
* BASE * precise wall and z moved * PolyHoles * Arc-fitting * X-Y Compensation * Elephant foot + moved images * Update quality_settings_precision.md * Wall generator and more * Full Reorder * TPMS-D bases * Update strength_settings_infill.md * Image Fix + Infill desc calculator * Descriptions + image fix Co-Authored-By: Rodrigo <162915171+RF47@users.noreply.github.com> * Update cornering-calib.md * minor fixes * Wip updated * Missing fills * Update infill_desc_calculator.xlsx * Update infill_desc_calculator.xlsx * Update infill documentation and images Removed outdated 'iso' infill images and updated 'top' infill images with new versions. Added new images for adaptive cubic and 2D honeycomb infill patterns. Updated strength_settings_infill.md to revise infill strength values, descriptions, and remove references to deleted images. Introduced documentation for 2D honeycomb infill and made minor corrections and clarifications throughout. * Revise infill pattern documentation and add comparison table Updated strength_settings_infill.md to clarify infill density calculation, add a comprehensive comparison table of infill patterns, and standardize terminology for strength and print time. Expanded pattern descriptions to use qualitative strength ratings instead of numeric values. Updated infill_desc_calculator.xlsx to reflect these changes. * Indentation in code examples Adjusted the indentation of code blocks in the cornering calibration documentation for clarity and consistency with the rest of the document. * Update 3D Honeycomb infill strength ratings Adjusted the horizontal strength rating for 3D Honeycomb infill from 'Normal' to 'Normal-High' in the strength settings documentation and table. Updated the infill_desc_calculator.xlsx file to reflect these changes. * Formatting and fix in ERS documentation Updated headings to use consistent Markdown syntax, improved clarity in explanations, and reworded references for better readability. * Fix wall generator doc link and filename Updated the Home.md to reference the correct 'quality_settings_wall_generator' section and renamed the corresponding documentation file for consistency. --------- Co-authored-by: Rodrigo <162915171+RF47@users.noreply.github.com>
4.2 KiB
Adaptive Bed Mesh Support
Orca Slicer introduces comprehensive support for adaptive bed meshing across a variety of firmware, including Marlin, Klipper, and RepRapFirmware (RRF).
This feature allows users to seamlessly integrate adaptive bed mesh commands within the Machine Start G-code.
The implementation is designed to be straightforward, requiring no additional plugins or alterations to firmware settings, thereby enhancing user experience and print quality directly from Orca Slicer.
Settings in Orca Slicer:
Bed mesh min
: This option sets the min point for the allowed bed mesh area. Due to the probe's XY offset, most printers are unable to probe the entire bed. To ensure the probe point does not go outside the bed area, the minimum and maximum points of the bed mesh should be set appropriately. OrcaSlicer ensures that adaptive_bed_mesh_min/adaptive_bed_mesh_max values do not exceed these min/max points. This information can usually be obtained from your printer manufacturer. The default setting is (-99999, -99999), which means there are no limits, thus allowing probing across the entire bed.
Bed mesh max
: This option sets the max point for the allowed bed mesh area. Due to the probe's XY offset, most printers are unable to probe the entire bed. To ensure the probe point does not go outside the bed area, the minimum and maximum points of the bed mesh should be set appropriately. OrcaSlicer ensures that adaptive_bed_mesh_min/adaptive_bed_mesh_max values do not exceed these min/max points. This information can usually be obtained from your printer manufacturer. The default setting is (99999, 99999), which means there are no limits, thus allowing probing across the entire bed.
Probe point distance
: This option sets the preferred distance between probe points (grid size) for the X and Y directions, with the default being 50mm for both X and Y.
Mesh margin
: This option determines the additional distance by which the adaptive bed mesh area should be expanded in the XY directions.
Note
Klipper users: Orca Slicer will adjust adaptive bed mesh area according to the margin. It is recommended to set the margin to 0 in Klipper config or pass 0 when calling BED_MESH_CALIBRATE command(please refer to the example below).
Available g-code variables for Adaptive Bed Mesh Command
bed_mesh_probe_count
: Represents the probe count in the X and Y directions. This value is calculated based on the size of the adaptive bed mesh area and the distance between probe points.
adaptive_bed_mesh_min
: Specifies the minimum coordinates of the adaptive bed mesh area, defining the starting point of the mesh.
adaptive_bed_mesh_max
: Determines the maximum coordinates of the adaptive bed mesh area, indicating the endpoint of the mesh.
ALGORITHM
: Identifies the algorithm used for adaptive bed mesh interpolation. This variable is useful for Klipper users. If bed_mesh_probe_count is less than 4, the algorithm is set to lagrange
. Otherwise, it is set to bicubic
.
Example of Adaptive Bed Mesh usage in Orca Slicer:
Marlin:
; Marlin don't support speicify the probe count yet, so we only specify the probe area
G29 L{adaptive_bed_mesh_min[0]} R{adaptive_bed_mesh_max[0]} F{adaptive_bed_mesh_min[1]} B{adaptive_bed_mesh_max[1]} T V4
Klipper:
; Always pass `ADAPTIVE_MARGIN=0` because Orca has already handled `adaptive_bed_mesh_margin` internally
; Make sure to set ADAPTIVE to 0 otherwise Klipper will use it's own adaptive bed mesh logic
BED_MESH_CALIBRATE mesh_min={adaptive_bed_mesh_min[0]},{adaptive_bed_mesh_min[1]} mesh_max={adaptive_bed_mesh_max[0]},{adaptive_bed_mesh_max[1]} ALGORITHM=[bed_mesh_algo] PROBE_COUNT={bed_mesh_probe_count[0]},{bed_mesh_probe_count[1]} ADAPTIVE=0 ADAPTIVE_MARGIN=0
RRF:
M557 X{adaptive_bed_mesh_min[0]}:{adaptive_bed_mesh_max[0]} Y{adaptive_bed_mesh_min[1]}:{adaptive_bed_mesh_max[1]} P{bed_mesh_probe_count[0]}:{bed_mesh_probe_count[1]}