
* BASE * precise wall and z moved * PolyHoles * Arc-fitting * X-Y Compensation * Elephant foot + moved images * Update quality_settings_precision.md * Wall generator and more * Full Reorder * TPMS-D bases * Update strength_settings_infill.md * Image Fix + Infill desc calculator * Descriptions + image fix Co-Authored-By: Rodrigo <162915171+RF47@users.noreply.github.com> * Update cornering-calib.md * minor fixes * Wip updated * Missing fills * Update infill_desc_calculator.xlsx * Update infill_desc_calculator.xlsx * Update infill documentation and images Removed outdated 'iso' infill images and updated 'top' infill images with new versions. Added new images for adaptive cubic and 2D honeycomb infill patterns. Updated strength_settings_infill.md to revise infill strength values, descriptions, and remove references to deleted images. Introduced documentation for 2D honeycomb infill and made minor corrections and clarifications throughout. * Revise infill pattern documentation and add comparison table Updated strength_settings_infill.md to clarify infill density calculation, add a comprehensive comparison table of infill patterns, and standardize terminology for strength and print time. Expanded pattern descriptions to use qualitative strength ratings instead of numeric values. Updated infill_desc_calculator.xlsx to reflect these changes. * Indentation in code examples Adjusted the indentation of code blocks in the cornering calibration documentation for clarity and consistency with the rest of the document. * Update 3D Honeycomb infill strength ratings Adjusted the horizontal strength rating for 3D Honeycomb infill from 'Normal' to 'Normal-High' in the strength settings documentation and table. Updated the infill_desc_calculator.xlsx file to reflect these changes. * Formatting and fix in ERS documentation Updated headings to use consistent Markdown syntax, improved clarity in explanations, and reworded references for better readability. * Fix wall generator doc link and filename Updated the Home.md to reference the correct 'quality_settings_wall_generator' section and renamed the corresponding documentation file for consistency. --------- Co-authored-by: Rodrigo <162915171+RF47@users.noreply.github.com>
2.8 KiB
Temp Calibration
In FDM 3D printing, the temperature is a critical factor that affects the quality of the print. There is no other calibration that can have such a big impact on the print quality as temperature calibration.
Nozzle Temp tower
Nozzle temperature is one of the most important settings to calibrate for a successful print. The temperature of the nozzle affects the viscosity of the filament, which in turn affects how well it flows through the nozzle and adheres to the print bed. If the temperature is too low, the filament may not flow properly, leading to under-extrusion, poor layer adhesion and stringing. If the temperature is too high, the filament may degrade, over-extrude and produce stringing.
Temp tower is a straightforward test. The temp tower is a vertical tower with multiple blocks, each printed at a different temperature. Once the print is complete, we can examine each block of the tower and determine the optimal temperature for the filament. The optimal temperature is the one that produces the highest quality print with the least amount of issues, such as stringing, layer adhesion, warping (overhang), and bridging.
Bed temperature
Bed temperature is another important setting to calibrate for a successful print. The bed temperature affects the adhesion of the filament to the print bed, which in turn affects the overall quality of the print. If the bed temperature is too low, the filament may not adhere properly to the print bed, leading to warping and poor layer adhesion. If the bed temperature is too high, the filament may become too soft and lose its shape, leading to over-extrusion and poor layer adhesion.
This setting doesn't have a specific test, but it is recommended to start with the recommended bed temperature for the filament and adjust it based on the filament manufacturer's recommendations.
Chamber temperature
Chamber temperature can affect the print quality, especially for high-temperature filaments. A heated chamber can help to maintain a consistent temperature throughout the print, reducing the risk of warping and improving layer adhesion. However, it is important to monitor the chamber temperature to ensure that it does not exceed the recommended temperature for the filament being used.
See: Chamber temperature printer settings
Note
Low temperature Filaments like PLA can clog the nozzle if the chamber temperature is too high.