), config.wipe_tower_y.get_at(plate_idx)),
|
|
m_wipe_tower_width(float(config.prime_tower_width)),
|
|
m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)),
|
|
m_wipe_tower_brim_width(float(config.prime_tower_brim_width)),
|
|
m_wipe_tower_cone_angle(float(config.wipe_tower_cone_angle)),
|
|
m_extra_flow(float(config.wipe_tower_extra_flow/100.)),
|
|
m_extra_spacing_wipe(float(config.wipe_tower_extra_spacing/100. * config.wipe_tower_extra_flow/100.)),
|
|
m_extra_spacing_ramming(float(config.wipe_tower_extra_spacing/100.)),
|
|
m_y_shift(0.f),
|
|
m_z_pos(0.f),
|
|
m_bridging(float(config.wipe_tower_bridging)),
|
|
m_no_sparse_layers(config.wipe_tower_no_sparse_layers),
|
|
m_gcode_flavor(config.gcode_flavor),
|
|
m_travel_speed(config.travel_speed),
|
|
m_infill_speed(default_region_config.sparse_infill_speed),
|
|
m_perimeter_speed(default_region_config.inner_wall_speed),
|
|
m_current_tool(initial_tool),
|
|
wipe_volumes(wiping_matrix),
|
|
m_wipe_tower_max_purge_speed(float(config.wipe_tower_max_purge_speed))
|
|
{
|
|
// Read absolute value of first layer speed, if given as percentage,
|
|
// it is taken over following default. Speeds from config are not
|
|
// easily accessible here.
|
|
const float default_speed = 60.f;
|
|
m_first_layer_speed = config.initial_layer_speed;
|
|
if (m_first_layer_speed == 0.f) // just to make sure autospeed doesn't break it.
|
|
m_first_layer_speed = default_speed / 2.f;
|
|
|
|
// Autospeed may be used...
|
|
if (m_infill_speed == 0.f)
|
|
m_infill_speed = 80.f;
|
|
if (m_perimeter_speed == 0.f)
|
|
m_perimeter_speed = 80.f;
|
|
|
|
|
|
// If this is a single extruder MM printer, we will use all the SE-specific config values.
|
|
// Otherwise, the defaults will be used to turn off the SE stuff.
|
|
if (m_semm) {
|
|
m_cooling_tube_retraction = float(config.cooling_tube_retraction);
|
|
m_cooling_tube_length = float(config.cooling_tube_length);
|
|
m_parking_pos_retraction = float(config.parking_pos_retraction);
|
|
m_extra_loading_move = float(config.extra_loading_move);
|
|
m_set_extruder_trimpot = config.high_current_on_filament_swap;
|
|
}
|
|
|
|
m_is_mk4mmu3 = boost::icontains(config.printer_notes.value, "PRINTER_MODEL_MK4") && boost::icontains(config.printer_notes.value, "MMU");
|
|
|
|
// Calculate where the priming lines should be - very naive test not detecting parallelograms etc.
|
|
const std::vector<Vec2d>& bed_points = config.printable_area.values;
|
|
BoundingBoxf bb(bed_points);
|
|
m_bed_width = float(bb.size().x());
|
|
m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed);
|
|
|
|
if (m_bed_shape == CircularBed) {
|
|
// this may still be a custom bed, check that the points are roughly on a circle
|
|
double r2 = std::pow(m_bed_width/2., 2.);
|
|
double lim2 = std::pow(m_bed_width/10., 2.);
|
|
Vec2d center = bb.center();
|
|
for (const Vec2d& pt : bed_points)
|
|
if (std::abs(std::pow(pt.x()-center.x(), 2.) + std::pow(pt.y()-center.y(), 2.) - r2) > lim2) {
|
|
m_bed_shape = CustomBed;
|
|
break;
|
|
}
|
|
}
|
|
|
|
m_bed_bottom_left = m_bed_shape == RectangularBed
|
|
? Vec2f(bed_points.front().x(), bed_points.front().y())
|
|
: Vec2f::Zero();
|
|
}
|
|
|
|
|
|
|
|
void WipeTower2::set_extruder(size_t idx, const PrintConfig& config)
|
|
{
|
|
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
|
|
m_filpar.push_back(FilamentParameters());
|
|
|
|
m_filpar[idx].material = config.filament_type.get_at(idx);
|
|
m_filpar[idx].is_soluble = config.filament_soluble.get_at(idx);
|
|
m_filpar[idx].temperature = config.nozzle_temperature.get_at(idx);
|
|
m_filpar[idx].first_layer_temperature = config.nozzle_temperature_initial_layer.get_at(idx);
|
|
m_filpar[idx].filament_minimal_purge_on_wipe_tower = config.filament_minimal_purge_on_wipe_tower.get_at(idx);
|
|
|
|
// If this is a single extruder MM printer, we will use all the SE-specific config values.
|
|
// Otherwise, the defaults will be used to turn off the SE stuff.
|
|
if (m_semm) {
|
|
m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx));
|
|
m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx));
|
|
m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx));
|
|
m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx));
|
|
m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx));
|
|
m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx);
|
|
m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx));
|
|
m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx));
|
|
m_filpar[idx].filament_stamping_loading_speed = float(config.filament_stamping_loading_speed.get_at(idx));
|
|
m_filpar[idx].filament_stamping_distance = float(config.filament_stamping_distance.get_at(idx));
|
|
}
|
|
|
|
m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point
|
|
float nozzle_diameter = float(config.nozzle_diameter.get_at(idx));
|
|
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
|
|
|
|
float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx));
|
|
if (max_vol_speed!= 0.f)
|
|
m_filpar[idx].max_e_speed = (max_vol_speed / filament_area());
|
|
|
|
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
|
|
|
|
if (m_semm) {
|
|
std::istringstream stream{config.filament_ramming_parameters.get_at(idx)};
|
|
float speed = 0.f;
|
|
stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator;
|
|
m_filpar[idx].ramming_line_width_multiplicator /= 100;
|
|
m_filpar[idx].ramming_step_multiplicator /= 100;
|
|
while (stream >> speed)
|
|
m_filpar[idx].ramming_speed.push_back(speed);
|
|
// ramming_speed now contains speeds to be used for every 0.25s piece of the ramming line.
|
|
// This allows to have the ramming flow variable. The 0.25s value is how it is saved in config
|
|
// and the same time step has to be used when the ramming is performed.
|
|
} else {
|
|
// We will use the same variables internally, but the correspondence to the configuration options will be different.
|
|
float vol = config.filament_multitool_ramming_volume.get_at(idx);
|
|
float flow = config.filament_multitool_ramming_flow.get_at(idx);
|
|
m_filpar[idx].multitool_ramming = config.filament_multitool_ramming.get_at(idx);
|
|
m_filpar[idx].ramming_line_width_multiplicator = 2.;
|
|
m_filpar[idx].ramming_step_multiplicator = 1.;
|
|
|
|
// Now the ramming speed vector. In this case it contains just one value (flow).
|
|
// The time is calculated and saved separately. This is here so that the MM ramming
|
|
// is not limited by the 0.25s granularity - it is not possible to create a SEMM-style
|
|
// ramming_speed vector that would respect both the volume and flow (because of
|
|
// rounding issues with small volumes and high flow).
|
|
m_filpar[idx].ramming_speed.push_back(flow);
|
|
m_filpar[idx].multitool_ramming_time = vol/flow;
|
|
}
|
|
|
|
m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later
|
|
}
|
|
|
|
|
|
|
|
// Returns gcode to prime the nozzles at the front edge of the print bed.
|
|
std::vector<WipeTower::ToolChangeResult> WipeTower2::prime(
|
|
// print_z of the first layer.
|
|
float initial_layer_print_height,
|
|
// Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object.
|
|
const std::vector<unsigned int> &tools,
|
|
// If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower.
|
|
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
|
|
bool /*last_wipe_inside_wipe_tower*/)
|
|
{
|
|
this->set_layer(initial_layer_print_height, initial_layer_print_height, tools.size(), true, false);
|
|
m_current_tool = tools.front();
|
|
|
|
// The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210].
|
|
// Due to the XYZ calibration, this working space may shrink slightly from all directions,
|
|
// therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0].
|
|
// WipeTower::box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area);
|
|
|
|
float prime_section_width = std::min(0.9f * m_bed_width / tools.size(), 60.f);
|
|
WipeTower::box_coordinates cleaning_box(Vec2f(0.02f * m_bed_width, 0.01f + m_perimeter_width/2.f), prime_section_width, 100.f);
|
|
if (m_bed_shape == CircularBed) {
|
|
cleaning_box = WipeTower::box_coordinates(Vec2f(0.f, 0.f), prime_section_width, 100.f);
|
|
float total_width_half = tools.size() * prime_section_width / 2.f;
|
|
cleaning_box.translate(-total_width_half, -std::sqrt(std::max(0.f, std::pow(m_bed_width/2, 2.f) - std::pow(1.05f * total_width_half, 2.f))));
|
|
}
|
|
else
|
|
cleaning_box.translate(m_bed_bottom_left);
|
|
|
|
std::vector<WipeTower::ToolChangeResult> results;
|
|
|
|
// Iterate over all priming toolchanges and push respective ToolChangeResults into results vector.
|
|
for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) {
|
|
size_t old_tool = m_current_tool;
|
|
|
|
WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
|
|
writer.set_extrusion_flow(m_extrusion_flow)
|
|
.set_z(m_z_pos)
|
|
.set_initial_tool(m_current_tool);
|
|
|
|
// This is the first toolchange - initiate priming
|
|
if (idx_tool == 0) {
|
|
writer.append(";--------------------\n"
|
|
"; CP PRIMING START\n")
|
|
.append(";--------------------\n")
|
|
.speed_override_backup()
|
|
.speed_override(100)
|
|
.set_initial_position(Vec2f::Zero()) // Always move to the starting position
|
|
.travel(cleaning_box.ld, 7200);
|
|
if (m_set_extruder_trimpot)
|
|
writer.set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming.
|
|
}
|
|
else
|
|
writer.set_initial_position(results.back().end_pos);
|
|
|
|
|
|
unsigned int tool = tools[idx_tool];
|
|
m_left_to_right = true;
|
|
toolchange_Change(writer, tool, m_filpar[tool].material); // Select the tool, set a speed override for soluble and flex materials.
|
|
toolchange_Load(writer, cleaning_box); // Prime the tool.
|
|
if (idx_tool + 1 == tools.size()) {
|
|
// Last tool should not be unloaded, but it should be wiped enough to become of a pure color.
|
|
toolchange_Wipe(writer, cleaning_box, wipe_volumes[tools[idx_tool-1]][tool]);
|
|
} else {
|
|
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
|
|
//writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200);
|
|
toolchange_Wipe(writer, cleaning_box , 20.f);
|
|
WipeTower::box_coordinates box = cleaning_box;
|
|
box.translate(0.f, writer.y() - cleaning_box.ld.y() + m_perimeter_width);
|
|
toolchange_Unload(writer, box , m_filpar[m_current_tool].material, m_filpar[m_current_tool].first_layer_temperature, m_filpar[tools[idx_tool + 1]].first_layer_temperature);
|
|
cleaning_box.translate(prime_section_width, 0.f);
|
|
writer.travel(cleaning_box.ld, 7200);
|
|
}
|
|
++ m_num_tool_changes;
|
|
|
|
|
|
// Ask our writer about how much material was consumed:
|
|
if (m_current_tool < m_used_filament_length.size())
|
|
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
|
|
|
|
// This is the last priming toolchange - finish priming
|
|
if (idx_tool+1 == tools.size()) {
|
|
// Reset the extruder current to a normal value.
|
|
if (m_set_extruder_trimpot)
|
|
writer.set_extruder_trimpot(550);
|
|
writer.speed_override_restore()
|
|
.feedrate(m_travel_speed * 60.f)
|
|
.flush_planner_queue()
|
|
.reset_extruder()
|
|
.append("; CP PRIMING END\n"
|
|
";------------------\n"
|
|
"\n\n");
|
|
}
|
|
|
|
results.emplace_back(construct_tcr(writer, true, old_tool, true));
|
|
}
|
|
|
|
m_old_temperature = -1; // If the priming is turned off in config, the temperature changing commands will not actually appear
|
|
// in the output gcode - we should not remember emitting them (we will output them twice in the worst case)
|
|
|
|
return results;
|
|
}
|
|
|
|
WipeTower::ToolChangeResult WipeTower2::tool_change(size_t tool)
|
|
{
|
|
size_t old_tool = m_current_tool;
|
|
|
|
float wipe_area = 0.f;
|
|
float wipe_volume = 0.f;
|
|
|
|
// Finds this toolchange info
|
|
if (tool != (unsigned int)(-1))
|
|
{
|
|
for (const auto &b : m_layer_info->tool_changes)
|
|
if ( b.new_tool == tool ) {
|
|
wipe_volume = b.wipe_volume;
|
|
wipe_area = b.required_depth;
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
// Otherwise we are going to Unload only. And m_layer_info would be invalid.
|
|
}
|
|
|
|
WipeTower::box_coordinates cleaning_box(
|
|
Vec2f(m_perimeter_width / 2.f, m_perimeter_width / 2.f),
|
|
m_wipe_tower_width - m_perimeter_width,
|
|
(tool != (unsigned int)(-1) ? wipe_area+m_depth_traversed-0.5f*m_perimeter_width
|
|
: m_wipe_tower_depth-m_perimeter_width));
|
|
|
|
WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
|
|
writer.set_extrusion_flow(m_extrusion_flow)
|
|
.set_z(m_z_pos)
|
|
.set_initial_tool(m_current_tool)
|
|
.set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f))
|
|
.append(";--------------------\n"
|
|
"; CP TOOLCHANGE START\n");
|
|
|
|
if (tool != (unsigned)(-1)){
|
|
writer.comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based
|
|
writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str())
|
|
.append(";--------------------\n");
|
|
writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n");
|
|
}
|
|
|
|
writer.speed_override_backup();
|
|
writer.speed_override(100);
|
|
|
|
Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed);
|
|
writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
|
|
|
|
// Increase the extruder driver current to allow fast ramming.
|
|
if (m_set_extruder_trimpot)
|
|
writer.set_extruder_trimpot(750);
|
|
|
|
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
|
|
if (tool != (unsigned int)-1){ // This is not the last change.
|
|
auto new_tool_temp = is_first_layer() ? m_filpar[tool].first_layer_temperature : m_filpar[tool].temperature;
|
|
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material,
|
|
(is_first_layer() ? m_filpar[m_current_tool].first_layer_temperature : m_filpar[m_current_tool].temperature),
|
|
new_tool_temp);
|
|
toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials.
|
|
toolchange_Load(writer, cleaning_box);
|
|
writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road
|
|
toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area.
|
|
writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n");
|
|
++ m_num_tool_changes;
|
|
} else
|
|
toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].temperature, m_filpar[m_current_tool].temperature);
|
|
|
|
m_depth_traversed += wipe_area;
|
|
|
|
if (m_set_extruder_trimpot)
|
|
writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value.
|
|
writer.speed_override_restore();
|
|
writer.feedrate(m_travel_speed * 60.f)
|
|
.flush_planner_queue()
|
|
.reset_extruder()
|
|
.append("; CP TOOLCHANGE END\n"
|
|
";------------------\n"
|
|
"\n\n");
|
|
|
|
// Ask our writer about how much material was consumed:
|
|
if (m_current_tool < m_used_filament_length.size())
|
|
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
|
|
|
|
return construct_tcr(writer, false, old_tool, false);
|
|
}
|
|
|
|
|
|
// Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool.
|
|
void WipeTower2::toolchange_Unload(
|
|
WipeTowerWriter2 &writer,
|
|
const WipeTower::box_coordinates &cleaning_box,
|
|
const std::string& current_material,
|
|
const int old_temperature,
|
|
const int new_temperature)
|
|
{
|
|
float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width;
|
|
float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width;
|
|
|
|
const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness
|
|
const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing_ramming; // spacing between lines in mm
|
|
|
|
const Vec2f ramming_start_pos = Vec2f(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f);
|
|
|
|
writer.append("; CP TOOLCHANGE UNLOAD\n")
|
|
.change_analyzer_line_width(line_width);
|
|
|
|
unsigned i = 0; // iterates through ramming_speed
|
|
m_left_to_right = true; // current direction of ramming
|
|
float remaining = xr - xl ; // keeps track of distance to the next turnaround
|
|
float e_done = 0; // measures E move done from each segment
|
|
|
|
// Orca: Do ramming when SEMM and ramming is enabled or when multi tool head when ramming is enabled on the multi tool.
|
|
const bool do_ramming = (m_semm && m_enable_filament_ramming) || m_filpar[m_current_tool].multitool_ramming;
|
|
const bool cold_ramming = m_is_mk4mmu3;
|
|
|
|
if (do_ramming) {
|
|
writer.travel(ramming_start_pos); // move to starting position
|
|
if (! m_is_mk4mmu3)
|
|
writer.disable_linear_advance();
|
|
if (cold_ramming)
|
|
writer.set_extruder_temp(old_temperature - 20);
|
|
}
|
|
else
|
|
writer.set_position(ramming_start_pos);
|
|
|
|
// if the ending point of the ram would end up in mid air, align it with the end of the wipe tower:
|
|
if (do_ramming && (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion ))) {
|
|
|
|
// this is y of the center of previous sparse infill border
|
|
float sparse_beginning_y = 0.f;
|
|
if (m_current_shape == SHAPE_REVERSED)
|
|
sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth())
|
|
- ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ;
|
|
else
|
|
sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width;
|
|
|
|
float sum_of_depths = 0.f;
|
|
for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange
|
|
if (tch.old_tool == m_current_tool) {
|
|
sum_of_depths += tch.ramming_depth;
|
|
float ramming_end_y = sum_of_depths;
|
|
ramming_end_y -= (y_step/m_extra_spacing_ramming-m_perimeter_width) / 2.f; // center of final ramming line
|
|
|
|
if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) ||
|
|
(m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) )
|
|
{
|
|
writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y());
|
|
remaining -= tch.first_wipe_line-1.f*m_perimeter_width;
|
|
}
|
|
break;
|
|
}
|
|
sum_of_depths += tch.required_depth;
|
|
}
|
|
}
|
|
|
|
if (m_is_mk4mmu3) {
|
|
writer.switch_filament_monitoring(false);
|
|
writer.wait(1.5f);
|
|
}
|
|
|
|
|
|
// now the ramming itself:
|
|
while (do_ramming && i < m_filpar[m_current_tool].ramming_speed.size())
|
|
{
|
|
// The time step is different for SEMM ramming and the MM ramming. See comments in set_extruder() for details.
|
|
const float time_step = m_semm ? 0.25f : m_filpar[m_current_tool].multitool_ramming_time;
|
|
|
|
const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * time_step, line_width, m_layer_height);
|
|
const float e = m_filpar[m_current_tool].ramming_speed[i] * time_step / filament_area(); // transform volume per sec to E move;
|
|
const float dist = std::min(x - e_done, remaining); // distance to travel for either the next time_step, or to the next turnaround
|
|
const float actual_time = dist/x * time_step;
|
|
writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f));
|
|
remaining -= dist;
|
|
|
|
if (remaining < WT_EPSILON) { // we reached a turning point
|
|
writer.travel(writer.x(), writer.y() + y_step, 7200);
|
|
m_left_to_right = !m_left_to_right;
|
|
remaining = xr - xl;
|
|
}
|
|
e_done += dist; // subtract what was actually done
|
|
if (e_done > x - WT_EPSILON) { // current segment finished
|
|
++i;
|
|
e_done = 0;
|
|
}
|
|
}
|
|
Vec2f end_of_ramming(writer.x(),writer.y());
|
|
writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier
|
|
|
|
// Retraction:
|
|
if(m_enable_filament_ramming)
|
|
writer.append("; Ramming start\n");
|
|
|
|
float old_x = writer.x();
|
|
float turning_point = (!m_left_to_right ? xl : xr );
|
|
if (m_enable_filament_ramming && m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) {
|
|
writer.append("; Retract(unload)\n");
|
|
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming
|
|
writer.suppress_preview()
|
|
.retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s
|
|
.retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f)
|
|
.retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f)
|
|
.retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f)
|
|
.resume_preview();
|
|
}
|
|
|
|
const int& number_of_cooling_moves = m_filpar[m_current_tool].cooling_moves;
|
|
const bool cooling_will_happen = m_enable_filament_ramming && m_semm && number_of_cooling_moves > 0 && m_cooling_tube_length != 0;
|
|
bool change_temp_later = false;
|
|
|
|
// Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should
|
|
// be already set and there is no need to change anything. Also, the temperature could be changed
|
|
// for wrong extruder.
|
|
if (m_semm) {
|
|
if (new_temperature != 0 && (new_temperature != m_old_temperature || is_first_layer() || cold_ramming) ) { // Set the extruder temperature, but don't wait.
|
|
// If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset)
|
|
// However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off).
|
|
if (cold_ramming && cooling_will_happen)
|
|
change_temp_later = true;
|
|
else
|
|
writer.set_extruder_temp(new_temperature, false);
|
|
m_old_temperature = new_temperature;
|
|
}
|
|
}
|
|
|
|
// Cooling:
|
|
if (cooling_will_happen) {
|
|
writer.append("; Cooling\n");
|
|
const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed;
|
|
const float& final_speed = m_filpar[m_current_tool].cooling_final_speed;
|
|
|
|
float speed_inc = (final_speed - initial_speed) / (2.f * number_of_cooling_moves - 1.f);
|
|
|
|
if (m_is_mk4mmu3)
|
|
writer.disable_linear_advance();
|
|
|
|
writer.suppress_preview()
|
|
.travel(writer.x(), writer.y() + y_step);
|
|
old_x = writer.x();
|
|
turning_point = xr-old_x > old_x-xl ? xr : xl;
|
|
float stamping_dist_e = m_filpar[m_current_tool].filament_stamping_distance + m_cooling_tube_length / 2.f;
|
|
|
|
for (int i=0; i<number_of_cooling_moves; ++i) {
|
|
|
|
// Stamping - happens after every cooling move except for the last one.
|
|
if (i>0 && m_filpar[m_current_tool].filament_stamping_distance != 0) {
|
|
|
|
// Stamping turning point shall be no farther than 20mm from the current nozzle position:
|
|
float stamping_turning_point = std::clamp(old_x + 20.f * (turning_point - old_x > 0.f ? 1.f : -1.f), xl, xr);
|
|
|
|
// Only last 5mm will be done with the fast x travel. The point is to spread possible blobs
|
|
// along the whole wipe tower.
|
|
if (stamping_dist_e > 5) {
|
|
float cent = writer.x();
|
|
writer.load_move_x_advanced(stamping_turning_point, (stamping_dist_e - 5), m_filpar[m_current_tool].filament_stamping_loading_speed, 200);
|
|
writer.load_move_x_advanced(cent, 5, m_filpar[m_current_tool].filament_stamping_loading_speed, m_travel_speed);
|
|
writer.travel(cent, writer.y());
|
|
} else
|
|
writer.load_move_x_advanced_there_and_back(stamping_turning_point, stamping_dist_e, m_filpar[m_current_tool].filament_stamping_loading_speed, m_travel_speed);
|
|
|
|
// Retract while the print head is stationary, so if there is a blob, it is not dragged along.
|
|
writer.retract(stamping_dist_e, m_filpar[m_current_tool].unloading_speed * 60.f);
|
|
}
|
|
|
|
if (i == number_of_cooling_moves - 1 && change_temp_later) {
|
|
// If cold_ramming, the temperature change should be done before the last cooling move.
|
|
writer.set_extruder_temp(new_temperature, false);
|
|
}
|
|
|
|
float speed = initial_speed + speed_inc * 2*i;
|
|
writer.load_move_x_advanced(turning_point, m_cooling_tube_length, speed);
|
|
speed += speed_inc;
|
|
writer.load_move_x_advanced(old_x, -m_cooling_tube_length, speed);
|
|
}
|
|
}
|
|
|
|
if (m_enable_filament_ramming && m_semm) {
|
|
writer.append("; Cooling park\n");
|
|
// let's wait is necessary:
|
|
writer.wait(m_filpar[m_current_tool].delay);
|
|
// we should be at the beginning of the cooling tube again - let's move to parking position:
|
|
const auto _e = -m_cooling_tube_length / 2.f + m_parking_pos_retraction - m_cooling_tube_retraction;
|
|
if (_e != 0.f)
|
|
writer.retract(_e, 2000);
|
|
}
|
|
|
|
if(m_enable_filament_ramming)
|
|
writer.append("; Ramming end\n");
|
|
|
|
|
|
// this is to align ramming and future wiping extrusions, so the future y-steps can be uniform from the start:
|
|
// the perimeter_width will later be subtracted, it is there to not load while moving over just extruded material
|
|
Vec2f pos = Vec2f(end_of_ramming.x(), end_of_ramming.y() + (y_step/m_extra_spacing_ramming-m_perimeter_width) / 2.f + m_perimeter_width);
|
|
if (do_ramming)
|
|
writer.travel(pos, 2400.f);
|
|
else
|
|
writer.set_position(pos);
|
|
|
|
writer.resume_preview()
|
|
.flush_planner_queue();
|
|
}
|
|
|
|
// Change the tool, set a speed override for soluble and flex materials.
|
|
void WipeTower2::toolchange_Change(
|
|
WipeTowerWriter2 &writer,
|
|
const size_t new_tool,
|
|
const std::string& new_material)
|
|
{
|
|
// Ask the writer about how much of the old filament we consumed:
|
|
if (m_current_tool < m_used_filament_length.size())
|
|
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
|
|
|
|
// This is where we want to place the custom gcodes. We will use placeholders for this.
|
|
// These will be substituted by the actual gcodes when the gcode is generated.
|
|
//writer.append("[end_filament_gcode]\n");
|
|
writer.append("[change_filament_gcode]\n");
|
|
|
|
if (m_is_mk4mmu3)
|
|
writer.switch_filament_monitoring(true);
|
|
|
|
// Travel to where we assume we are. Custom toolchange or some special T code handling (parking extruder etc)
|
|
// gcode could have left the extruder somewhere, we cannot just start extruding. We should also inform the
|
|
// postprocessor that we absolutely want to have this in the gcode, even if it thought it is the same as before.
|
|
Vec2f current_pos = writer.pos_rotated();
|
|
writer.feedrate(m_travel_speed * 60.f) // see https://github.com/prusa3d/PrusaSlicer/issues/5483
|
|
.append(std::string("G1 X") + Slic3r::float_to_string_decimal_point(current_pos.x())
|
|
+ " Y" + Slic3r::float_to_string_decimal_point(current_pos.y())
|
|
+ never_skip_tag() + "\n"
|
|
);
|
|
|
|
writer.append("[deretraction_from_wipe_tower_generator]");
|
|
|
|
// The toolchange Tn command will be inserted later, only in case that the user does
|
|
// not provide a custom toolchange gcode.
|
|
writer.set_tool(new_tool); // This outputs nothing, the writer just needs to know the tool has changed.
|
|
// writer.append("[filament_start_gcode]\n");
|
|
|
|
|
|
writer.flush_planner_queue();
|
|
m_current_tool = new_tool;
|
|
}
|
|
|
|
void WipeTower2::toolchange_Load(
|
|
WipeTowerWriter2 &writer,
|
|
const WipeTower::box_coordinates &cleaning_box)
|
|
{
|
|
if (m_semm && m_enable_filament_ramming && (m_parking_pos_retraction != 0 || m_extra_loading_move != 0)) {
|
|
float xl = cleaning_box.ld.x() + m_perimeter_width * 0.75f;
|
|
float xr = cleaning_box.rd.x() - m_perimeter_width * 0.75f;
|
|
float oldx = writer.x(); // the nozzle is in place to do the first wiping moves, we will remember the position
|
|
|
|
// Load the filament while moving left / right, so the excess material will not create a blob at a single position.
|
|
float turning_point = ( oldx-xl < xr-oldx ? xr : xl );
|
|
float edist = m_parking_pos_retraction+m_extra_loading_move;
|
|
|
|
writer.append("; CP TOOLCHANGE LOAD\n")
|
|
.suppress_preview()
|
|
.load(0.2f * edist, 60.f * m_filpar[m_current_tool].loading_speed_start)
|
|
.load_move_x_advanced(turning_point, 0.7f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
|
|
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/
|
|
|
|
.travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate
|
|
.resume_preview();
|
|
|
|
// Reset the extruder current to the normal value.
|
|
if (m_set_extruder_trimpot)
|
|
writer.set_extruder_trimpot(550);
|
|
}
|
|
}
|
|
|
|
// Wipe the newly loaded filament until the end of the assigned wipe area.
|
|
void WipeTower2::toolchange_Wipe(
|
|
WipeTowerWriter2 &writer,
|
|
const WipeTower::box_coordinates &cleaning_box,
|
|
float wipe_volume)
|
|
{
|
|
// Increase flow on first layer, slow down print.
|
|
writer.set_extrusion_flow(m_extrusion_flow * (is_first_layer() ? 1.18f : 1.f))
|
|
.append("; CP TOOLCHANGE WIPE\n");
|
|
const float& xl = cleaning_box.ld.x();
|
|
const float& xr = cleaning_box.rd.x();
|
|
|
|
writer.set_extrusion_flow(m_extrusion_flow * m_extra_flow);
|
|
const float line_width = m_perimeter_width * m_extra_flow;
|
|
writer.change_analyzer_line_width(line_width);
|
|
|
|
// Variables x_to_wipe and traversed_x are here to be able to make sure it always wipes at least
|
|
// the ordered volume, even if it means violating the box. This can later be removed and simply
|
|
// wipe until the end of the assigned area.
|
|
|
|
float x_to_wipe = volume_to_length(wipe_volume, m_perimeter_width, m_layer_height) / m_extra_flow;
|
|
float dy = (is_first_layer() ? m_extra_flow : m_extra_spacing_wipe) * m_perimeter_width; // Don't use the extra spacing for the first layer, but do use the spacing resulting from increased flow.
|
|
// All the calculations in all other places take the spacing into account for all the layers.
|
|
|
|
// If spare layers are excluded->if 1 or less toolchange has been done, it must be sill the first layer, too.So slow down.
|
|
const float target_speed = is_first_layer() || (m_num_tool_changes <= 1 && m_no_sparse_layers) ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_infill_speed * 60.f);
|
|
float wipe_speed = 0.33f * target_speed;
|
|
|
|
// if there is less than 2.5*line_width to the edge, advance straightaway (there is likely a blob anyway)
|
|
if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*line_width) {
|
|
writer.travel((m_left_to_right ? xr-line_width : xl+line_width),writer.y()+dy);
|
|
m_left_to_right = !m_left_to_right;
|
|
}
|
|
|
|
// now the wiping itself:
|
|
for (int i = 0; true; ++i) {
|
|
if (i!=0) {
|
|
if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed;
|
|
else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed;
|
|
else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed;
|
|
else wipe_speed = std::min(target_speed, wipe_speed + 50.f);
|
|
}
|
|
|
|
float traversed_x = writer.x();
|
|
if (m_left_to_right)
|
|
writer.extrude(xr - (i % 4 == 0 ? 0 : 1.5f*line_width), writer.y(), wipe_speed);
|
|
else
|
|
writer.extrude(xl + (i % 4 == 1 ? 0 : 1.5f*line_width), writer.y(), wipe_speed);
|
|
|
|
if (writer.y()+float(EPSILON) > cleaning_box.lu.y()-0.5f*line_width)
|
|
break; // in case next line would not fit
|
|
|
|
traversed_x -= writer.x();
|
|
x_to_wipe -= std::abs(traversed_x);
|
|
if (x_to_wipe < WT_EPSILON) {
|
|
writer.travel(m_left_to_right ? xl + 1.5f*line_width : xr - 1.5f*line_width, writer.y(), 7200);
|
|
break;
|
|
}
|
|
// stepping to the next line:
|
|
writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5f*line_width, writer.y() + dy);
|
|
m_left_to_right = !m_left_to_right;
|
|
}
|
|
|
|
// We may be going back to the model - wipe the nozzle. If this is followed
|
|
// by finish_layer, this wipe path will be overwritten.
|
|
writer.add_wipe_point(writer.x(), writer.y())
|
|
.add_wipe_point(writer.x(), writer.y() - dy)
|
|
.add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy);
|
|
|
|
if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool)
|
|
m_left_to_right = !m_left_to_right;
|
|
|
|
writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow.
|
|
writer.change_analyzer_line_width(m_perimeter_width);
|
|
}
|
|
|
|
|
|
|
|
|
|
WipeTower::ToolChangeResult WipeTower2::finish_layer()
|
|
{
|
|
assert(! this->layer_finished());
|
|
m_current_layer_finished = true;
|
|
|
|
size_t old_tool = m_current_tool;
|
|
|
|
WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar);
|
|
writer.set_extrusion_flow(m_extrusion_flow)
|
|
.set_z(m_z_pos)
|
|
.set_initial_tool(m_current_tool)
|
|
.set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f));
|
|
|
|
|
|
// Slow down on the 1st layer.
|
|
// If spare layers are excluded -> if 1 or less toolchange has been done, it must be still the first layer, too. So slow down.
|
|
bool first_layer = is_first_layer() || (m_num_tool_changes <= 1 && m_no_sparse_layers);
|
|
float feedrate = first_layer ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_infill_speed * 60.f);
|
|
float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth();
|
|
WipeTower::box_coordinates fill_box(Vec2f(m_perimeter_width, m_layer_info->depth-(current_depth-m_perimeter_width)),
|
|
m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width);
|
|
|
|
|
|
writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel
|
|
m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation);
|
|
|
|
bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON;
|
|
WipeTower::box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)),
|
|
m_wipe_tower_width, m_layer_info->depth + m_perimeter_width);
|
|
|
|
// inner perimeter of the sparse section, if there is space for it:
|
|
if (fill_box.ru.y() - fill_box.rd.y() > m_perimeter_width - WT_EPSILON)
|
|
writer.rectangle(fill_box.ld, fill_box.rd.x()-fill_box.ld.x(), fill_box.ru.y()-fill_box.rd.y(), feedrate);
|
|
|
|
// we are in one of the corners, travel to ld along the perimeter:
|
|
if (writer.x() > fill_box.ld.x()+EPSILON) writer.travel(fill_box.ld.x(),writer.y());
|
|
if (writer.y() > fill_box.ld.y()+EPSILON) writer.travel(writer.x(),fill_box.ld.y());
|
|
|
|
// Extrude infill to support the material to be printed above.
|
|
const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width);
|
|
float left = fill_box.lu.x() + 2*m_perimeter_width;
|
|
float right = fill_box.ru.x() - 2 * m_perimeter_width;
|
|
if (dy > m_perimeter_width)
|
|
{
|
|
writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f))
|
|
.append(";--------------------\n"
|
|
"; CP EMPTY GRID START\n")
|
|
.comment_with_value(" layer #", m_num_layer_changes + 1);
|
|
|
|
// Is there a soluble filament wiped/rammed at the next layer?
|
|
// If so, the infill should not be sparse.
|
|
bool solid_infill = m_layer_info+1 == m_plan.end()
|
|
? false
|
|
: std::any_of((m_layer_info+1)->tool_changes.begin(),
|
|
(m_layer_info+1)->tool_changes.end(),
|
|
[this](const WipeTowerInfo::ToolChange& tch) {
|
|
return m_filpar[tch.new_tool].is_soluble
|
|
|| m_filpar[tch.old_tool].is_soluble;
|
|
});
|
|
solid_infill |= first_layer && m_adhesion;
|
|
|
|
if (solid_infill) {
|
|
float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc.
|
|
if (first_layer) { // the infill should touch perimeters
|
|
left -= m_perimeter_width;
|
|
right += m_perimeter_width;
|
|
sparse_factor = 1.f;
|
|
}
|
|
float y = fill_box.ld.y() + m_perimeter_width;
|
|
int n = dy / (m_perimeter_width * sparse_factor);
|
|
float spacing = (dy-m_perimeter_width)/(n-1);
|
|
int i=0;
|
|
for (i=0; i<n; ++i) {
|
|
writer.extrude(writer.x(), y, feedrate)
|
|
.extrude(i%2 ? left : right, y);
|
|
y = y + spacing;
|
|
}
|
|
writer.extrude(writer.x(), fill_box.lu.y());
|
|
} else {
|
|
// Extrude an inverse U at the left of the region and the sparse infill.
|
|
writer.extrude(fill_box.lu + Vec2f(m_perimeter_width * 2, 0.f), feedrate);
|
|
|
|
const int n = 1+int((right-left)/m_bridging);
|
|
const float dx = (right-left)/n;
|
|
for (int i=1;i<=n;++i) {
|
|
float x=left+dx*i;
|
|
writer.travel(x,writer.y());
|
|
writer.extrude(x,i%2 ? fill_box.rd.y() : fill_box.ru.y());
|
|
}
|
|
}
|
|
|
|
writer.append("; CP EMPTY GRID END\n"
|
|
";------------------\n\n\n\n\n\n\n");
|
|
}
|
|
|
|
const float spacing = m_perimeter_width - m_layer_height*float(1.-M_PI_4);
|
|
|
|
// This block creates the stabilization cone.
|
|
// First define a lambda to draw the rectangle with stabilization.
|
|
auto supported_rectangle = [this, &writer, spacing](const WipeTower::box_coordinates& wt_box, double feedrate, bool infill_cone) -> Polygon {
|
|
const auto [R, support_scale] = get_wipe_tower_cone_base(m_wipe_tower_width, m_wipe_tower_height, m_wipe_tower_depth, m_wipe_tower_cone_angle);
|
|
|
|
double z = m_no_sparse_layers ? (m_current_height + m_layer_info->height) : m_layer_info->z; // the former should actually work in both cases, but let's stay on the safe side (the 2.6.0 is close)
|
|
|
|
double r = std::tan(Geometry::deg2rad(m_wipe_tower_cone_angle/2.f)) * (m_wipe_tower_height - z);
|
|
Vec2f center = (wt_box.lu + wt_box.rd) / 2.;
|
|
double w = wt_box.lu.y() - wt_box.ld.y();
|
|
enum Type {
|
|
Arc,
|
|
Corner,
|
|
ArcStart,
|
|
ArcEnd
|
|
};
|
|
|
|
// First generate vector of annotated point which form the boundary.
|
|
std::vector<std::pair<Vec2f, Type>> pts = {{wt_box.ru, Corner}};
|
|
if (double alpha_start = std::asin((0.5*w)/r); ! std::isnan(alpha_start) && r > 0.5*w+0.01) {
|
|
for (double alpha = alpha_start; alpha < M_PI-alpha_start+0.001; alpha+=(M_PI-2*alpha_start) / 40.)
|
|
pts.emplace_back(Vec2f(center.x() + r*std::cos(alpha)/support_scale, center.y() + r*std::sin(alpha)), alpha == alpha_start ? ArcStart : Arc);
|
|
pts.back().second = ArcEnd;
|
|
}
|
|
pts.emplace_back(wt_box.lu, Corner);
|
|
pts.emplace_back(wt_box.ld, Corner);
|
|
for (int i=int(pts.size())-3; i>0; --i)
|
|
pts.emplace_back(Vec2f(pts[i].first.x(), 2*center.y()-pts[i].first.y()), i == int(pts.size())-3 ? ArcStart : i == 1 ? ArcEnd : Arc);
|
|
pts.emplace_back(wt_box.rd, Corner);
|
|
|
|
// Create a Polygon from the points.
|
|
Polygon poly;
|
|
for (const auto& [pt, tag] : pts)
|
|
poly.points.push_back(Point::new_scale(pt));
|
|
|
|
// Prepare polygons to be filled by infill.
|
|
Polylines polylines;
|
|
if (infill_cone && m_wipe_tower_width > 2*spacing && m_wipe_tower_depth > 2*spacing) {
|
|
ExPolygons infill_areas;
|
|
ExPolygon wt_contour(poly);
|
|
Polygon wt_rectangle(Points{Point::new_scale(wt_box.ld), Point::new_scale(wt_box.rd), Point::new_scale(wt_box.ru), Point::new_scale(wt_box.lu)});
|
|
wt_rectangle = offset(wt_rectangle, scale_(-spacing/2.)).front();
|
|
wt_contour = offset_ex(wt_contour, scale_(-spacing/2.)).front();
|
|
infill_areas = diff_ex(wt_contour, wt_rectangle);
|
|
if (infill_areas.size() == 2) {
|
|
ExPolygon& bottom_expoly = infill_areas.front().contour.points.front().y() < infill_areas.back().contour.points.front().y() ? infill_areas[0] : infill_areas[1];
|
|
std::unique_ptr<Fill> filler(Fill::new_from_type(ipMonotonicLine));
|
|
filler->angle = Geometry::deg2rad(45.f);
|
|
filler->spacing = spacing;
|
|
FillParams params;
|
|
params.density = 1.f;
|
|
Surface surface(stBottom, bottom_expoly);
|
|
filler->bounding_box = get_extents(bottom_expoly);
|
|
polylines = filler->fill_surface(&surface, params);
|
|
if (! polylines.empty()) {
|
|
if (polylines.front().points.front().x() > polylines.back().points.back().x()) {
|
|
std::reverse(polylines.begin(), polylines.end());
|
|
for (Polyline& p : polylines)
|
|
p.reverse();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Find the closest corner and travel to it.
|
|
int start_i = 0;
|
|
double min_dist = std::numeric_limits<double>::max();
|
|
for (int i=0; i<int(pts.size()); ++i) {
|
|
if (pts[i].second == Corner) {
|
|
double dist = (pts[i].first - Vec2f(writer.x(), writer.y())).squaredNorm();
|
|
if (dist < min_dist) {
|
|
min_dist = dist;
|
|
start_i = i;
|
|
}
|
|
}
|
|
}
|
|
writer.travel(pts[start_i].first);
|
|
|
|
// Now actually extrude the boundary (and possibly infill):
|
|
int i = start_i+1 == int(pts.size()) ? 0 : start_i + 1;
|
|
while (i != start_i) {
|
|
writer.extrude(pts[i].first, feedrate);
|
|
if (pts[i].second == ArcEnd) {
|
|
// Extrude the infill.
|
|
if (! polylines.empty()) {
|
|
// Extrude the infill and travel back to where we were.
|
|
bool mirror = ((pts[i].first.y() - center.y()) * (unscale(polylines.front().points.front()).y() - center.y())) < 0.;
|
|
for (const Polyline& line : polylines) {
|
|
writer.travel(center - (mirror ? 1.f : -1.f) * (unscale(line.points.front()).cast<float>() - center));
|
|
for (size_t i=0; i<line.points.size(); ++i)
|
|
writer.extrude(center - (mirror ? 1.f : -1.f) * (unscale(line.points[i]).cast<float>() - center));
|
|
}
|
|
writer.travel(pts[i].first);
|
|
}
|
|
}
|
|
if (++i == int(pts.size()))
|
|
i = 0;
|
|
}
|
|
writer.extrude(pts[start_i].first, feedrate);
|
|
return poly;
|
|
};
|
|
|
|
feedrate = first_layer ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_perimeter_speed * 60.f);
|
|
|
|
// outer contour (always)
|
|
bool infill_cone = first_layer && m_wipe_tower_width > 2*spacing && m_wipe_tower_depth > 2*spacing;
|
|
Polygon poly = supported_rectangle(wt_box, feedrate, infill_cone);
|
|
|
|
|
|
// brim (first layer only)
|
|
if (first_layer) {
|
|
size_t loops_num = (m_wipe_tower_brim_width + spacing/2.f) / spacing;
|
|
|
|
for (size_t i = 0; i < loops_num; ++ i) {
|
|
poly = offset(poly, scale_(spacing)).front();
|
|
int cp = poly.closest_point_index(Point::new_scale(writer.x(), writer.y()));
|
|
writer.travel(unscale(poly.points[cp]).cast<float>());
|
|
for (int i=cp+1; true; ++i ) {
|
|
if (i==int(poly.points.size()))
|
|
i = 0;
|
|
writer.extrude(unscale(poly.points[i]).cast<float>());
|
|
if (i == cp)
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Save actual brim width to be later passed to the Print object, which will use it
|
|
// for skirt calculation and pass it to GLCanvas for precise preview box
|
|
m_wipe_tower_brim_width_real = loops_num * spacing;
|
|
}
|
|
|
|
// Now prepare future wipe.
|
|
int i = poly.closest_point_index(Point::new_scale(writer.x(), writer.y()));
|
|
writer.add_wipe_point(writer.pos());
|
|
writer.add_wipe_point(unscale(poly.points[i==0 ? int(poly.points.size())-1 : i-1]).cast<float>());
|
|
|
|
// Ask our writer about how much material was consumed.
|
|
// Skip this in case the layer is sparse and config option to not print sparse layers is enabled.
|
|
if (! m_no_sparse_layers || toolchanges_on_layer || first_layer) {
|
|
if (m_current_tool < m_used_filament_length.size())
|
|
m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length();
|
|
m_current_height += m_layer_info->height;
|
|
}
|
|
|
|
return construct_tcr(writer, false, old_tool, true);
|
|
}
|
|
|
|
// Static method to get the radius and x-scaling of the stabilizing cone base.
|
|
std::pair<double, double> WipeTower2::get_wipe_tower_cone_base(double width, double height, double depth, double angle_deg)
|
|
{
|
|
double R = std::tan(Geometry::deg2rad(angle_deg/2.)) * height;
|
|
double fake_width = 0.66 * width;
|
|
double diag = std::hypot(fake_width / 2., depth / 2.);
|
|
double support_scale = 1.;
|
|
if (R > diag) {
|
|
double w = fake_width;
|
|
double sin = 0.5 * depth / diag;
|
|
double tan = depth / w;
|
|
double t = (R - diag) * sin;
|
|
support_scale = (w / 2. + t / tan + t * tan) / (w / 2.);
|
|
}
|
|
return std::make_pair(R, support_scale);
|
|
}
|
|
|
|
// Static method to extract wipe_volumes[from][to] from the configuration.
|
|
std::vector<std::vector<float>> WipeTower2::extract_wipe_volumes(const PrintConfig& config)
|
|
{
|
|
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
|
|
std::vector<float> wiping_matrix(cast<float>(config.flush_volumes_matrix.values));
|
|
auto scale = config.flush_multiplier;
|
|
|
|
// The values shall only be used when SEMM is enabled. The purging for other printers
|
|
// is determined by filament_minimal_purge_on_wipe_tower.
|
|
if (! config.purge_in_prime_tower.value || ! config.single_extruder_multi_material.value)
|
|
std::fill(wiping_matrix.begin(), wiping_matrix.end(), 0.f);
|
|
|
|
// Extract purging volumes for each extruder pair:
|
|
std::vector<std::vector<float>> wipe_volumes;
|
|
const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON);
|
|
for (size_t i = 0; i<number_of_extruders; ++i)
|
|
wipe_volumes.push_back(std::vector<float>(wiping_matrix.begin()+i*number_of_extruders, wiping_matrix.begin()+(i+1)*number_of_extruders));
|
|
|
|
// Also include filament_minimal_purge_on_wipe_tower. This is needed for the preview.
|
|
for (unsigned int i = 0; i<number_of_extruders; ++i)
|
|
for (unsigned int j = 0; j<number_of_extruders; ++j)
|
|
wipe_volumes[i][j] = std::max<float>(wipe_volumes[i][j] * scale, config.filament_minimal_purge_on_wipe_tower.get_at(j));
|
|
|
|
return wipe_volumes;
|
|
}
|
|
|
|
static float get_wipe_depth(float volume, float layer_height, float perimeter_width, float extra_flow, float extra_spacing, float width)
|
|
{
|
|
float length_to_extrude = (volume_to_length(volume, perimeter_width, layer_height)) / extra_flow;
|
|
length_to_extrude = std::max(length_to_extrude,0.f);
|
|
|
|
return (int(length_to_extrude / width) + 1) * perimeter_width * extra_spacing;
|
|
}
|
|
|
|
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
|
|
void WipeTower2::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool,
|
|
unsigned int new_tool, float wipe_volume)
|
|
{
|
|
assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one
|
|
|
|
if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first
|
|
m_plan.push_back(WipeTowerInfo(z_par, layer_height_par));
|
|
|
|
if (m_first_layer_idx == size_t(-1) && (! m_no_sparse_layers || old_tool != new_tool || m_plan.size() == 1))
|
|
m_first_layer_idx = m_plan.size() - 1;
|
|
|
|
if (old_tool == new_tool) // new layer without toolchanges - we are done
|
|
return;
|
|
|
|
// this is an actual toolchange - let's calculate depth to reserve on the wipe tower
|
|
float width = m_wipe_tower_width - 3*m_perimeter_width;
|
|
float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f),
|
|
m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator,
|
|
layer_height_par);
|
|
// Orca: Set ramming depth to 0 if ramming is disabled.
|
|
float ramming_depth = m_enable_filament_ramming ? ((int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator) * m_extra_spacing_ramming) : 0;
|
|
float first_wipe_line = - (width*((length_to_extrude / width)-int(length_to_extrude / width)) - width);
|
|
|
|
float first_wipe_volume = length_to_volume(first_wipe_line, m_perimeter_width * m_extra_flow, layer_height_par);
|
|
float wiping_depth = get_wipe_depth(wipe_volume - first_wipe_volume, layer_height_par, m_perimeter_width, m_extra_flow, m_extra_spacing_wipe, width);
|
|
|
|
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, ramming_depth + wiping_depth, ramming_depth, first_wipe_line, wipe_volume));
|
|
}
|
|
|
|
|
|
|
|
void WipeTower2::plan_tower()
|
|
{
|
|
// Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards
|
|
m_wipe_tower_depth = 0.f;
|
|
for (auto& layer : m_plan)
|
|
layer.depth = 0.f;
|
|
m_wipe_tower_height = m_plan.empty() ? 0.f : m_plan.back().z;
|
|
m_current_height = 0.f;
|
|
|
|
for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index)
|
|
{
|
|
float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth());
|
|
m_plan[layer_index].depth = this_layer_depth;
|
|
|
|
if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width)
|
|
m_wipe_tower_depth = this_layer_depth + m_perimeter_width;
|
|
|
|
for (int i = layer_index - 1; i >= 0 ; i--)
|
|
{
|
|
if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width )
|
|
m_plan[i].depth = this_layer_depth;
|
|
}
|
|
}
|
|
}
|
|
|
|
void WipeTower2::save_on_last_wipe()
|
|
{
|
|
for (m_layer_info=m_plan.begin();m_layer_info<m_plan.end();++m_layer_info) {
|
|
set_layer(m_layer_info->z, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z);
|
|
if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer
|
|
continue;
|
|
|
|
// Which toolchange will finish_layer extrusions be subtracted from?
|
|
int idx = first_toolchange_to_nonsoluble(m_layer_info->tool_changes);
|
|
|
|
if (idx == -1) {
|
|
// In this case, finish_layer will be called at the very beginning.
|
|
finish_layer().total_extrusion_length_in_plane();
|
|
}
|
|
|
|
for (int i=0; i<int(m_layer_info->tool_changes.size()); ++i) {
|
|
auto& toolchange = m_layer_info->tool_changes[i];
|
|
tool_change(toolchange.new_tool);
|
|
|
|
if (i == idx) {
|
|
float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into
|
|
|
|
float volume_to_save = length_to_volume(finish_layer().total_extrusion_length_in_plane(), m_perimeter_width, m_layer_info->height);
|
|
float volume_left_to_wipe = std::max(m_filpar[toolchange.new_tool].filament_minimal_purge_on_wipe_tower, toolchange.wipe_volume_total - volume_to_save);
|
|
float volume_we_need_depth_for = std::max(0.f, volume_left_to_wipe - length_to_volume(toolchange.first_wipe_line, m_perimeter_width*m_extra_flow, m_layer_info->height));
|
|
float depth_to_wipe = get_wipe_depth(volume_we_need_depth_for, m_layer_info->height, m_perimeter_width, m_extra_flow, m_extra_spacing_wipe, width);
|
|
|
|
toolchange.required_depth = toolchange.ramming_depth + depth_to_wipe;
|
|
toolchange.wipe_volume = volume_left_to_wipe;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Return index of first toolchange that switches to non-soluble extruder
|
|
// ot -1 if there is no such toolchange.
|
|
int WipeTower2::first_toolchange_to_nonsoluble(
|
|
const std::vector<WipeTowerInfo::ToolChange>& tool_changes) const
|
|
{
|
|
// Orca: allow calculation of the required depth and wipe volume for soluable toolchanges as well
|
|
// NOTE: it's not clear if this is the right way, technically we should disable wipe tower if soluble filament is used as it
|
|
// will will make the wipe tower unstable. Need to revist this in the future.
|
|
return tool_changes.empty() ? -1 : 0;
|
|
//for (size_t idx=0; idx<tool_changes.size(); ++idx)
|
|
// if (! m_filpar[tool_changes[idx].new_tool].is_soluble)
|
|
// return idx;
|
|
//return -1;
|
|
}
|
|
|
|
static WipeTower::ToolChangeResult merge_tcr(WipeTower::ToolChangeResult& first,
|
|
WipeTower::ToolChangeResult& second)
|
|
{
|
|
assert(first.new_tool == second.initial_tool);
|
|
WipeTower::ToolChangeResult out = first;
|
|
if (first.end_pos != second.start_pos)
|
|
out.gcode += "G1 X" + Slic3r::float_to_string_decimal_point(second.start_pos.x(), 3)
|
|
+ " Y" + Slic3r::float_to_string_decimal_point(second.start_pos.y(), 3)
|
|
+ " F7200\n";
|
|
out.gcode += second.gcode;
|
|
out.extrusions.insert(out.extrusions.end(), second.extrusions.begin(), second.extrusions.end());
|
|
out.end_pos = second.end_pos;
|
|
out.wipe_path = second.wipe_path;
|
|
out.initial_tool = first.initial_tool;
|
|
out.new_tool = second.new_tool;
|
|
return out;
|
|
}
|
|
|
|
|
|
// Processes vector m_plan and calls respective functions to generate G-code for the wipe tower
|
|
// Resulting ToolChangeResults are appended into vector "result"
|
|
void WipeTower2::generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result)
|
|
{
|
|
if (m_plan.empty())
|
|
return;
|
|
|
|
plan_tower();
|
|
for (int i = 0; i<5; ++i) {
|
|
save_on_last_wipe();
|
|
plan_tower();
|
|
}
|
|
|
|
m_layer_info = m_plan.begin();
|
|
m_current_height = 0.f;
|
|
|
|
// we don't know which extruder to start with - we'll set it according to the first toolchange
|
|
for (const auto& layer : m_plan) {
|
|
if (!layer.tool_changes.empty()) {
|
|
m_current_tool = layer.tool_changes.front().old_tool;
|
|
break;
|
|
}
|
|
}
|
|
|
|
m_used_filament_length.assign(m_used_filament_length.size(), 0.f); // reset used filament stats
|
|
assert(m_used_filament_length_until_layer.empty());
|
|
m_used_filament_length_until_layer.emplace_back(0.f, m_used_filament_length);
|
|
|
|
m_old_temperature = -1; // reset last temperature written in the gcode
|
|
|
|
for (const WipeTower2::WipeTowerInfo& layer : m_plan)
|
|
{
|
|
std::vector<WipeTower::ToolChangeResult> layer_result;
|
|
set_layer(layer.z, layer.height, 0, false/*layer.z == m_plan.front().z*/, layer.z == m_plan.back().z);
|
|
m_internal_rotation += 180.f;
|
|
|
|
if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width)
|
|
m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f;
|
|
|
|
int idx = first_toolchange_to_nonsoluble(layer.tool_changes);
|
|
WipeTower::ToolChangeResult finish_layer_tcr;
|
|
|
|
if (idx == -1) {
|
|
// if there is no toolchange switching to non-soluble, finish layer
|
|
// will be called at the very beginning. That's the last possibility
|
|
// where a nonsoluble tool can be.
|
|
finish_layer_tcr = finish_layer();
|
|
}
|
|
|
|
for (int i=0; i<int(layer.tool_changes.size()); ++i) {
|
|
layer_result.emplace_back(tool_change(layer.tool_changes[i].new_tool));
|
|
if (i == idx) // finish_layer will be called after this toolchange
|
|
finish_layer_tcr = finish_layer();
|
|
}
|
|
|
|
if (layer_result.empty()) {
|
|
// there is nothing to merge finish_layer with
|
|
layer_result.emplace_back(std::move(finish_layer_tcr));
|
|
}
|
|
else {
|
|
if (idx == -1) {
|
|
layer_result[0] = merge_tcr(finish_layer_tcr, layer_result[0]);
|
|
layer_result[0].force_travel = true;
|
|
}
|
|
else
|
|
layer_result[idx] = merge_tcr(layer_result[idx], finish_layer_tcr);
|
|
}
|
|
|
|
result.emplace_back(std::move(layer_result));
|
|
|
|
if (m_used_filament_length_until_layer.empty() || m_used_filament_length_until_layer.back().first != layer.z)
|
|
m_used_filament_length_until_layer.emplace_back();
|
|
m_used_filament_length_until_layer.back() = std::make_pair(layer.z, m_used_filament_length);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
std::vector<std::pair<float, float>> WipeTower2::get_z_and_depth_pairs() const
|
|
{
|
|
std::vector<std::pair<float, float>> out = {{0.f, m_wipe_tower_depth}};
|
|
for (const WipeTowerInfo& wti : m_plan) {
|
|
assert(wti.depth < wti.depth + WT_EPSILON);
|
|
if (wti.depth < out.back().second - WT_EPSILON)
|
|
out.emplace_back(wti.z, wti.depth);
|
|
}
|
|
if (out.back().first < m_wipe_tower_height - WT_EPSILON)
|
|
out.emplace_back(m_wipe_tower_height, 0.f);
|
|
return out;
|
|
}
|
|
|
|
} // namespace Slic3r
|