OrcaSlicer/doc/calibration/flow-rate-calib.md
Ian Bassi 4ec16fd714
Some checks are pending
Build all / Build All (push) Waiting to run
Build all / Flatpak (push) Waiting to run
Publish docs to Wiki / Publish docs to Wiki (push) Waiting to run
Wiki Update part 5 (#9873)
* BASE

* precise wall and z moved

* PolyHoles

* Arc-fitting

* X-Y Compensation

* Elephant foot + moved images

* Update quality_settings_precision.md

* Wall generator and more

* Full Reorder

* TPMS-D bases

* Update strength_settings_infill.md

* Image Fix + Infill desc calculator

* Descriptions + image fix

Co-Authored-By: Rodrigo <162915171+RF47@users.noreply.github.com>

* Update cornering-calib.md

* minor fixes

* Wip updated

* Missing fills

* Update infill_desc_calculator.xlsx

* Update infill_desc_calculator.xlsx

* Update infill documentation and images

Removed outdated 'iso' infill images and updated 'top' infill images with new versions. Added new images for adaptive cubic and 2D honeycomb infill patterns. Updated strength_settings_infill.md to revise infill strength values, descriptions, and remove references to deleted images. Introduced documentation for 2D honeycomb infill and made minor corrections and clarifications throughout.

* Revise infill pattern documentation and add comparison table

Updated strength_settings_infill.md to clarify infill density calculation, add a comprehensive comparison table of infill patterns, and standardize terminology for strength and print time. Expanded pattern descriptions to use qualitative strength ratings instead of numeric values. Updated infill_desc_calculator.xlsx to reflect these changes.

* Indentation in  code examples

Adjusted the indentation of code blocks in the cornering calibration documentation for clarity and consistency with the rest of the document.

* Update 3D Honeycomb infill strength ratings

Adjusted the horizontal strength rating for 3D Honeycomb infill from 'Normal' to 'Normal-High' in the strength settings documentation and table. Updated the infill_desc_calculator.xlsx file to reflect these changes.

* Formatting and fix in ERS documentation

Updated headings to use consistent Markdown syntax, improved clarity in explanations, and reworded references for better readability.

* Fix wall generator doc link and filename

Updated the Home.md to reference the correct 'quality_settings_wall_generator' section and renamed the corresponding documentation file for consistency.

---------

Co-authored-by: Rodrigo <162915171+RF47@users.noreply.github.com>
2025-06-20 10:19:48 +08:00

3 KiB

Flow rate

The Flow Ratio determines how much filament is extruded and plays a key role in achieving high-quality prints. A properly calibrated flow ratio ensures consistent layer adhesion and accurate dimensions. If the flow ratio is too low, under-extrusion may occur, leading to gaps, weak layers, and poor structural integrity. On the other hand, a flow ratio that is too high can cause over-extrusion, resulting in excess material, rough surfaces, and dimensional inaccuracies.

Warning

Bambulab Printers: make sure you do not select the 'Flow calibration' option. flow-rate-Bambulab-uncheck

Important

PASS 1 and PASS 2 follow the older flow ratio formula FlowRatio_old*(100 + modifier)/100.
YOLO (Recommended) and YOLO (perfectist version) use a new system that is very simple FlowRatio_old±modifier.

flow-calibration

Calibrating the flow rate involves a two-step process.

  1. Select the printer, filament, and process you would like to use for the test.

  2. Select Pass 1 in the Calibration menu

  3. A new project consisting of nine blocks will be created, each with a different flow rate modifier. Slice and print the project.

  4. Examine the blocks and determine which one has the smoothest top surface. flowrate-pass1

    flowrate-0-5

  5. Update the flow ratio in the filament settings using the following equation: FlowRatio_old*(100 + modifier)/100. If your previous flow ratio was 0.98 and you selected the block with a flow rate modifier of +5, the new value should be calculated as follows: 0.98x(100+5)/100 = 1.029.** Remember** to save the filament profile.

  6. Perform the Pass 2 calibration. This process is similar to Pass 1, but a new project with ten blocks will be generated. The flow rate modifiers for this project will range from -9 to 0.

  7. Repeat steps 4. and 5. In this case, if your previous flow ratio was 1.029 and you selected the block with a flow rate modifier of -6, the new value should be calculated as follows: 1.029x(100-6)/100 = 0.96726. Remember to save the filament profile.

flowrate-pass2

flowrate-6

flowcalibration_update_flowrate

Tip

@ItsDeidara has made a html to help with the calculation. Check it out if those equations give you a headache here.