// Orca: WipeTower2 for all non bbl printers, support all MMU device and toolchanger. #include "WipeTower2.hpp" #include #include #include #include #include #include #include #include "ClipperUtils.hpp" #include "GCodeProcessor.hpp" #include "BoundingBox.hpp" #include "LocalesUtils.hpp" #include "Geometry.hpp" #include "PrintConfig.hpp" #include "Surface.hpp" #include "Fill/FillRectilinear.hpp" #include namespace Slic3r { // Calculates length of extrusion line to extrude given volume static float volume_to_length(float volume, float line_width, float layer_height) { return std::max(0.f, volume / (layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f)))); } static float length_to_volume(float length, float line_width, float layer_height) { return std::max(0.f, length * layer_height * (line_width - layer_height * (1.f - float(M_PI) / 4.f))); } class WipeTowerWriter2 { public: WipeTowerWriter2(float layer_height, float line_width, GCodeFlavor flavor, const std::vector& filament_parameters) : m_current_pos(std::numeric_limits::max(), std::numeric_limits::max()), m_current_z(0.f), m_current_feedrate(0.f), m_layer_height(layer_height), m_extrusion_flow(0.f), m_preview_suppressed(false), m_elapsed_time(0.f), m_gcode_flavor(flavor), m_filpar(filament_parameters) { // ORCA: This class is only used by non BBL printers, so set the parameter appropriately. // This fixes an issue where the wipe tower was using BBL tags resulting in statistics for purging in the purge tower not being displayed. GCodeProcessor::s_IsBBLPrinter = false; // adds tag for analyzer: std::ostringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Height) << m_layer_height << "\n"; // don't rely on GCodeAnalyzer knowing the layer height - it knows nothing at priming str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Role) << ExtrusionEntity::role_to_string(erWipeTower) << "\n"; m_gcode += str.str(); change_analyzer_line_width(line_width); } WipeTowerWriter2& change_analyzer_line_width(float line_width) { // adds tag for analyzer: std::stringstream str; str << ";" << GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Width) << line_width << "\n"; m_gcode += str.str(); return *this; } WipeTowerWriter2& set_initial_position(const Vec2f &pos, float width = 0.f, float depth = 0.f, float internal_angle = 0.f) { m_wipe_tower_width = width; m_wipe_tower_depth = depth; m_internal_angle = internal_angle; m_start_pos = this->rotate(pos); m_current_pos = pos; return *this; } WipeTowerWriter2& set_position(const Vec2f &pos) { m_current_pos = pos; return *this; } WipeTowerWriter2& set_initial_tool(size_t tool) { m_current_tool = tool; return *this; } WipeTowerWriter2& set_z(float z) { m_current_z = z; return *this; } WipeTowerWriter2& set_extrusion_flow(float flow) { m_extrusion_flow = flow; return *this; } WipeTowerWriter2& set_y_shift(float shift) { m_current_pos.y() -= shift-m_y_shift; m_y_shift = shift; return (*this); } WipeTowerWriter2& disable_linear_advance() { if (m_gcode_flavor == gcfRepRapSprinter || m_gcode_flavor == gcfRepRapFirmware) m_gcode += (std::string("M572 D") + std::to_string(m_current_tool) + " S0\n"); else if (m_gcode_flavor == gcfKlipper) m_gcode += "SET_PRESSURE_ADVANCE ADVANCE=0\n"; else m_gcode += "M900 K0\n"; return *this; } WipeTowerWriter2& switch_filament_monitoring(bool enable) { m_gcode += std::string("G4 S0\n") + "M591 " + (enable ? "R" : "S0") + "\n"; return *this; } // Suppress / resume G-code preview in Slic3r. Slic3r will have difficulty to differentiate the various // filament loading and cooling moves from normal extrusion moves. Therefore the writer // is asked to suppres output of some lines, which look like extrusions. WipeTowerWriter2& suppress_preview() { m_preview_suppressed = true; return *this; } WipeTowerWriter2& resume_preview() { m_preview_suppressed = false; return *this; } WipeTowerWriter2& feedrate(float f) { if (f != m_current_feedrate) { m_gcode += "G1" + set_format_F(f) + "\n"; m_current_feedrate = f; } return *this; } const std::string& gcode() const { return m_gcode; } const std::vector& extrusions() const { return m_extrusions; } float x() const { return m_current_pos.x(); } float y() const { return m_current_pos.y(); } const Vec2f& pos() const { return m_current_pos; } const Vec2f start_pos_rotated() const { return m_start_pos; } const Vec2f pos_rotated() const { return this->rotate(m_current_pos); } float elapsed_time() const { return m_elapsed_time; } float get_and_reset_used_filament_length() { float temp = m_used_filament_length; m_used_filament_length = 0.f; return temp; } // Extrude with an explicitely provided amount of extrusion. WipeTowerWriter2& extrude_explicit(float x, float y, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { if (x == m_current_pos.x() && y == m_current_pos.y() && e == 0.f && (f == 0.f || f == m_current_feedrate)) // Neither extrusion nor a travel move. return *this; float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); float len = std::sqrt(dx*dx+dy*dy); if (record_length) m_used_filament_length += e; // Now do the "internal rotation" with respect to the wipe tower center Vec2f rotated_current_pos(this->pos_rotated()); Vec2f rot(this->rotate(Vec2f(x,y))); // this is where we want to go if (! m_preview_suppressed && e > 0.f && len > 0.f) { // Width of a squished extrusion, corrected for the roundings of the squished extrusions. // This is left zero if it is a travel move. float width = e * m_filpar[0].filament_area / (len * m_layer_height); // Correct for the roundings of a squished extrusion. width += m_layer_height * float(1. - M_PI / 4.); if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos) m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool)); m_extrusions.emplace_back(WipeTower::Extrusion(rot, width, m_current_tool)); } m_gcode += "G1"; if (std::abs(rot.x() - rotated_current_pos.x()) > (float)EPSILON) m_gcode += set_format_X(rot.x()); if (std::abs(rot.y() - rotated_current_pos.y()) > (float)EPSILON) m_gcode += set_format_Y(rot.y()); if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) { if (limit_volumetric_flow) { float e_speed = e / (((len == 0.f) ? std::abs(e) : len) / f * 60.f); f /= std::max(1.f, e_speed / m_filpar[m_current_tool].max_e_speed); } m_gcode += set_format_F(f); } // Append newline if at least one of X,Y,E,F was changed. // Otherwise, remove the "G1". if (! boost::ends_with(m_gcode, "G1")) m_gcode += "\n"; else m_gcode.erase(m_gcode.end()-2, m_gcode.end()); m_current_pos.x() = x; m_current_pos.y() = y; // Update the elapsed time with a rough estimate. m_elapsed_time += ((len == 0.f) ? std::abs(e) : len) / m_current_feedrate * 60.f; return *this; } WipeTowerWriter2& extrude_explicit(const Vec2f &dest, float e, float f = 0.f, bool record_length = false, bool limit_volumetric_flow = true) { return extrude_explicit(dest.x(), dest.y(), e, f, record_length); } // Travel to a new XY position. f=0 means use the current value. WipeTowerWriter2& travel(float x, float y, float f = 0.f) { return extrude_explicit(x, y, 0.f, f); } WipeTowerWriter2& travel(const Vec2f &dest, float f = 0.f) { return extrude_explicit(dest.x(), dest.y(), 0.f, f); } // Extrude a line from current position to x, y with the extrusion amount given by m_extrusion_flow. WipeTowerWriter2& extrude(float x, float y, float f = 0.f) { float dx = x - m_current_pos.x(); float dy = y - m_current_pos.y(); return extrude_explicit(x, y, std::sqrt(dx*dx+dy*dy) * m_extrusion_flow, f, true); } WipeTowerWriter2& extrude(const Vec2f &dest, const float f = 0.f) { return extrude(dest.x(), dest.y(), f); } WipeTowerWriter2& rectangle(const Vec2f& ld,float width,float height,const float f = 0.f) { Vec2f corners[4]; corners[0] = ld; corners[1] = ld + Vec2f(width,0.f); corners[2] = ld + Vec2f(width,height); corners[3] = ld + Vec2f(0.f,height); int index_of_closest = 0; if (x()-ld.x() > ld.x()+width-x()) // closer to the right index_of_closest = 1; if (y()-ld.y() > ld.y()+height-y()) // closer to the top index_of_closest = (index_of_closest==0 ? 3 : 2); travel(corners[index_of_closest].x(), y()); // travel to the closest corner travel(x(),corners[index_of_closest].y()); int i = index_of_closest; do { ++i; if (i==4) i=0; extrude(corners[i], f); } while (i != index_of_closest); return (*this); } WipeTowerWriter2& rectangle(const WipeTower::box_coordinates& box, const float f = 0.f) { rectangle(Vec2f(box.ld.x(), box.ld.y()), box.ru.x() - box.lu.x(), box.ru.y() - box.rd.y(), f); return (*this); } WipeTowerWriter2& load(float e, float f = 0.f) { if (e == 0.f && (f == 0.f || f == m_current_feedrate)) return *this; m_gcode += "G1"; if (e != 0.f) m_gcode += set_format_E(e); if (f != 0.f && f != m_current_feedrate) m_gcode += set_format_F(f); m_gcode += "\n"; return *this; } WipeTowerWriter2& retract(float e, float f = 0.f) { return load(-e, f); } // Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary) WipeTowerWriter2& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f) { float time = std::abs(loading_dist / loading_speed); // time that the move must take float x_distance = std::abs(farthest_x - x()); // max x-distance that we can travel float x_speed = x_distance / time; // x-speed to do it in that time if (x_speed > max_x_speed) { // Necessary x_speed is too high - we must shorten the distance to achieve max_x_speed and still respect the time. x_distance = max_x_speed * time; x_speed = max_x_speed; } float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_distance; return extrude_explicit(end_point, y(), loading_dist, x_speed * 60.f, false, false); } // Loads filament while also moving towards given point in x-axis. Unlike the previous function, this one respects // both the loading_speed and x_speed. Can shorten the move. WipeTowerWriter2& load_move_x_advanced_there_and_back(float farthest_x, float e_dist, float e_speed, float x_speed) { float old_x = x(); float time = std::abs(e_dist / e_speed); // time that the whole move must take float x_max_dist = std::abs(farthest_x - x()); // max x-distance that we can travel float x_dist = x_speed * time; // totel x-distance to travel during the move int n = int(x_dist / (2*x_max_dist) + 1.f); // how many there and back moves should we do float r = 2*n*x_max_dist / x_dist; // actual/required dist if the move is not shortened float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_max_dist / r; for (int i=0; i& wipe_path() const { return m_wipe_path; } WipeTowerWriter2& add_wipe_point(const Vec2f& pt) { m_wipe_path.push_back(rotate(pt)); return *this; } WipeTowerWriter2& add_wipe_point(float x, float y) { return add_wipe_point(Vec2f(x, y)); } private: Vec2f m_start_pos; Vec2f m_current_pos; std::vector m_wipe_path; float m_current_z; float m_current_feedrate; size_t m_current_tool; float m_layer_height; float m_extrusion_flow; bool m_preview_suppressed; std::string m_gcode; std::vector m_extrusions; float m_elapsed_time; float m_internal_angle = 0.f; float m_y_shift = 0.f; float m_wipe_tower_width = 0.f; float m_wipe_tower_depth = 0.f; unsigned m_last_fan_speed = 0; int current_temp = -1; float m_used_filament_length = 0.f; GCodeFlavor m_gcode_flavor; const std::vector& m_filpar; std::string set_format_X(float x) { m_current_pos.x() = x; return " X" + Slic3r::float_to_string_decimal_point(x, 3); } std::string set_format_Y(float y) { m_current_pos.y() = y; return " Y" + Slic3r::float_to_string_decimal_point(y, 3); } std::string set_format_Z(float z) { return " Z" + Slic3r::float_to_string_decimal_point(z, 3); } std::string set_format_E(float e) { return " E" + Slic3r::float_to_string_decimal_point(e, 4); } std::string set_format_F(float f) { char buf[64]; sprintf(buf, " F%d", int(floor(f + 0.5f))); m_current_feedrate = f; return buf; } WipeTowerWriter2& operator=(const WipeTowerWriter2 &rhs); // Rotate the point around center of the wipe tower about given angle (in degrees) Vec2f rotate(Vec2f pt) const { pt.x() -= m_wipe_tower_width / 2.f; pt.y() += m_y_shift - m_wipe_tower_depth / 2.f; double angle = m_internal_angle * float(M_PI/180.); double c = cos(angle); double s = sin(angle); return Vec2f(float(pt.x() * c - pt.y() * s) + m_wipe_tower_width / 2.f, float(pt.x() * s + pt.y() * c) + m_wipe_tower_depth / 2.f); } }; // class WipeTowerWriter2 WipeTower::ToolChangeResult WipeTower2::construct_tcr(WipeTowerWriter2& writer, bool priming, size_t old_tool, bool is_finish) const { WipeTower::ToolChangeResult result; result.priming = priming; result.initial_tool = int(old_tool); result.new_tool = int(m_current_tool); result.print_z = m_z_pos; result.layer_height = m_layer_height; result.elapsed_time = writer.elapsed_time(); result.start_pos = writer.start_pos_rotated(); result.end_pos = priming ? writer.pos() : writer.pos_rotated(); result.gcode = std::move(writer.gcode()); result.extrusions = std::move(writer.extrusions()); result.wipe_path = std::move(writer.wipe_path()); result.is_finish_first = is_finish; return result; } WipeTower2::WipeTower2(const PrintConfig& config, const PrintRegionConfig& default_region_config,int plate_idx, Vec3d plate_origin, const std::vector>& wiping_matrix, size_t initial_tool) : m_semm(config.single_extruder_multi_material.value), m_enable_filament_ramming(config.enable_filament_ramming.value), m_wipe_tower_pos(config.wipe_tower_x.get_at(plate_idx), config.wipe_tower_y.get_at(plate_idx)), m_wipe_tower_width(float(config.prime_tower_width)), m_wipe_tower_rotation_angle(float(config.wipe_tower_rotation_angle)), m_wipe_tower_brim_width(float(config.prime_tower_brim_width)), m_wipe_tower_cone_angle(float(config.wipe_tower_cone_angle)), m_extra_flow(float(config.wipe_tower_extra_flow/100.)), m_extra_spacing_wipe(float(config.wipe_tower_extra_spacing/100. * config.wipe_tower_extra_flow/100.)), m_extra_spacing_ramming(float(config.wipe_tower_extra_spacing/100.)), m_y_shift(0.f), m_z_pos(0.f), m_bridging(float(config.wipe_tower_bridging)), m_no_sparse_layers(config.wipe_tower_no_sparse_layers), m_gcode_flavor(config.gcode_flavor), m_travel_speed(config.travel_speed), m_infill_speed(default_region_config.sparse_infill_speed), m_perimeter_speed(default_region_config.inner_wall_speed), m_current_tool(initial_tool), wipe_volumes(wiping_matrix), m_wipe_tower_max_purge_speed(float(config.wipe_tower_max_purge_speed)) { // Read absolute value of first layer speed, if given as percentage, // it is taken over following default. Speeds from config are not // easily accessible here. const float default_speed = 60.f; m_first_layer_speed = config.initial_layer_speed; if (m_first_layer_speed == 0.f) // just to make sure autospeed doesn't break it. m_first_layer_speed = default_speed / 2.f; // Autospeed may be used... if (m_infill_speed == 0.f) m_infill_speed = 80.f; if (m_perimeter_speed == 0.f) m_perimeter_speed = 80.f; // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. if (m_semm) { m_cooling_tube_retraction = float(config.cooling_tube_retraction); m_cooling_tube_length = float(config.cooling_tube_length); m_parking_pos_retraction = float(config.parking_pos_retraction); m_extra_loading_move = float(config.extra_loading_move); m_set_extruder_trimpot = config.high_current_on_filament_swap; } m_is_mk4mmu3 = boost::icontains(config.printer_notes.value, "PRINTER_MODEL_MK4") && boost::icontains(config.printer_notes.value, "MMU"); // Calculate where the priming lines should be - very naive test not detecting parallelograms etc. const std::vector& bed_points = config.printable_area.values; BoundingBoxf bb(bed_points); m_bed_width = float(bb.size().x()); m_bed_shape = (bed_points.size() == 4 ? RectangularBed : CircularBed); if (m_bed_shape == CircularBed) { // this may still be a custom bed, check that the points are roughly on a circle double r2 = std::pow(m_bed_width/2., 2.); double lim2 = std::pow(m_bed_width/10., 2.); Vec2d center = bb.center(); for (const Vec2d& pt : bed_points) if (std::abs(std::pow(pt.x()-center.x(), 2.) + std::pow(pt.y()-center.y(), 2.) - r2) > lim2) { m_bed_shape = CustomBed; break; } } m_bed_bottom_left = m_bed_shape == RectangularBed ? Vec2f(bed_points.front().x(), bed_points.front().y()) : Vec2f::Zero(); } void WipeTower2::set_extruder(size_t idx, const PrintConfig& config) { //while (m_filpar.size() < idx+1) // makes sure the required element is in the vector m_filpar.push_back(FilamentParameters()); m_filpar[idx].material = config.filament_type.get_at(idx); m_filpar[idx].is_soluble = config.filament_soluble.get_at(idx); m_filpar[idx].temperature = config.nozzle_temperature.get_at(idx); m_filpar[idx].first_layer_temperature = config.nozzle_temperature_initial_layer.get_at(idx); m_filpar[idx].filament_minimal_purge_on_wipe_tower = config.filament_minimal_purge_on_wipe_tower.get_at(idx); // If this is a single extruder MM printer, we will use all the SE-specific config values. // Otherwise, the defaults will be used to turn off the SE stuff. if (m_semm) { m_filpar[idx].loading_speed = float(config.filament_loading_speed.get_at(idx)); m_filpar[idx].loading_speed_start = float(config.filament_loading_speed_start.get_at(idx)); m_filpar[idx].unloading_speed = float(config.filament_unloading_speed.get_at(idx)); m_filpar[idx].unloading_speed_start = float(config.filament_unloading_speed_start.get_at(idx)); m_filpar[idx].delay = float(config.filament_toolchange_delay.get_at(idx)); m_filpar[idx].cooling_moves = config.filament_cooling_moves.get_at(idx); m_filpar[idx].cooling_initial_speed = float(config.filament_cooling_initial_speed.get_at(idx)); m_filpar[idx].cooling_final_speed = float(config.filament_cooling_final_speed.get_at(idx)); m_filpar[idx].filament_stamping_loading_speed = float(config.filament_stamping_loading_speed.get_at(idx)); m_filpar[idx].filament_stamping_distance = float(config.filament_stamping_distance.get_at(idx)); } m_filpar[idx].filament_area = float((M_PI/4.f) * pow(config.filament_diameter.get_at(idx), 2)); // all extruders are assumed to have the same filament diameter at this point float nozzle_diameter = float(config.nozzle_diameter.get_at(idx)); m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM float max_vol_speed = float(config.filament_max_volumetric_speed.get_at(idx)); if (max_vol_speed!= 0.f) m_filpar[idx].max_e_speed = (max_vol_speed / filament_area()); m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter if (m_semm) { std::istringstream stream{config.filament_ramming_parameters.get_at(idx)}; float speed = 0.f; stream >> m_filpar[idx].ramming_line_width_multiplicator >> m_filpar[idx].ramming_step_multiplicator; m_filpar[idx].ramming_line_width_multiplicator /= 100; m_filpar[idx].ramming_step_multiplicator /= 100; while (stream >> speed) m_filpar[idx].ramming_speed.push_back(speed); // ramming_speed now contains speeds to be used for every 0.25s piece of the ramming line. // This allows to have the ramming flow variable. The 0.25s value is how it is saved in config // and the same time step has to be used when the ramming is performed. } else { // We will use the same variables internally, but the correspondence to the configuration options will be different. float vol = config.filament_multitool_ramming_volume.get_at(idx); float flow = config.filament_multitool_ramming_flow.get_at(idx); m_filpar[idx].multitool_ramming = config.filament_multitool_ramming.get_at(idx); m_filpar[idx].ramming_line_width_multiplicator = 2.; m_filpar[idx].ramming_step_multiplicator = 1.; // Now the ramming speed vector. In this case it contains just one value (flow). // The time is calculated and saved separately. This is here so that the MM ramming // is not limited by the 0.25s granularity - it is not possible to create a SEMM-style // ramming_speed vector that would respect both the volume and flow (because of // rounding issues with small volumes and high flow). m_filpar[idx].ramming_speed.push_back(flow); m_filpar[idx].multitool_ramming_time = vol/flow; } m_used_filament_length.resize(std::max(m_used_filament_length.size(), idx + 1)); // makes sure that the vector is big enough so we don't have to check later } // Returns gcode to prime the nozzles at the front edge of the print bed. std::vector WipeTower2::prime( // print_z of the first layer. float initial_layer_print_height, // Extruder indices, in the order to be primed. The last extruder will later print the wipe tower brim, print brim and the object. const std::vector &tools, // If true, the last priming are will be the same as the other priming areas, and the rest of the wipe will be performed inside the wipe tower. // If false, the last priming are will be large enough to wipe the last extruder sufficiently. bool /*last_wipe_inside_wipe_tower*/) { this->set_layer(initial_layer_print_height, initial_layer_print_height, tools.size(), true, false); m_current_tool = tools.front(); // The Prusa i3 MK2 has a working space of [0, -2.2] to [250, 210]. // Due to the XYZ calibration, this working space may shrink slightly from all directions, // therefore the homing position is shifted inside the bed by 0.2 in the firmware to [0.2, -2.0]. // WipeTower::box_coordinates cleaning_box(xy(0.5f, - 1.5f), m_wipe_tower_width, wipe_area); float prime_section_width = std::min(0.9f * m_bed_width / tools.size(), 60.f); WipeTower::box_coordinates cleaning_box(Vec2f(0.02f * m_bed_width, 0.01f + m_perimeter_width/2.f), prime_section_width, 100.f); if (m_bed_shape == CircularBed) { cleaning_box = WipeTower::box_coordinates(Vec2f(0.f, 0.f), prime_section_width, 100.f); float total_width_half = tools.size() * prime_section_width / 2.f; cleaning_box.translate(-total_width_half, -std::sqrt(std::max(0.f, std::pow(m_bed_width/2, 2.f) - std::pow(1.05f * total_width_half, 2.f)))); } else cleaning_box.translate(m_bed_bottom_left); std::vector results; // Iterate over all priming toolchanges and push respective ToolChangeResults into results vector. for (size_t idx_tool = 0; idx_tool < tools.size(); ++ idx_tool) { size_t old_tool = m_current_tool; WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool); // This is the first toolchange - initiate priming if (idx_tool == 0) { writer.append(";--------------------\n" "; CP PRIMING START\n") .append(";--------------------\n") .speed_override_backup() .speed_override(100) .set_initial_position(Vec2f::Zero()) // Always move to the starting position .travel(cleaning_box.ld, 7200); if (m_set_extruder_trimpot) writer.set_extruder_trimpot(750); // Increase the extruder driver current to allow fast ramming. } else writer.set_initial_position(results.back().end_pos); unsigned int tool = tools[idx_tool]; m_left_to_right = true; toolchange_Change(writer, tool, m_filpar[tool].material); // Select the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); // Prime the tool. if (idx_tool + 1 == tools.size()) { // Last tool should not be unloaded, but it should be wiped enough to become of a pure color. toolchange_Wipe(writer, cleaning_box, wipe_volumes[tools[idx_tool-1]][tool]); } else { // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. //writer.travel(writer.x(), writer.y() + m_perimeter_width, 7200); toolchange_Wipe(writer, cleaning_box , 20.f); WipeTower::box_coordinates box = cleaning_box; box.translate(0.f, writer.y() - cleaning_box.ld.y() + m_perimeter_width); toolchange_Unload(writer, box , m_filpar[m_current_tool].material, m_filpar[m_current_tool].first_layer_temperature, m_filpar[tools[idx_tool + 1]].first_layer_temperature); cleaning_box.translate(prime_section_width, 0.f); writer.travel(cleaning_box.ld, 7200); } ++ m_num_tool_changes; // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); // This is the last priming toolchange - finish priming if (idx_tool+1 == tools.size()) { // Reset the extruder current to a normal value. if (m_set_extruder_trimpot) writer.set_extruder_trimpot(550); writer.speed_override_restore() .feedrate(m_travel_speed * 60.f) .flush_planner_queue() .reset_extruder() .append("; CP PRIMING END\n" ";------------------\n" "\n\n"); } results.emplace_back(construct_tcr(writer, true, old_tool, true)); } m_old_temperature = -1; // If the priming is turned off in config, the temperature changing commands will not actually appear // in the output gcode - we should not remember emitting them (we will output them twice in the worst case) return results; } WipeTower::ToolChangeResult WipeTower2::tool_change(size_t tool) { size_t old_tool = m_current_tool; float wipe_area = 0.f; float wipe_volume = 0.f; // Finds this toolchange info if (tool != (unsigned int)(-1)) { for (const auto &b : m_layer_info->tool_changes) if ( b.new_tool == tool ) { wipe_volume = b.wipe_volume; wipe_area = b.required_depth; break; } } else { // Otherwise we are going to Unload only. And m_layer_info would be invalid. } WipeTower::box_coordinates cleaning_box( Vec2f(m_perimeter_width / 2.f, m_perimeter_width / 2.f), m_wipe_tower_width - m_perimeter_width, (tool != (unsigned int)(-1) ? wipe_area+m_depth_traversed-0.5f*m_perimeter_width : m_wipe_tower_depth-m_perimeter_width)); WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift + (tool!=(unsigned int)(-1) && (m_current_shape == SHAPE_REVERSED) ? m_layer_info->depth - m_layer_info->toolchanges_depth(): 0.f)) .append(";--------------------\n" "; CP TOOLCHANGE START\n"); if (tool != (unsigned)(-1)){ writer.comment_with_value(" toolchange #", m_num_tool_changes + 1); // the number is zero-based writer.append(std::string("; material : " + (m_current_tool < m_filpar.size() ? m_filpar[m_current_tool].material : "(NONE)") + " -> " + m_filpar[tool].material + "\n").c_str()) .append(";--------------------\n"); writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_Start) + "\n"); } writer.speed_override_backup(); writer.speed_override(100); Vec2f initial_position = cleaning_box.ld + Vec2f(0.f, m_depth_traversed); writer.set_initial_position(initial_position, m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); // Increase the extruder driver current to allow fast ramming. if (m_set_extruder_trimpot) writer.set_extruder_trimpot(750); // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. if (tool != (unsigned int)-1){ // This is not the last change. auto new_tool_temp = is_first_layer() ? m_filpar[tool].first_layer_temperature : m_filpar[tool].temperature; toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, (is_first_layer() ? m_filpar[m_current_tool].first_layer_temperature : m_filpar[m_current_tool].temperature), new_tool_temp); toolchange_Change(writer, tool, m_filpar[tool].material); // Change the tool, set a speed override for soluble and flex materials. toolchange_Load(writer, cleaning_box); writer.travel(writer.x(), writer.y()-m_perimeter_width); // cooling and loading were done a bit down the road toolchange_Wipe(writer, cleaning_box, wipe_volume); // Wipe the newly loaded filament until the end of the assigned wipe area. writer.append(";" + GCodeProcessor::reserved_tag(GCodeProcessor::ETags::Wipe_Tower_End) + "\n"); ++ m_num_tool_changes; } else toolchange_Unload(writer, cleaning_box, m_filpar[m_current_tool].material, m_filpar[m_current_tool].temperature, m_filpar[m_current_tool].temperature); m_depth_traversed += wipe_area; if (m_set_extruder_trimpot) writer.set_extruder_trimpot(550); // Reset the extruder current to a normal value. writer.speed_override_restore(); writer.feedrate(m_travel_speed * 60.f) .flush_planner_queue() .reset_extruder() .append("; CP TOOLCHANGE END\n" ";------------------\n" "\n\n"); // Ask our writer about how much material was consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); return construct_tcr(writer, false, old_tool, false); } // Ram the hot material out of the melt zone, retract the filament into the cooling tubes and let it cool. void WipeTower2::toolchange_Unload( WipeTowerWriter2 &writer, const WipeTower::box_coordinates &cleaning_box, const std::string& current_material, const int old_temperature, const int new_temperature) { float xl = cleaning_box.ld.x() + 1.f * m_perimeter_width; float xr = cleaning_box.rd.x() - 1.f * m_perimeter_width; const float line_width = m_perimeter_width * m_filpar[m_current_tool].ramming_line_width_multiplicator; // desired ramming line thickness const float y_step = line_width * m_filpar[m_current_tool].ramming_step_multiplicator * m_extra_spacing_ramming; // spacing between lines in mm const Vec2f ramming_start_pos = Vec2f(xl, cleaning_box.ld.y() + m_depth_traversed + y_step/2.f); writer.append("; CP TOOLCHANGE UNLOAD\n") .change_analyzer_line_width(line_width); unsigned i = 0; // iterates through ramming_speed m_left_to_right = true; // current direction of ramming float remaining = xr - xl ; // keeps track of distance to the next turnaround float e_done = 0; // measures E move done from each segment // Orca: Do ramming when SEMM and ramming is enabled or when multi tool head when ramming is enabled on the multi tool. const bool do_ramming = (m_semm && m_enable_filament_ramming) || m_filpar[m_current_tool].multitool_ramming; const bool cold_ramming = m_is_mk4mmu3; if (do_ramming) { writer.travel(ramming_start_pos); // move to starting position if (! m_is_mk4mmu3) writer.disable_linear_advance(); if (cold_ramming) writer.set_extruder_temp(old_temperature - 20); } else writer.set_position(ramming_start_pos); // if the ending point of the ram would end up in mid air, align it with the end of the wipe tower: if (do_ramming && (m_layer_info > m_plan.begin() && m_layer_info < m_plan.end() && (m_layer_info-1!=m_plan.begin() || !m_adhesion ))) { // this is y of the center of previous sparse infill border float sparse_beginning_y = 0.f; if (m_current_shape == SHAPE_REVERSED) sparse_beginning_y += ((m_layer_info-1)->depth - (m_layer_info-1)->toolchanges_depth()) - ((m_layer_info)->depth-(m_layer_info)->toolchanges_depth()) ; else sparse_beginning_y += (m_layer_info-1)->toolchanges_depth() + m_perimeter_width; float sum_of_depths = 0.f; for (const auto& tch : m_layer_info->tool_changes) { // let's find this toolchange if (tch.old_tool == m_current_tool) { sum_of_depths += tch.ramming_depth; float ramming_end_y = sum_of_depths; ramming_end_y -= (y_step/m_extra_spacing_ramming-m_perimeter_width) / 2.f; // center of final ramming line if ( (m_current_shape == SHAPE_REVERSED && ramming_end_y < sparse_beginning_y - 0.5f*m_perimeter_width ) || (m_current_shape == SHAPE_NORMAL && ramming_end_y > sparse_beginning_y + 0.5f*m_perimeter_width ) ) { writer.extrude(xl + tch.first_wipe_line-1.f*m_perimeter_width,writer.y()); remaining -= tch.first_wipe_line-1.f*m_perimeter_width; } break; } sum_of_depths += tch.required_depth; } } if (m_is_mk4mmu3) { writer.switch_filament_monitoring(false); writer.wait(1.5f); } // now the ramming itself: while (do_ramming && i < m_filpar[m_current_tool].ramming_speed.size()) { // The time step is different for SEMM ramming and the MM ramming. See comments in set_extruder() for details. const float time_step = m_semm ? 0.25f : m_filpar[m_current_tool].multitool_ramming_time; const float x = volume_to_length(m_filpar[m_current_tool].ramming_speed[i] * time_step, line_width, m_layer_height); const float e = m_filpar[m_current_tool].ramming_speed[i] * time_step / filament_area(); // transform volume per sec to E move; const float dist = std::min(x - e_done, remaining); // distance to travel for either the next time_step, or to the next turnaround const float actual_time = dist/x * time_step; writer.ram(writer.x(), writer.x() + (m_left_to_right ? 1.f : -1.f) * dist, 0.f, 0.f, e * (dist / x), dist / (actual_time / 60.f)); remaining -= dist; if (remaining < WT_EPSILON) { // we reached a turning point writer.travel(writer.x(), writer.y() + y_step, 7200); m_left_to_right = !m_left_to_right; remaining = xr - xl; } e_done += dist; // subtract what was actually done if (e_done > x - WT_EPSILON) { // current segment finished ++i; e_done = 0; } } Vec2f end_of_ramming(writer.x(),writer.y()); writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier // Retraction: if(m_enable_filament_ramming) writer.append("; Ramming start\n"); float old_x = writer.x(); float turning_point = (!m_left_to_right ? xl : xr ); if (m_enable_filament_ramming && m_semm && (m_cooling_tube_retraction != 0 || m_cooling_tube_length != 0)) { writer.append("; Retract(unload)\n"); float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming writer.suppress_preview() .retract(15.f, m_filpar[m_current_tool].unloading_speed_start * 60.f) // feedrate 5000mm/min = 83mm/s .retract(0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed * 60.f) .retract(0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed * 60.f) .resume_preview(); } const int& number_of_cooling_moves = m_filpar[m_current_tool].cooling_moves; const bool cooling_will_happen = m_enable_filament_ramming && m_semm && number_of_cooling_moves > 0 && m_cooling_tube_length != 0; bool change_temp_later = false; // Wipe tower should only change temperature with single extruder MM. Otherwise, all temperatures should // be already set and there is no need to change anything. Also, the temperature could be changed // for wrong extruder. if (m_semm) { if (new_temperature != 0 && (new_temperature != m_old_temperature || is_first_layer() || cold_ramming) ) { // Set the extruder temperature, but don't wait. // If the required temperature is the same as last time, don't emit the M104 again (if user adjusted the value, it would be reset) // However, always change temperatures on the first layer (this is to avoid issues with priming lines turned off). if (cold_ramming && cooling_will_happen) change_temp_later = true; else writer.set_extruder_temp(new_temperature, false); m_old_temperature = new_temperature; } } // Cooling: if (cooling_will_happen) { writer.append("; Cooling\n"); const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed; const float& final_speed = m_filpar[m_current_tool].cooling_final_speed; float speed_inc = (final_speed - initial_speed) / (2.f * number_of_cooling_moves - 1.f); if (m_is_mk4mmu3) writer.disable_linear_advance(); writer.suppress_preview() .travel(writer.x(), writer.y() + y_step); old_x = writer.x(); turning_point = xr-old_x > old_x-xl ? xr : xl; float stamping_dist_e = m_filpar[m_current_tool].filament_stamping_distance + m_cooling_tube_length / 2.f; for (int i=0; i0 && m_filpar[m_current_tool].filament_stamping_distance != 0) { // Stamping turning point shall be no farther than 20mm from the current nozzle position: float stamping_turning_point = std::clamp(old_x + 20.f * (turning_point - old_x > 0.f ? 1.f : -1.f), xl, xr); // Only last 5mm will be done with the fast x travel. The point is to spread possible blobs // along the whole wipe tower. if (stamping_dist_e > 5) { float cent = writer.x(); writer.load_move_x_advanced(stamping_turning_point, (stamping_dist_e - 5), m_filpar[m_current_tool].filament_stamping_loading_speed, 200); writer.load_move_x_advanced(cent, 5, m_filpar[m_current_tool].filament_stamping_loading_speed, m_travel_speed); writer.travel(cent, writer.y()); } else writer.load_move_x_advanced_there_and_back(stamping_turning_point, stamping_dist_e, m_filpar[m_current_tool].filament_stamping_loading_speed, m_travel_speed); // Retract while the print head is stationary, so if there is a blob, it is not dragged along. writer.retract(stamping_dist_e, m_filpar[m_current_tool].unloading_speed * 60.f); } if (i == number_of_cooling_moves - 1 && change_temp_later) { // If cold_ramming, the temperature change should be done before the last cooling move. writer.set_extruder_temp(new_temperature, false); } float speed = initial_speed + speed_inc * 2*i; writer.load_move_x_advanced(turning_point, m_cooling_tube_length, speed); speed += speed_inc; writer.load_move_x_advanced(old_x, -m_cooling_tube_length, speed); } } if (m_enable_filament_ramming && m_semm) { writer.append("; Cooling park\n"); // let's wait is necessary: writer.wait(m_filpar[m_current_tool].delay); // we should be at the beginning of the cooling tube again - let's move to parking position: const auto _e = -m_cooling_tube_length / 2.f + m_parking_pos_retraction - m_cooling_tube_retraction; if (_e != 0.f) writer.retract(_e, 2000); } if(m_enable_filament_ramming) writer.append("; Ramming end\n"); // this is to align ramming and future wiping extrusions, so the future y-steps can be uniform from the start: // the perimeter_width will later be subtracted, it is there to not load while moving over just extruded material Vec2f pos = Vec2f(end_of_ramming.x(), end_of_ramming.y() + (y_step/m_extra_spacing_ramming-m_perimeter_width) / 2.f + m_perimeter_width); if (do_ramming) writer.travel(pos, 2400.f); else writer.set_position(pos); writer.resume_preview() .flush_planner_queue(); } // Change the tool, set a speed override for soluble and flex materials. void WipeTower2::toolchange_Change( WipeTowerWriter2 &writer, const size_t new_tool, const std::string& new_material) { // Ask the writer about how much of the old filament we consumed: if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); // This is where we want to place the custom gcodes. We will use placeholders for this. // These will be substituted by the actual gcodes when the gcode is generated. //writer.append("[end_filament_gcode]\n"); writer.append("[change_filament_gcode]\n"); if (m_is_mk4mmu3) writer.switch_filament_monitoring(true); // Travel to where we assume we are. Custom toolchange or some special T code handling (parking extruder etc) // gcode could have left the extruder somewhere, we cannot just start extruding. We should also inform the // postprocessor that we absolutely want to have this in the gcode, even if it thought it is the same as before. Vec2f current_pos = writer.pos_rotated(); writer.feedrate(m_travel_speed * 60.f) // see https://github.com/prusa3d/PrusaSlicer/issues/5483 .append(std::string("G1 X") + Slic3r::float_to_string_decimal_point(current_pos.x()) + " Y" + Slic3r::float_to_string_decimal_point(current_pos.y()) + never_skip_tag() + "\n" ); writer.append("[deretraction_from_wipe_tower_generator]"); // The toolchange Tn command will be inserted later, only in case that the user does // not provide a custom toolchange gcode. writer.set_tool(new_tool); // This outputs nothing, the writer just needs to know the tool has changed. // writer.append("[filament_start_gcode]\n"); writer.flush_planner_queue(); m_current_tool = new_tool; } void WipeTower2::toolchange_Load( WipeTowerWriter2 &writer, const WipeTower::box_coordinates &cleaning_box) { if (m_semm && m_enable_filament_ramming && (m_parking_pos_retraction != 0 || m_extra_loading_move != 0)) { float xl = cleaning_box.ld.x() + m_perimeter_width * 0.75f; float xr = cleaning_box.rd.x() - m_perimeter_width * 0.75f; float oldx = writer.x(); // the nozzle is in place to do the first wiping moves, we will remember the position // Load the filament while moving left / right, so the excess material will not create a blob at a single position. float turning_point = ( oldx-xl < xr-oldx ? xr : xl ); float edist = m_parking_pos_retraction+m_extra_loading_move; writer.append("; CP TOOLCHANGE LOAD\n") .suppress_preview() .load(0.2f * edist, 60.f * m_filpar[m_current_tool].loading_speed_start) .load_move_x_advanced(turning_point, 0.7f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase .load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow*/ .travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate .resume_preview(); // Reset the extruder current to the normal value. if (m_set_extruder_trimpot) writer.set_extruder_trimpot(550); } } // Wipe the newly loaded filament until the end of the assigned wipe area. void WipeTower2::toolchange_Wipe( WipeTowerWriter2 &writer, const WipeTower::box_coordinates &cleaning_box, float wipe_volume) { // Increase flow on first layer, slow down print. writer.set_extrusion_flow(m_extrusion_flow * (is_first_layer() ? 1.18f : 1.f)) .append("; CP TOOLCHANGE WIPE\n"); const float& xl = cleaning_box.ld.x(); const float& xr = cleaning_box.rd.x(); writer.set_extrusion_flow(m_extrusion_flow * m_extra_flow); const float line_width = m_perimeter_width * m_extra_flow; writer.change_analyzer_line_width(line_width); // Variables x_to_wipe and traversed_x are here to be able to make sure it always wipes at least // the ordered volume, even if it means violating the box. This can later be removed and simply // wipe until the end of the assigned area. float x_to_wipe = volume_to_length(wipe_volume, m_perimeter_width, m_layer_height) / m_extra_flow; float dy = (is_first_layer() ? m_extra_flow : m_extra_spacing_wipe) * m_perimeter_width; // Don't use the extra spacing for the first layer, but do use the spacing resulting from increased flow. // All the calculations in all other places take the spacing into account for all the layers. // If spare layers are excluded->if 1 or less toolchange has been done, it must be sill the first layer, too.So slow down. const float target_speed = is_first_layer() || (m_num_tool_changes <= 1 && m_no_sparse_layers) ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_infill_speed * 60.f); float wipe_speed = 0.33f * target_speed; // if there is less than 2.5*line_width to the edge, advance straightaway (there is likely a blob anyway) if ((m_left_to_right ? xr-writer.x() : writer.x()-xl) < 2.5f*line_width) { writer.travel((m_left_to_right ? xr-line_width : xl+line_width),writer.y()+dy); m_left_to_right = !m_left_to_right; } // now the wiping itself: for (int i = 0; true; ++i) { if (i!=0) { if (wipe_speed < 0.34f * target_speed) wipe_speed = 0.375f * target_speed; else if (wipe_speed < 0.377 * target_speed) wipe_speed = 0.458f * target_speed; else if (wipe_speed < 0.46f * target_speed) wipe_speed = 0.875f * target_speed; else wipe_speed = std::min(target_speed, wipe_speed + 50.f); } float traversed_x = writer.x(); if (m_left_to_right) writer.extrude(xr - (i % 4 == 0 ? 0 : 1.5f*line_width), writer.y(), wipe_speed); else writer.extrude(xl + (i % 4 == 1 ? 0 : 1.5f*line_width), writer.y(), wipe_speed); if (writer.y()+float(EPSILON) > cleaning_box.lu.y()-0.5f*line_width) break; // in case next line would not fit traversed_x -= writer.x(); x_to_wipe -= std::abs(traversed_x); if (x_to_wipe < WT_EPSILON) { writer.travel(m_left_to_right ? xl + 1.5f*line_width : xr - 1.5f*line_width, writer.y(), 7200); break; } // stepping to the next line: writer.extrude(writer.x() + (i % 4 == 0 ? -1.f : (i % 4 == 1 ? 1.f : 0.f)) * 1.5f*line_width, writer.y() + dy); m_left_to_right = !m_left_to_right; } // We may be going back to the model - wipe the nozzle. If this is followed // by finish_layer, this wipe path will be overwritten. writer.add_wipe_point(writer.x(), writer.y()) .add_wipe_point(writer.x(), writer.y() - dy) .add_wipe_point(! m_left_to_right ? m_wipe_tower_width : 0.f, writer.y() - dy); if (m_layer_info != m_plan.end() && m_current_tool != m_layer_info->tool_changes.back().new_tool) m_left_to_right = !m_left_to_right; writer.set_extrusion_flow(m_extrusion_flow); // Reset the extrusion flow. writer.change_analyzer_line_width(m_perimeter_width); } WipeTower::ToolChangeResult WipeTower2::finish_layer() { assert(! this->layer_finished()); m_current_layer_finished = true; size_t old_tool = m_current_tool; WipeTowerWriter2 writer(m_layer_height, m_perimeter_width, m_gcode_flavor, m_filpar); writer.set_extrusion_flow(m_extrusion_flow) .set_z(m_z_pos) .set_initial_tool(m_current_tool) .set_y_shift(m_y_shift - (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)); // Slow down on the 1st layer. // If spare layers are excluded -> if 1 or less toolchange has been done, it must be still the first layer, too. So slow down. bool first_layer = is_first_layer() || (m_num_tool_changes <= 1 && m_no_sparse_layers); float feedrate = first_layer ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_infill_speed * 60.f); float current_depth = m_layer_info->depth - m_layer_info->toolchanges_depth(); WipeTower::box_coordinates fill_box(Vec2f(m_perimeter_width, m_layer_info->depth-(current_depth-m_perimeter_width)), m_wipe_tower_width - 2 * m_perimeter_width, current_depth-m_perimeter_width); writer.set_initial_position((m_left_to_right ? fill_box.ru : fill_box.lu), // so there is never a diagonal travel m_wipe_tower_width, m_wipe_tower_depth, m_internal_rotation); bool toolchanges_on_layer = m_layer_info->toolchanges_depth() > WT_EPSILON; WipeTower::box_coordinates wt_box(Vec2f(0.f, (m_current_shape == SHAPE_REVERSED ? m_layer_info->toolchanges_depth() : 0.f)), m_wipe_tower_width, m_layer_info->depth + m_perimeter_width); // inner perimeter of the sparse section, if there is space for it: if (fill_box.ru.y() - fill_box.rd.y() > m_perimeter_width - WT_EPSILON) writer.rectangle(fill_box.ld, fill_box.rd.x()-fill_box.ld.x(), fill_box.ru.y()-fill_box.rd.y(), feedrate); // we are in one of the corners, travel to ld along the perimeter: if (writer.x() > fill_box.ld.x()+EPSILON) writer.travel(fill_box.ld.x(),writer.y()); if (writer.y() > fill_box.ld.y()+EPSILON) writer.travel(writer.x(),fill_box.ld.y()); // Extrude infill to support the material to be printed above. const float dy = (fill_box.lu.y() - fill_box.ld.y() - m_perimeter_width); float left = fill_box.lu.x() + 2*m_perimeter_width; float right = fill_box.ru.x() - 2 * m_perimeter_width; if (dy > m_perimeter_width) { writer.travel(fill_box.ld + Vec2f(m_perimeter_width * 2, 0.f)) .append(";--------------------\n" "; CP EMPTY GRID START\n") .comment_with_value(" layer #", m_num_layer_changes + 1); // Is there a soluble filament wiped/rammed at the next layer? // If so, the infill should not be sparse. bool solid_infill = m_layer_info+1 == m_plan.end() ? false : std::any_of((m_layer_info+1)->tool_changes.begin(), (m_layer_info+1)->tool_changes.end(), [this](const WipeTowerInfo::ToolChange& tch) { return m_filpar[tch.new_tool].is_soluble || m_filpar[tch.old_tool].is_soluble; }); solid_infill |= first_layer && m_adhesion; if (solid_infill) { float sparse_factor = 1.5f; // 1=solid, 2=every other line, etc. if (first_layer) { // the infill should touch perimeters left -= m_perimeter_width; right += m_perimeter_width; sparse_factor = 1.f; } float y = fill_box.ld.y() + m_perimeter_width; int n = dy / (m_perimeter_width * sparse_factor); float spacing = (dy-m_perimeter_width)/(n-1); int i=0; for (i=0; i Polygon { const auto [R, support_scale] = get_wipe_tower_cone_base(m_wipe_tower_width, m_wipe_tower_height, m_wipe_tower_depth, m_wipe_tower_cone_angle); double z = m_no_sparse_layers ? (m_current_height + m_layer_info->height) : m_layer_info->z; // the former should actually work in both cases, but let's stay on the safe side (the 2.6.0 is close) double r = std::tan(Geometry::deg2rad(m_wipe_tower_cone_angle/2.f)) * (m_wipe_tower_height - z); Vec2f center = (wt_box.lu + wt_box.rd) / 2.; double w = wt_box.lu.y() - wt_box.ld.y(); enum Type { Arc, Corner, ArcStart, ArcEnd }; // First generate vector of annotated point which form the boundary. std::vector> pts = {{wt_box.ru, Corner}}; if (double alpha_start = std::asin((0.5*w)/r); ! std::isnan(alpha_start) && r > 0.5*w+0.01) { for (double alpha = alpha_start; alpha < M_PI-alpha_start+0.001; alpha+=(M_PI-2*alpha_start) / 40.) pts.emplace_back(Vec2f(center.x() + r*std::cos(alpha)/support_scale, center.y() + r*std::sin(alpha)), alpha == alpha_start ? ArcStart : Arc); pts.back().second = ArcEnd; } pts.emplace_back(wt_box.lu, Corner); pts.emplace_back(wt_box.ld, Corner); for (int i=int(pts.size())-3; i>0; --i) pts.emplace_back(Vec2f(pts[i].first.x(), 2*center.y()-pts[i].first.y()), i == int(pts.size())-3 ? ArcStart : i == 1 ? ArcEnd : Arc); pts.emplace_back(wt_box.rd, Corner); // Create a Polygon from the points. Polygon poly; for (const auto& [pt, tag] : pts) poly.points.push_back(Point::new_scale(pt)); // Prepare polygons to be filled by infill. Polylines polylines; if (infill_cone && m_wipe_tower_width > 2*spacing && m_wipe_tower_depth > 2*spacing) { ExPolygons infill_areas; ExPolygon wt_contour(poly); Polygon wt_rectangle(Points{Point::new_scale(wt_box.ld), Point::new_scale(wt_box.rd), Point::new_scale(wt_box.ru), Point::new_scale(wt_box.lu)}); wt_rectangle = offset(wt_rectangle, scale_(-spacing/2.)).front(); wt_contour = offset_ex(wt_contour, scale_(-spacing/2.)).front(); infill_areas = diff_ex(wt_contour, wt_rectangle); if (infill_areas.size() == 2) { ExPolygon& bottom_expoly = infill_areas.front().contour.points.front().y() < infill_areas.back().contour.points.front().y() ? infill_areas[0] : infill_areas[1]; std::unique_ptr filler(Fill::new_from_type(ipMonotonicLine)); filler->angle = Geometry::deg2rad(45.f); filler->spacing = spacing; FillParams params; params.density = 1.f; Surface surface(stBottom, bottom_expoly); filler->bounding_box = get_extents(bottom_expoly); polylines = filler->fill_surface(&surface, params); if (! polylines.empty()) { if (polylines.front().points.front().x() > polylines.back().points.back().x()) { std::reverse(polylines.begin(), polylines.end()); for (Polyline& p : polylines) p.reverse(); } } } } // Find the closest corner and travel to it. int start_i = 0; double min_dist = std::numeric_limits::max(); for (int i=0; i() - center)); for (size_t i=0; i() - center)); } writer.travel(pts[i].first); } } if (++i == int(pts.size())) i = 0; } writer.extrude(pts[start_i].first, feedrate); return poly; }; feedrate = first_layer ? m_first_layer_speed * 60.f : std::min(m_wipe_tower_max_purge_speed * 60.f, m_perimeter_speed * 60.f); // outer contour (always) bool infill_cone = first_layer && m_wipe_tower_width > 2*spacing && m_wipe_tower_depth > 2*spacing; Polygon poly = supported_rectangle(wt_box, feedrate, infill_cone); // brim (first layer only) if (first_layer) { size_t loops_num = (m_wipe_tower_brim_width + spacing/2.f) / spacing; for (size_t i = 0; i < loops_num; ++ i) { poly = offset(poly, scale_(spacing)).front(); int cp = poly.closest_point_index(Point::new_scale(writer.x(), writer.y())); writer.travel(unscale(poly.points[cp]).cast()); for (int i=cp+1; true; ++i ) { if (i==int(poly.points.size())) i = 0; writer.extrude(unscale(poly.points[i]).cast()); if (i == cp) break; } } // Save actual brim width to be later passed to the Print object, which will use it // for skirt calculation and pass it to GLCanvas for precise preview box m_wipe_tower_brim_width_real = loops_num * spacing; } // Now prepare future wipe. int i = poly.closest_point_index(Point::new_scale(writer.x(), writer.y())); writer.add_wipe_point(writer.pos()); writer.add_wipe_point(unscale(poly.points[i==0 ? int(poly.points.size())-1 : i-1]).cast()); // Ask our writer about how much material was consumed. // Skip this in case the layer is sparse and config option to not print sparse layers is enabled. if (! m_no_sparse_layers || toolchanges_on_layer || first_layer) { if (m_current_tool < m_used_filament_length.size()) m_used_filament_length[m_current_tool] += writer.get_and_reset_used_filament_length(); m_current_height += m_layer_info->height; } return construct_tcr(writer, false, old_tool, true); } // Static method to get the radius and x-scaling of the stabilizing cone base. std::pair WipeTower2::get_wipe_tower_cone_base(double width, double height, double depth, double angle_deg) { double R = std::tan(Geometry::deg2rad(angle_deg/2.)) * height; double fake_width = 0.66 * width; double diag = std::hypot(fake_width / 2., depth / 2.); double support_scale = 1.; if (R > diag) { double w = fake_width; double sin = 0.5 * depth / diag; double tan = depth / w; double t = (R - diag) * sin; support_scale = (w / 2. + t / tan + t * tan) / (w / 2.); } return std::make_pair(R, support_scale); } // Static method to extract wipe_volumes[from][to] from the configuration. std::vector> WipeTower2::extract_wipe_volumes(const PrintConfig& config) { // Get wiping matrix to get number of extruders and convert vector to vector: std::vector wiping_matrix(cast(config.flush_volumes_matrix.values)); auto scale = config.flush_multiplier; // The values shall only be used when SEMM is enabled. The purging for other printers // is determined by filament_minimal_purge_on_wipe_tower. if (! config.purge_in_prime_tower.value || ! config.single_extruder_multi_material.value) std::fill(wiping_matrix.begin(), wiping_matrix.end(), 0.f); // Extract purging volumes for each extruder pair: std::vector> wipe_volumes; const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON); for (size_t i = 0; i(wiping_matrix.begin()+i*number_of_extruders, wiping_matrix.begin()+(i+1)*number_of_extruders)); // Also include filament_minimal_purge_on_wipe_tower. This is needed for the preview. for (unsigned int i = 0; i(wipe_volumes[i][j] * scale, config.filament_minimal_purge_on_wipe_tower.get_at(j)); return wipe_volumes; } static float get_wipe_depth(float volume, float layer_height, float perimeter_width, float extra_flow, float extra_spacing, float width) { float length_to_extrude = (volume_to_length(volume, perimeter_width, layer_height)) / extra_flow; length_to_extrude = std::max(length_to_extrude,0.f); return (int(length_to_extrude / width) + 1) * perimeter_width * extra_spacing; } // Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box void WipeTower2::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, float wipe_volume) { assert(m_plan.empty() || m_plan.back().z <= z_par + WT_EPSILON); // refuses to add a layer below the last one if (m_plan.empty() || m_plan.back().z + WT_EPSILON < z_par) // if we moved to a new layer, we'll add it to m_plan first m_plan.push_back(WipeTowerInfo(z_par, layer_height_par)); if (m_first_layer_idx == size_t(-1) && (! m_no_sparse_layers || old_tool != new_tool || m_plan.size() == 1)) m_first_layer_idx = m_plan.size() - 1; if (old_tool == new_tool) // new layer without toolchanges - we are done return; // this is an actual toolchange - let's calculate depth to reserve on the wipe tower float width = m_wipe_tower_width - 3*m_perimeter_width; float length_to_extrude = volume_to_length(0.25f * std::accumulate(m_filpar[old_tool].ramming_speed.begin(), m_filpar[old_tool].ramming_speed.end(), 0.f), m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator, layer_height_par); // Orca: Set ramming depth to 0 if ramming is disabled. float ramming_depth = m_enable_filament_ramming ? ((int(length_to_extrude / width) + 1) * (m_perimeter_width * m_filpar[old_tool].ramming_line_width_multiplicator * m_filpar[old_tool].ramming_step_multiplicator) * m_extra_spacing_ramming) : 0; float first_wipe_line = - (width*((length_to_extrude / width)-int(length_to_extrude / width)) - width); float first_wipe_volume = length_to_volume(first_wipe_line, m_perimeter_width * m_extra_flow, layer_height_par); float wiping_depth = get_wipe_depth(wipe_volume - first_wipe_volume, layer_height_par, m_perimeter_width, m_extra_flow, m_extra_spacing_wipe, width); m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, ramming_depth + wiping_depth, ramming_depth, first_wipe_line, wipe_volume)); } void WipeTower2::plan_tower() { // Calculate m_wipe_tower_depth (maximum depth for all the layers) and propagate depths downwards m_wipe_tower_depth = 0.f; for (auto& layer : m_plan) layer.depth = 0.f; m_wipe_tower_height = m_plan.empty() ? 0.f : m_plan.back().z; m_current_height = 0.f; for (int layer_index = int(m_plan.size()) - 1; layer_index >= 0; --layer_index) { float this_layer_depth = std::max(m_plan[layer_index].depth, m_plan[layer_index].toolchanges_depth()); m_plan[layer_index].depth = this_layer_depth; if (this_layer_depth > m_wipe_tower_depth - m_perimeter_width) m_wipe_tower_depth = this_layer_depth + m_perimeter_width; for (int i = layer_index - 1; i >= 0 ; i--) { if (m_plan[i].depth - this_layer_depth < 2*m_perimeter_width ) m_plan[i].depth = this_layer_depth; } } } void WipeTower2::save_on_last_wipe() { for (m_layer_info=m_plan.begin();m_layer_infoz, m_layer_info->height, 0, m_layer_info->z == m_plan.front().z, m_layer_info->z == m_plan.back().z); if (m_layer_info->tool_changes.size()==0) // we have no way to save anything on an empty layer continue; // Which toolchange will finish_layer extrusions be subtracted from? int idx = first_toolchange_to_nonsoluble(m_layer_info->tool_changes); if (idx == -1) { // In this case, finish_layer will be called at the very beginning. finish_layer().total_extrusion_length_in_plane(); } for (int i=0; itool_changes.size()); ++i) { auto& toolchange = m_layer_info->tool_changes[i]; tool_change(toolchange.new_tool); if (i == idx) { float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into float volume_to_save = length_to_volume(finish_layer().total_extrusion_length_in_plane(), m_perimeter_width, m_layer_info->height); float volume_left_to_wipe = std::max(m_filpar[toolchange.new_tool].filament_minimal_purge_on_wipe_tower, toolchange.wipe_volume_total - volume_to_save); float volume_we_need_depth_for = std::max(0.f, volume_left_to_wipe - length_to_volume(toolchange.first_wipe_line, m_perimeter_width*m_extra_flow, m_layer_info->height)); float depth_to_wipe = get_wipe_depth(volume_we_need_depth_for, m_layer_info->height, m_perimeter_width, m_extra_flow, m_extra_spacing_wipe, width); toolchange.required_depth = toolchange.ramming_depth + depth_to_wipe; toolchange.wipe_volume = volume_left_to_wipe; } } } } // Return index of first toolchange that switches to non-soluble extruder // ot -1 if there is no such toolchange. int WipeTower2::first_toolchange_to_nonsoluble( const std::vector& tool_changes) const { // Orca: allow calculation of the required depth and wipe volume for soluable toolchanges as well // NOTE: it's not clear if this is the right way, technically we should disable wipe tower if soluble filament is used as it // will will make the wipe tower unstable. Need to revist this in the future. return tool_changes.empty() ? -1 : 0; //for (size_t idx=0; idx> &result) { if (m_plan.empty()) return; plan_tower(); for (int i = 0; i<5; ++i) { save_on_last_wipe(); plan_tower(); } m_layer_info = m_plan.begin(); m_current_height = 0.f; // we don't know which extruder to start with - we'll set it according to the first toolchange for (const auto& layer : m_plan) { if (!layer.tool_changes.empty()) { m_current_tool = layer.tool_changes.front().old_tool; break; } } m_used_filament_length.assign(m_used_filament_length.size(), 0.f); // reset used filament stats assert(m_used_filament_length_until_layer.empty()); m_used_filament_length_until_layer.emplace_back(0.f, m_used_filament_length); m_old_temperature = -1; // reset last temperature written in the gcode for (const WipeTower2::WipeTowerInfo& layer : m_plan) { std::vector layer_result; set_layer(layer.z, layer.height, 0, false/*layer.z == m_plan.front().z*/, layer.z == m_plan.back().z); m_internal_rotation += 180.f; if (m_layer_info->depth < m_wipe_tower_depth - m_perimeter_width) m_y_shift = (m_wipe_tower_depth-m_layer_info->depth-m_perimeter_width)/2.f; int idx = first_toolchange_to_nonsoluble(layer.tool_changes); WipeTower::ToolChangeResult finish_layer_tcr; if (idx == -1) { // if there is no toolchange switching to non-soluble, finish layer // will be called at the very beginning. That's the last possibility // where a nonsoluble tool can be. finish_layer_tcr = finish_layer(); } for (int i=0; i> WipeTower2::get_z_and_depth_pairs() const { std::vector> out = {{0.f, m_wipe_tower_depth}}; for (const WipeTowerInfo& wti : m_plan) { assert(wti.depth < wti.depth + WT_EPSILON); if (wti.depth < out.back().second - WT_EPSILON) out.emplace_back(wti.z, wti.depth); } if (out.back().first < m_wipe_tower_height - WT_EPSILON) out.emplace_back(m_wipe_tower_height, 0.f); return out; } } // namespace Slic3r