Porting of Pressure Equalizer feature from Prusa Slicer 2.6.x (#2161)

* Overhang perimeter handling

Updated code to handle overhang perimeters as an overhang and not as a bridge.

* Preparing to add curled extrusions identification

* Porting curling calculations from Prusa Slier 2.6.1

* Prototype 1 - slowdown extended to detect curled edges and further reduce speed

First prototype of the code submitted.

* Working prototype - 2

Code is now finally working - external perimeters are slowed down as needed when there is likelyhood of curling up.

ToDo:
1. Reslicing the model causes the algorithm not to run - need to find where this fails to trigger the call for this.
2. Slowdown of internal perimeters not working yet.

* Updated to use overhang wall speed instead of bridging speed for this algorithm

* Fixed bug in speed calculation and tweaked parameters for high speed printer

Fixed bug in speed calculation and tweaked parameters for high speed printer

* Attempting to fix "set started" not being set

* Parameter tweak after print tests

* Fixed estimation not running when model is re-sliced.

* Removing debug printf statements and fixed threading flag.

* Fixed threading

* Parameter tweaks following print tests

* Made this as an option in the GUI

* Reintroduced handling of bridges as per original design

* UI line toggling when option makes sense to be visible.

* Fixed bug in field visibility & made it default to off

* Code optimisation

* Initial commit of code from Prusa Slicer 2.6.1

* Ported ExtrusionRole from Prusa Slicer 2.6.1

* fix compile errors

* Update GCode.hpp

* code changes to invoke pressure equalizer

* attempting to trigger pressure equalizer

(Not compiling)

* Update Fill.cpp

* Update Fill.cpp

* Pressure equaliser layer result update

* Further commits

* Merged PR https://github.com/prusa3d/PrusaSlicer/pull/9622

* First complete working version

* Update PressureEqualizer.cpp

* Implemented parameter in GUI

* Toggle fields according to compatibility

* Updated UI toggles between extrusion rate slope and arc fitting.

* Updated tooltip

* Introduced parameter smoothing segment length

This parameter influences the number of division a line will undergo in response to the requirement to adhere to the extrusion rate flow adjustment.

* Internal parameter and tool tip tweaking

* Parameter and tool tip tweaking

* Updated parameters and tooltip following testing.

* Sync PressureEq with latest PrusaSlicer

* Revert "Sync PressureEq with latest PrusaSlicer"

This reverts commit 131fb94c6b.

---------

Co-authored-by: MGunlogson <MGunlogson@users.noreply.github.com>
Co-authored-by: Vojtech Bubnik <bubnikv@gmail.com>
This commit is contained in:
Ioannis Giannakas 2023-09-27 14:44:45 +01:00 committed by GitHub
parent 78a8bad6f4
commit cf846195cc
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 824 additions and 431 deletions

View file

@ -62,6 +62,8 @@ set(lisbslic3r_sources
ExtrusionEntity.hpp ExtrusionEntity.hpp
ExtrusionEntityCollection.cpp ExtrusionEntityCollection.cpp
ExtrusionEntityCollection.hpp ExtrusionEntityCollection.hpp
ExtrusionRole.cpp
ExtrusionRole.hpp
ExtrusionSimulator.cpp ExtrusionSimulator.cpp
ExtrusionSimulator.hpp ExtrusionSimulator.hpp
FileParserError.hpp FileParserError.hpp
@ -128,8 +130,8 @@ set(lisbslic3r_sources
GCode/FanMover.hpp GCode/FanMover.hpp
GCode/PostProcessor.cpp GCode/PostProcessor.cpp
GCode/PostProcessor.hpp GCode/PostProcessor.hpp
# GCode/PressureEqualizer.cpp GCode/PressureEqualizer.cpp
# GCode/PressureEqualizer.hpp GCode/PressureEqualizer.hpp
GCode/PrintExtents.cpp GCode/PrintExtents.cpp
GCode/PrintExtents.hpp GCode/PrintExtents.hpp
GCode/RetractWhenCrossingPerimeters.cpp GCode/RetractWhenCrossingPerimeters.cpp

View file

@ -0,0 +1,94 @@
///|/ Copyright (c) Prusa Research 2023 Pavel Mikuš @Godrak, Oleksandra Iushchenko @YuSanka, Vojtěch Bubník @bubnikv
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include "ExtrusionRole.hpp"
#include "I18N.hpp"
#include <string>
#include <string_view>
#include <cassert>
namespace Slic3r {
// Convert a rich bitmask based ExtrusionRole to a less expressive ordinal GCodeExtrusionRole.
// GCodeExtrusionRole is to be serialized into G-code and deserialized by G-code viewer,
GCodeExtrusionRole extrusion_role_to_gcode_extrusion_role(ExtrusionRole role)
{
if (role == erNone) return GCodeExtrusionRole::None;
if (role == erOverhangPerimeter) return GCodeExtrusionRole::OverhangPerimeter;
if (role == erExternalPerimeter) return GCodeExtrusionRole::ExternalPerimeter;
if (role == erPerimeter) return GCodeExtrusionRole::Perimeter;
if (role == erInternalInfill) return GCodeExtrusionRole::InternalInfill;
if (role == erSolidInfill) return GCodeExtrusionRole::SolidInfill;
if (role == erTopSolidInfill) return GCodeExtrusionRole::TopSolidInfill;
if (role == erIroning) return GCodeExtrusionRole::Ironing;
if (role == erBridgeInfill) return GCodeExtrusionRole::BridgeInfill;
if (role == erGapFill) return GCodeExtrusionRole::GapFill;
if (role == erSkirt) return GCodeExtrusionRole::Skirt;
if (role == erSupportMaterial) return GCodeExtrusionRole::SupportMaterial;
if (role == erSupportMaterialInterface) return GCodeExtrusionRole::SupportMaterialInterface;
if (role == erWipeTower) return GCodeExtrusionRole::WipeTower;
assert(false);
return GCodeExtrusionRole::None;
}
std::string gcode_extrusion_role_to_string(GCodeExtrusionRole role)
{
switch (role) {
case GCodeExtrusionRole::None : return L("Unknown");
case GCodeExtrusionRole::Perimeter : return L("Perimeter");
case GCodeExtrusionRole::ExternalPerimeter : return L("External perimeter");
case GCodeExtrusionRole::OverhangPerimeter : return L("Overhang perimeter");
case GCodeExtrusionRole::InternalInfill : return L("Internal infill");
case GCodeExtrusionRole::SolidInfill : return L("Solid infill");
case GCodeExtrusionRole::TopSolidInfill : return L("Top solid infill");
case GCodeExtrusionRole::Ironing : return L("Ironing");
case GCodeExtrusionRole::BridgeInfill : return L("Bridge infill");
case GCodeExtrusionRole::GapFill : return L("Gap fill");
case GCodeExtrusionRole::Skirt : return L("Skirt/Brim");
case GCodeExtrusionRole::SupportMaterial : return L("Support material");
case GCodeExtrusionRole::SupportMaterialInterface : return L("Support material interface");
case GCodeExtrusionRole::WipeTower : return L("Wipe tower");
case GCodeExtrusionRole::Custom : return L("Custom");
default : assert(false);
}
return {};
}
GCodeExtrusionRole string_to_gcode_extrusion_role(const std::string_view role)
{
if (role == L("Perimeter"))
return GCodeExtrusionRole::Perimeter;
else if (role == L("External perimeter"))
return GCodeExtrusionRole::ExternalPerimeter;
else if (role == L("Overhang perimeter"))
return GCodeExtrusionRole::OverhangPerimeter;
else if (role == L("Internal infill"))
return GCodeExtrusionRole::InternalInfill;
else if (role == L("Solid infill"))
return GCodeExtrusionRole::SolidInfill;
else if (role == L("Top solid infill"))
return GCodeExtrusionRole::TopSolidInfill;
else if (role == L("Ironing"))
return GCodeExtrusionRole::Ironing;
else if (role == L("Bridge infill"))
return GCodeExtrusionRole::BridgeInfill;
else if (role == L("Gap fill"))
return GCodeExtrusionRole::GapFill;
else if (role == L("Skirt") || role == L("Skirt/Brim")) // "Skirt" is for backward compatibility with 2.3.1 and earlier
return GCodeExtrusionRole::Skirt;
else if (role == L("Support material"))
return GCodeExtrusionRole::SupportMaterial;
else if (role == L("Support material interface"))
return GCodeExtrusionRole::SupportMaterialInterface;
else if (role == L("Wipe tower"))
return GCodeExtrusionRole::WipeTower;
else if (role == L("Custom"))
return GCodeExtrusionRole::Custom;
else
return GCodeExtrusionRole::None;
}
}

View file

@ -0,0 +1,83 @@
///|/ Copyright (c) 2023 Robert Schiele @schiele
///|/ Copyright (c) Prusa Research 2023 Vojtěch Bubník @bubnikv
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#ifndef slic3r_ExtrusionRole_hpp_
#define slic3r_ExtrusionRole_hpp_
#include "enum_bitmask.hpp"
#include "ExtrusionEntity.hpp"
#include <string>
#include <string_view>
#include <cstdint>
namespace Slic3r {
enum class ExtrusionRoleModifier : uint16_t {
// 1) Extrusion types
// Perimeter (external, inner, ...)
Perimeter,
// Infill (top / bottom / solid inner / sparse inner / bridging inner ...)
Infill,
// Variable width extrusion
Thin,
// Support material extrusion
Support,
Skirt,
Wipe,
// 2) Extrusion modifiers
External,
Solid,
Ironing,
Bridge,
// 3) Special types
// Indicator that the extrusion role was mixed from multiple differing extrusion roles,
// for example from Support and SupportInterface.
Mixed,
// Stopper, there should be maximum 16 modifiers defined for uint16_t bit mask.
Count
};
// There should be maximum 16 modifiers defined for uint16_t bit mask.
static_assert(int(ExtrusionRoleModifier::Count) <= 16, "ExtrusionRoleModifier: there must be maximum 16 modifiers defined to fit a 16 bit bitmask");
using ExtrusionRoleModifiers = enum_bitmask<ExtrusionRoleModifier>;
ENABLE_ENUM_BITMASK_OPERATORS(ExtrusionRoleModifier);
// Be careful when editing this list as many parts of the code depend
// on the values of these ordinars, for example
// GCodeViewer::Extrusion_Role_Colors
enum class GCodeExtrusionRole : uint8_t {
None,
Perimeter,
ExternalPerimeter,
OverhangPerimeter,
InternalInfill,
SolidInfill,
TopSolidInfill,
Ironing,
BridgeInfill,
GapFill,
Skirt,
SupportMaterial,
SupportMaterialInterface,
WipeTower,
// Custom (user defined) G-code block, for example start / end G-code.
Custom,
// Stopper to count number of enums.
Count
};
// Convert a rich bitmask based ExtrusionRole to a less expressive ordinal GCodeExtrusionRole.
// GCodeExtrusionRole is to be serialized into G-code and deserialized by G-code viewer,
GCodeExtrusionRole extrusion_role_to_gcode_extrusion_role(ExtrusionRole role);
std::string gcode_extrusion_role_to_string(GCodeExtrusionRole role);
GCodeExtrusionRole string_to_gcode_extrusion_role(const std::string_view role);
}
#endif // slic3r_ExtrusionRole_hpp_

View file

@ -1873,14 +1873,13 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
if (print.config().spiral_mode.value) if (print.config().spiral_mode.value)
m_spiral_vase = make_unique<SpiralVase>(print.config()); m_spiral_vase = make_unique<SpiralVase>(print.config());
#ifdef HAS_PRESSURE_EQUALIZER
if (print.config().max_volumetric_extrusion_rate_slope_positive.value > 0 || if (print.config().max_volumetric_extrusion_rate_slope.value > 0){
print.config().max_volumetric_extrusion_rate_slope_negative.value > 0) m_pressure_equalizer = make_unique<PressureEqualizer>(print.config());
m_pressure_equalizer = make_unique<PressureEqualizer>(&print.config()); m_enable_extrusion_role_markers = (bool)m_pressure_equalizer;
m_enable_extrusion_role_markers = (bool)m_pressure_equalizer; } else
#else /* HAS_PRESSURE_EQUALIZER */ m_enable_extrusion_role_markers = false;
m_enable_extrusion_role_markers = false;
#endif /* HAS_PRESSURE_EQUALIZER */
file.write_format("; HEADER_BLOCK_START\n"); file.write_format("; HEADER_BLOCK_START\n");
// Write information on the generator. // Write information on the generator.
@ -2388,10 +2387,6 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
file.write("M1003 S0\n"); file.write("M1003 S0\n");
} }
} }
#ifdef HAS_PRESSURE_EQUALIZER
if (m_pressure_equalizer)
file.write(m_pressure_equalizer->process("", true));
#endif /* HAS_PRESSURE_EQUALIZER */
++ finished_objects; ++ finished_objects;
// Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed. // Flag indicating whether the nozzle temperature changes from 1st to 2nd layer were performed.
// Reset it when starting another object from 1st layer. // Reset it when starting another object from 1st layer.
@ -2459,10 +2454,6 @@ void GCode::_do_export(Print& print, GCodeOutputStream &file, ThumbnailsGenerato
file.write("M1003 S0\n"); file.write("M1003 S0\n");
} }
} }
#ifdef HAS_PRESSURE_EQUALIZER
if (m_pressure_equalizer)
file.write(m_pressure_equalizer->process("", true));
#endif /* HAS_PRESSURE_EQUALIZER */
if (m_wipe_tower) if (m_wipe_tower)
// Purge the extruder, pull out the active filament. // Purge the extruder, pull out the active filament.
file.write(m_wipe_tower->finalize(*this)); file.write(m_wipe_tower->finalize(*this));
@ -2595,11 +2586,18 @@ void GCode::process_layers(
{ {
// The pipeline is variable: The vase mode filter is optional. // The pipeline is variable: The vase mode filter is optional.
size_t layer_to_print_idx = 0; size_t layer_to_print_idx = 0;
const auto generator = tbb::make_filter<void, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order, const auto generator = tbb::make_filter<void, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &print_object_instances_ordering, &layers_to_print, &layer_to_print_idx](tbb::flow_control& fc) -> GCode::LayerResult { [this, &print, &tool_ordering, &print_object_instances_ordering, &layers_to_print, &layer_to_print_idx](tbb::flow_control& fc) -> LayerResult {
if (layer_to_print_idx == layers_to_print.size()) { if (layer_to_print_idx >= layers_to_print.size()) {
fc.stop(); if ((!m_pressure_equalizer && layer_to_print_idx == layers_to_print.size()) || (m_pressure_equalizer && layer_to_print_idx == (layers_to_print.size() + 1))) {
return {}; fc.stop();
return {};
} else {
// Pressure equalizer need insert empty input. Because it returns one layer back.
// Insert NOP (no operation) layer;
++layer_to_print_idx;
return LayerResult::make_nop_layer_result();
}
} else { } else {
const std::pair<coordf_t, std::vector<LayerToPrint>>& layer = layers_to_print[layer_to_print_idx++]; const std::pair<coordf_t, std::vector<LayerToPrint>>& layer = layers_to_print[layer_to_print_idx++];
const LayerTools& layer_tools = tool_ordering.tools_for_layer(layer.first); const LayerTools& layer_tools = tool_ordering.tools_for_layer(layer.first);
@ -2612,13 +2610,23 @@ void GCode::process_layers(
return this->process_layer(print, layer.second, layer_tools, &layer == &layers_to_print.back(), &print_object_instances_ordering, size_t(-1)); return this->process_layer(print, layer.second, layer_tools, &layer == &layers_to_print.back(), &print_object_instances_ordering, size_t(-1));
} }
}); });
const auto spiral_mode = tbb::make_filter<GCode::LayerResult, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_mode = *this->m_spiral_vase.get()](GCode::LayerResult in) -> GCode::LayerResult { const auto spiral_mode = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_mode = *this->m_spiral_vase.get()](LayerResult in) -> LayerResult {
if (in.nop_layer_result)
return in;
spiral_mode.enable(in.spiral_vase_enable); spiral_mode.enable(in.spiral_vase_enable);
return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush }; return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
}); });
const auto cooling = tbb::make_filter<GCode::LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order, const auto pressure_equalizer = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer.get()](GCode::LayerResult in) -> std::string { [pressure_equalizer = this->m_pressure_equalizer.get()](LayerResult in) -> LayerResult {
return pressure_equalizer->process_layer(std::move(in));
});
const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer.get()](LayerResult in) -> std::string {
if (in.nop_layer_result)
return in.gcode;
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush); return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
}); });
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order, const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
@ -2627,6 +2635,7 @@ void GCode::process_layers(
const auto fan_mover = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order, const auto fan_mover = tbb::make_filter<std::string, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&fan_mover = this->m_fan_mover, &config = this->config(), &writer = this->m_writer](std::string in)->std::string { [&fan_mover = this->m_fan_mover, &config = this->config(), &writer = this->m_writer](std::string in)->std::string {
CNumericLocalesSetter locales_setter; CNumericLocalesSetter locales_setter;
if (config.fan_speedup_time.value != 0 || config.fan_kickstart.value > 0) { if (config.fan_speedup_time.value != 0 || config.fan_kickstart.value > 0) {
@ -2645,10 +2654,14 @@ void GCode::process_layers(
}); });
// The pipeline elements are joined using const references, thus no copying is performed. // The pipeline elements are joined using const references, thus no copying is performed.
if (m_spiral_vase) if (m_spiral_vase && m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & spiral_mode & cooling & fan_mover & output); tbb::parallel_pipeline(12, generator & spiral_mode & pressure_equalizer & cooling & fan_mover & output);
else if (m_spiral_vase)
tbb::parallel_pipeline(12, generator & spiral_mode & cooling & fan_mover & output);
else if (m_pressure_equalizer)
tbb::parallel_pipeline(12, generator & pressure_equalizer & cooling & fan_mover & output);
else else
tbb::parallel_pipeline(12, generator & cooling & fan_mover & output); tbb::parallel_pipeline(12, generator & cooling & fan_mover & output);
} }
// Process all layers of a single object instance (sequential mode) with a parallel pipeline: // Process all layers of a single object instance (sequential mode) with a parallel pipeline:
@ -2665,8 +2678,8 @@ void GCode::process_layers(
{ {
// The pipeline is variable: The vase mode filter is optional. // The pipeline is variable: The vase mode filter is optional.
size_t layer_to_print_idx = 0; size_t layer_to_print_idx = 0;
const auto generator = tbb::make_filter<void, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order, const auto generator = tbb::make_filter<void, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[this, &print, &tool_ordering, &layers_to_print, &layer_to_print_idx, single_object_idx, prime_extruder](tbb::flow_control& fc) -> GCode::LayerResult { [this, &print, &tool_ordering, &layers_to_print, &layer_to_print_idx, single_object_idx, prime_extruder](tbb::flow_control& fc) -> LayerResult {
if (layer_to_print_idx == layers_to_print.size()) { if (layer_to_print_idx == layers_to_print.size()) {
fc.stop(); fc.stop();
return {}; return {};
@ -2679,13 +2692,13 @@ void GCode::process_layers(
return this->process_layer(print, { std::move(layer) }, tool_ordering.tools_for_layer(layer.print_z()), &layer == &layers_to_print.back(), nullptr, single_object_idx, prime_extruder); return this->process_layer(print, { std::move(layer) }, tool_ordering.tools_for_layer(layer.print_z()), &layer == &layers_to_print.back(), nullptr, single_object_idx, prime_extruder);
} }
}); });
const auto spiral_mode = tbb::make_filter<GCode::LayerResult, GCode::LayerResult>(slic3r_tbb_filtermode::serial_in_order, const auto spiral_mode = tbb::make_filter<LayerResult, LayerResult>(slic3r_tbb_filtermode::serial_in_order,
[&spiral_mode = *this->m_spiral_vase.get()](GCode::LayerResult in)->GCode::LayerResult { [&spiral_mode = *this->m_spiral_vase.get()](LayerResult in)->LayerResult {
spiral_mode.enable(in.spiral_vase_enable); spiral_mode.enable(in.spiral_vase_enable);
return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush }; return { spiral_mode.process_layer(std::move(in.gcode)), in.layer_id, in.spiral_vase_enable, in.cooling_buffer_flush };
}); });
const auto cooling = tbb::make_filter<GCode::LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order, const auto cooling = tbb::make_filter<LayerResult, std::string>(slic3r_tbb_filtermode::serial_in_order,
[&cooling_buffer = *this->m_cooling_buffer.get()](GCode::LayerResult in)->std::string { [&cooling_buffer = *this->m_cooling_buffer.get()](LayerResult in)->std::string {
return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush); return cooling_buffer.process_layer(std::move(in.gcode), in.layer_id, in.cooling_buffer_flush);
}); });
const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order, const auto output = tbb::make_filter<std::string, void>(slic3r_tbb_filtermode::serial_in_order,
@ -3216,7 +3229,7 @@ inline std::string get_instance_name(const PrintObject *object, const PrintInsta
// In non-sequential mode, process_layer is called per each print_z height with all object and support layers accumulated. // In non-sequential mode, process_layer is called per each print_z height with all object and support layers accumulated.
// For multi-material prints, this routine minimizes extruder switches by gathering extruder specific extrusion paths // For multi-material prints, this routine minimizes extruder switches by gathering extruder specific extrusion paths
// and performing the extruder specific extrusions together. // and performing the extruder specific extrusions together.
GCode::LayerResult GCode::process_layer( LayerResult GCode::process_layer(
const Print &print, const Print &print,
// Set of object & print layers of the same PrintObject and with the same print_z. // Set of object & print layers of the same PrintObject and with the same print_z.
const std::vector<LayerToPrint> &layers, const std::vector<LayerToPrint> &layers,
@ -3255,7 +3268,7 @@ GCode::LayerResult GCode::process_layer(
else if (support_layer != nullptr) else if (support_layer != nullptr)
layer_ptr = support_layer; layer_ptr = support_layer;
const Layer& layer = *layer_ptr; const Layer& layer = *layer_ptr;
GCode::LayerResult result { {}, layer.id(), false, last_layer }; LayerResult result { {}, layer.id(), false, last_layer };
if (layer_tools.extruders.empty()) if (layer_tools.extruders.empty())
// Nothing to extrude. // Nothing to extrude.
return result; return result;
@ -3878,14 +3891,6 @@ GCode::LayerResult GCode::process_layer(
// Flush the cooling buffer at each object layer or possibly at the last layer, even if it contains just supports (This should not happen). // Flush the cooling buffer at each object layer or possibly at the last layer, even if it contains just supports (This should not happen).
object_layer || last_layer); object_layer || last_layer);
#ifdef HAS_PRESSURE_EQUALIZER
// Apply pressure equalization if enabled;
// printf("G-code before filter:\n%s\n", gcode.c_str());
if (m_pressure_equalizer)
gcode = m_pressure_equalizer->process(gcode.c_str(), false);
// printf("G-code after filter:\n%s\n", out.c_str());
#endif /* HAS_PRESSURE_EQUALIZER */
file.write(gcode); file.write(gcode);
#endif #endif

View file

@ -22,15 +22,13 @@
#include "libslic3r/ObjectID.hpp" #include "libslic3r/ObjectID.hpp"
#include "GCode/ExtrusionProcessor.hpp" #include "GCode/ExtrusionProcessor.hpp"
#include "GCode/PressureEqualizer.hpp"
#include <memory> #include <memory>
#include <map> #include <map>
#include <set> #include <set>
#include <string> #include <string>
#ifdef HAS_PRESSURE_EQUALIZER
#include "GCode/PressureEqualizer.hpp"
#endif /* HAS_PRESSURE_EQUALIZER */
namespace Slic3r { namespace Slic3r {
// Forward declarations. // Forward declarations.
@ -138,6 +136,20 @@ public:
static const std::vector<std::string>& get() { return Colors; } static const std::vector<std::string>& get() { return Colors; }
}; };
struct LayerResult {
std::string gcode;
size_t layer_id;
// Is spiral vase post processing enabled for this layer?
bool spiral_vase_enable { false };
// Should the cooling buffer content be flushed at the end of this layer?
bool cooling_buffer_flush { false };
// Is indicating if this LayerResult should be processed, or it is just inserted artificial LayerResult.
// It is used for the pressure equalizer because it needs to buffer one layer back.
bool nop_layer_result { false };
static LayerResult make_nop_layer_result() { return {"", std::numeric_limits<coord_t>::max(), false, false, true}; }
};
class GCode { class GCode {
public: public:
GCode() : GCode() :
@ -285,14 +297,6 @@ private:
static std::vector<LayerToPrint> collect_layers_to_print(const PrintObject &object); static std::vector<LayerToPrint> collect_layers_to_print(const PrintObject &object);
static std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> collect_layers_to_print(const Print &print); static std::vector<std::pair<coordf_t, std::vector<LayerToPrint>>> collect_layers_to_print(const Print &print);
struct LayerResult {
std::string gcode;
size_t layer_id;
// Is spiral vase post processing enabled for this layer?
bool spiral_vase_enable { false };
// Should the cooling buffer content be flushed at the end of this layer?
bool cooling_buffer_flush { false };
};
LayerResult process_layer( LayerResult process_layer(
const Print &print, const Print &print,
// Set of object & print layers of the same PrintObject and with the same print_z. // Set of object & print layers of the same PrintObject and with the same print_z.
@ -511,9 +515,9 @@ private:
std::unique_ptr<CoolingBuffer> m_cooling_buffer; std::unique_ptr<CoolingBuffer> m_cooling_buffer;
std::unique_ptr<SpiralVase> m_spiral_vase; std::unique_ptr<SpiralVase> m_spiral_vase;
#ifdef HAS_PRESSURE_EQUALIZER
std::unique_ptr<PressureEqualizer> m_pressure_equalizer; std::unique_ptr<PressureEqualizer> m_pressure_equalizer;
#endif /* HAS_PRESSURE_EQUALIZER */
std::unique_ptr<WipeTowerIntegration> m_wipe_tower; std::unique_ptr<WipeTowerIntegration> m_wipe_tower;
// Heights (print_z) at which the skirt has already been extruded. // Heights (print_z) at which the skirt has already been extruded.
@ -572,6 +576,7 @@ private:
friend class Wipe; friend class Wipe;
friend class WipeTowerIntegration; friend class WipeTowerIntegration;
friend class PressureEqualizer;
friend class Print; friend class Print;
}; };

View file

@ -1,139 +1,218 @@
///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Lukáš Hejl @hejllukas, Oleksandra Iushchenko @YuSanka, Lukáš Matěna @lukasmatena
///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#include <memory.h> #include <memory.h>
#include <string.h> #include <cstring>
#include <float.h> #include <cfloat>
#include <algorithm>
#include "../libslic3r.h" #include "../libslic3r.h"
#include "../PrintConfig.hpp" #include "../PrintConfig.hpp"
#include "../LocalesUtils.hpp" #include "../LocalesUtils.hpp"
#include "../GCode.hpp"
#include "PressureEqualizer.hpp" #include "PressureEqualizer.hpp"
#include "fast_float/fast_float.h"
#include "GCodeWriter.hpp"
namespace Slic3r { namespace Slic3r {
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig *config) : static const std::string EXTRUSION_ROLE_TAG = ";_EXTRUSION_ROLE:";
m_config(config) static const std::string EXTRUDE_END_TAG = ";_EXTRUDE_END";
{ static const std::string EXTRUDE_SET_SPEED_TAG = ";_EXTRUDE_SET_SPEED";
reset(); static const std::string EXTERNAL_PERIMETER_TAG = ";_EXTERNAL_PERIMETER";
}
PressureEqualizer::~PressureEqualizer() // For how many GCode lines back will adjust a flow rate from the latest line.
{ // Bigger values affect the GCode export speed a lot, and smaller values could
} // affect how distant will be propagated a flow rate adjustment.
static constexpr int max_look_back_limit = 128;
void PressureEqualizer::reset() // Max non-extruding XY distance (travel move) in mm between two continous extrusions where we pretend
{ // its all one continous extruded line. Above this distance we assume extruder pressure hits 0
circular_buffer_pos = 0; // This exists because often there's tiny travel moves between stuff like infill
circular_buffer_size = 100; // lines where some extruder pressure will remain (so we should equalize between these small travels)
circular_buffer_items = 0; static constexpr long max_ignored_gap_between_extruding_segments = 3;
circular_buffer.assign(circular_buffer_size, GCodeLine());
PressureEqualizer::PressureEqualizer(const Slic3r::GCodeConfig &config) : m_use_relative_e_distances(config.use_relative_e_distances.value)
{
// Preallocate some data, so that output_buffer.data() will return an empty string. // Preallocate some data, so that output_buffer.data() will return an empty string.
output_buffer.assign(32, 0); output_buffer.assign(32, 0);
output_buffer_length = 0; output_buffer_length = 0;
output_buffer_prev_length = 0;
m_current_extruder = 0; m_current_extruder = 0;
// Zero the position of the XYZE axes + the current feed // Zero the position of the XYZE axes + the current feed
memset(m_current_pos, 0, sizeof(float) * 5); memset(m_current_pos, 0, sizeof(float) * 5);
m_current_extrusion_role = erNone; m_current_extrusion_role = GCodeExtrusionRole::None;
// Expect the first command to fill the nozzle (deretract). // Expect the first command to fill the nozzle (deretract).
m_retracted = true; m_retracted = true;
m_max_segment_length = 2.f;
// Calculate filamet crossections for the multiple extruders. // Calculate filamet crossections for the multiple extruders.
m_filament_crossections.clear(); m_filament_crossections.clear();
for (size_t i = 0; i < m_config->filament_diameter.values.size(); ++ i) { for (double r : config.filament_diameter.values) {
double r = m_config->filament_diameter.values[i]; double a = 0.25f * M_PI * r * r;
double a = 0.25f*M_PI*r*r;
m_filament_crossections.push_back(float(a)); m_filament_crossections.push_back(float(a));
} }
m_max_segment_length = 20.f;
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min // Volumetric rate of a 0.45mm x 0.2mm extrusion at 60mm/s XY movement: 0.45*0.2*60*60=5.4*60 = 324 mm^3/min
// Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min // Volumetric rate of a 0.45mm x 0.2mm extrusion at 20mm/s XY movement: 0.45*0.2*20*60=1.8*60 = 108 mm^3/min
// Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2 // Slope of the volumetric rate, changing from 20mm/s to 60mm/s over 2 seconds: (5.4-1.8)*60*60/2=60*60*1.8 = 6480 mm^3/min^2 = 1.8 mm^3/s^2
m_max_volumetric_extrusion_rate_slope_positive = (m_config == NULL) ? 6480.f :
m_config->max_volumetric_extrusion_rate_slope_positive.value * 60.f * 60.f; if(config.max_volumetric_extrusion_rate_slope.value > 0){
m_max_volumetric_extrusion_rate_slope_negative = (m_config == NULL) ? 6480.f : m_max_volumetric_extrusion_rate_slope_positive = float(config.max_volumetric_extrusion_rate_slope.value) * 60.f * 60.f;
m_config->max_volumetric_extrusion_rate_slope_negative.value * 60.f * 60.f; m_max_volumetric_extrusion_rate_slope_negative = float(config.max_volumetric_extrusion_rate_slope.value) * 60.f * 60.f;
m_max_segment_length = float(config.max_volumetric_extrusion_rate_slope_segment_length.value);
for (size_t i = 0; i < numExtrusionRoles; ++ i) {
m_max_volumetric_extrusion_rate_slopes[i].negative = m_max_volumetric_extrusion_rate_slope_negative;
m_max_volumetric_extrusion_rate_slopes[i].positive = m_max_volumetric_extrusion_rate_slope_positive;
} }
// Don't regulate the pressure in infill. for (ExtrusionRateSlope &extrusion_rate_slope : m_max_volumetric_extrusion_rate_slopes) {
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].negative = 0; extrusion_rate_slope.negative = m_max_volumetric_extrusion_rate_slope_negative;
m_max_volumetric_extrusion_rate_slopes[erBridgeInfill].positive = 0; extrusion_rate_slope.positive = m_max_volumetric_extrusion_rate_slope_positive;
// Don't regulate the pressure in gap fill. }
m_max_volumetric_extrusion_rate_slopes[erGapFill].negative = 0;
m_max_volumetric_extrusion_rate_slopes[erGapFill].positive = 0; // Don't regulate the pressure before and after ironing.
for (const GCodeExtrusionRole er : {GCodeExtrusionRole::Ironing}) {
m_max_volumetric_extrusion_rate_slopes[size_t(er)].negative = 0;
m_max_volumetric_extrusion_rate_slopes[size_t(er)].positive = 0;
}
opened_extrude_set_speed_block = false;
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.reset(); m_stat.reset();
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
line_idx = 0; line_idx = 0;
#endif
} }
const char* PressureEqualizer::process(const char *szGCode, bool flush) void PressureEqualizer::process_layer(const std::string &gcode)
{ {
// Reset length of the output_buffer. if (!gcode.empty()) {
output_buffer_length = 0; const char *gcode_begin = gcode.c_str();
while (*gcode_begin != 0) {
if (szGCode != 0) {
const char *p = szGCode;
while (*p != 0) {
// Find end of the line. // Find end of the line.
const char *endl = p; const char *gcode_end = gcode_begin;
// Slic3r always generates end of lines in a Unix style. // Slic3r always generates end of lines in a Unix style.
for (; *endl != 0 && *endl != '\n'; ++ endl) ; for (; *gcode_end != 0 && *gcode_end != '\n'; ++gcode_end);
if (circular_buffer_items == circular_buffer_size)
// Buffer is full. Push out the oldest line. m_gcode_lines.emplace_back();
output_gcode_line(circular_buffer[circular_buffer_pos]); if (!this->process_line(gcode_begin, gcode_end, m_gcode_lines.back())) {
else // The line has to be forgotten. It contains comment marks, which shall be filtered out of the target g-code.
++ circular_buffer_items; m_gcode_lines.pop_back();
// Process a G-code line, store it into the provided GCodeLine object.
size_t idx_tail = circular_buffer_pos;
circular_buffer_pos = circular_buffer_idx_next(circular_buffer_pos);
if (! process_line(p, endl - p, circular_buffer[idx_tail])) {
// The line has to be forgotten. It contains comment marks, which shall be
// filtered out of the target g-code.
circular_buffer_pos = idx_tail;
-- circular_buffer_items;
} }
p = endl; gcode_begin = gcode_end;
if (*p == '\n') if (*gcode_begin == '\n')
++ p; ++gcode_begin;
}
assert(!this->opened_extrude_set_speed_block);
}
// at this point, we have an entire layer of gcode lines loaded into m_gcode_lines
// now we will split the mix of travels and extrudes into segments of continous extrusion and process those
// We skip over large travels, and pretend small ones are part of a continous extrusion segment
long idx_end_current_extrusion = 0;
while (idx_end_current_extrusion < m_gcode_lines.size()) {
// find beginning of next extrusion segment from current pos
const long idx_begin_current_extrusion = find_if(m_gcode_lines.begin() + idx_end_current_extrusion, m_gcode_lines.end(),
[](GCodeLine line) { return line.extruding(); }) - m_gcode_lines.begin();
// (extrusion begin idx = extrusion end idx) here because we start with extrusion length of zero
idx_end_current_extrusion = idx_begin_current_extrusion;
// inner loop extends the extrusion segment over small travel moves
while (idx_end_current_extrusion < m_gcode_lines.size()) {
// find end of the current extrusion segment
const auto just_after_end_extrusion = find_if(m_gcode_lines.begin() + idx_end_current_extrusion, m_gcode_lines.end(),
[](GCodeLine line) { return !line.extruding(); });
idx_end_current_extrusion = std::max<long>(0,(just_after_end_extrusion - m_gcode_lines.begin()) - 1);
const long idx_begin_segment_continuation = advance_segment_beyond_small_gap(idx_end_current_extrusion);
if (idx_begin_segment_continuation > idx_end_current_extrusion) {
// extend the continous line over the small gap
idx_end_current_extrusion = idx_begin_segment_continuation;
continue; // keep going, loop again to find new end of extrusion segment
} else {
// gap to next extrude is too big, stop looking forward. We've found end of this segment
break;
}
}
// now run the pressure equalizer across the segment like a streamroller
// it operates on a sliding window that moves forward across gcode line by line
for (int i = idx_begin_current_extrusion; i < idx_end_current_extrusion; ++i) {
// feed pressure equalizer past lines, going back to max_look_back_limit (or start of segment)
const auto start_idx = std::max<long>(idx_begin_current_extrusion, i - max_look_back_limit);
adjust_volumetric_rate(start_idx, i);
}
// current extrusion is all done processing so advance beyond it for next loop
idx_end_current_extrusion++;
}
}
long PressureEqualizer::advance_segment_beyond_small_gap(const long idx_orig)
{
// this should only be run on the last extruding line before a gap
assert(m_gcode_lines[idx_cur_pos].extruding());
double distance_traveled = 0.0;
// start at beginning of gap, advance till extrusion found or gap too big
for (auto idx_cur_pos = idx_orig + 1; idx_cur_pos < m_gcode_lines.size(); idx_cur_pos++) {
// started extruding again! return segment extension
if (m_gcode_lines[idx_cur_pos].extruding()) {
return idx_cur_pos;
}
distance_traveled += m_gcode_lines[idx_cur_pos].dist_xy();
// gap too big, dont extend segment
if (distance_traveled > max_ignored_gap_between_extruding_segments) {
return idx_orig;
} }
} }
// looped until end of layer and couldn't extend extrusion
return idx_orig;
}
if (flush) { LayerResult PressureEqualizer::process_layer(LayerResult &&input)
// Flush the remaining valid lines of the circular buffer. {
for (size_t idx = circular_buffer_idx_head(); circular_buffer_items > 0; -- circular_buffer_items) { const bool is_first_layer = m_layer_results.empty();
output_gcode_line(circular_buffer[idx]); const size_t next_layer_first_idx = m_gcode_lines.size();
if (++ idx == circular_buffer_size)
idx = 0;
}
// Reset the index pointer.
assert(circular_buffer_items == 0);
circular_buffer_pos = 0;
#if 1 if (!input.nop_layer_result) {
printf("Statistics: \n"); this->process_layer(input.gcode);
printf("Minimum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_min); input.gcode.clear(); // GCode is already processed, so it isn't needed to store it.
printf("Maximum volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_max); m_layer_results.emplace(new LayerResult(input));
if (m_stat.extrusion_length > 0) }
m_stat.volumetric_extrusion_rate_avg /= m_stat.extrusion_length;
printf("Average volumetric extrusion rate: %f\n", m_stat.volumetric_extrusion_rate_avg);
m_stat.reset();
#endif
}
return output_buffer.data(); if (is_first_layer) // Buffer previous input result and output NOP.
return LayerResult::make_nop_layer_result();
// Export previous layer.
LayerResult *prev_layer_result = m_layer_results.front();
m_layer_results.pop();
output_buffer_length = 0;
output_buffer_prev_length = 0;
for (size_t line_idx = 0; line_idx < next_layer_first_idx; ++line_idx)
output_gcode_line(line_idx);
m_gcode_lines.erase(m_gcode_lines.begin(), m_gcode_lines.begin() + int(next_layer_first_idx));
if (output_buffer_length > 0)
prev_layer_result->gcode = std::string(output_buffer.data());
assert(!input.nop_layer_result || m_layer_results.empty());
LayerResult out = *prev_layer_result;
delete prev_layer_result;
return out;
} }
// Is a white space? // Is a white space?
static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; } static inline bool is_ws(const char c) { return c == ' ' || c == '\t'; }
// Is it an end of line? Consider a comment to be an end of line as well. // Is it an end of line? Consider a comment to be an end of line as well.
static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; }; static inline bool is_eol(const char c) { return c == 0 || c == '\r' || c == '\n' || c == ';'; }
// Is it a white space or end of line? // Is it a white space or end of line?
static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); }; static inline bool is_ws_or_eol(const char c) { return is_ws(c) || is_eol(c); }
// Eat whitespaces. // Eat whitespaces.
static void eatws(const char *&line) static void eatws(const char *&line)
@ -146,35 +225,45 @@ static void eatws(const char *&line)
// If succeeded, the line pointer is advanced. // If succeeded, the line pointer is advanced.
static inline int parse_int(const char *&line) static inline int parse_int(const char *&line)
{ {
char *endptr = NULL; char *endptr = nullptr;
long result = strtol(line, &endptr, 10); long result = strtol(line, &endptr, 10);
if (endptr == NULL || !is_ws_or_eol(*endptr)) if (endptr == nullptr || !is_ws_or_eol(*endptr))
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing an int"); throw Slic3r::InvalidArgument("PressureEqualizer: Error parsing an int");
line = endptr; line = endptr;
return int(result); return int(result);
}; }
float string_to_float_decimal_point(const char *line, const size_t str_len, size_t* pos)
{
float out;
size_t p = fast_float::from_chars(line, line + str_len, out).ptr - line;
if (pos)
*pos = p;
return out;
}
// Parse an int starting at the current position of a line. // Parse an int starting at the current position of a line.
// If succeeded, the line pointer is advanced. // If succeeded, the line pointer is advanced.
static inline float parse_float(const char *&line) static inline float parse_float(const char *&line, const size_t line_length)
{ {
char *endptr = NULL; size_t endptr = 0;
float result = string_to_double_decimal_point(line, &endptr); auto result = string_to_float_decimal_point(line, line_length, &endptr);
if (endptr == NULL || !is_ws_or_eol(*endptr)) if (endptr == 0 || !is_ws_or_eol(*(line + endptr)))
throw Slic3r::RuntimeError("PressureEqualizer: Error parsing a float"); throw Slic3r::RuntimeError("PressureEqualizer: Error parsing a float");
line = endptr; line = line + endptr;
return result; return result;
}; }
bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLine &buf) bool PressureEqualizer::process_line(const char *line, const char *line_end, GCodeLine &buf)
{ {
static constexpr const char *EXTRUSION_ROLE_TAG = ";_EXTRUSION_ROLE:"; const size_t len = line_end - line;
if (strncmp(line, EXTRUSION_ROLE_TAG.data(), EXTRUSION_ROLE_TAG.length()) == 0) {
if (strncmp(line, EXTRUSION_ROLE_TAG, strlen(EXTRUSION_ROLE_TAG)) == 0) { line += EXTRUSION_ROLE_TAG.length();
line += strlen(EXTRUSION_ROLE_TAG);
int role = atoi(line); int role = atoi(line);
m_current_extrusion_role = ExtrusionRole(role); m_current_extrusion_role = GCodeExtrusionRole(role);
++ line_idx; #ifdef PRESSURE_EQUALIZER_DEBUG
++line_idx;
#endif
return false; return false;
} }
@ -199,21 +288,43 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
buf.max_volumetric_extrusion_rate_slope_negative = 0.f; buf.max_volumetric_extrusion_rate_slope_negative = 0.f;
buf.extrusion_role = m_current_extrusion_role; buf.extrusion_role = m_current_extrusion_role;
std::string str_line(line, line_end);
const bool found_extrude_set_speed_tag = boost::contains(str_line, EXTRUDE_SET_SPEED_TAG);
const bool found_extrude_end_tag = boost::contains(str_line, EXTRUDE_END_TAG);
assert(!found_extrude_set_speed_tag || !found_extrude_end_tag);
if (found_extrude_set_speed_tag)
this->opened_extrude_set_speed_block = true;
else if (found_extrude_end_tag)
this->opened_extrude_set_speed_block = false;
// Parse the G-code line, store the result into the buf. // Parse the G-code line, store the result into the buf.
switch (toupper(*line ++)) { switch (toupper(*line ++)) {
case 'G': { case 'G': {
int gcode = parse_int(line); int gcode = -1;
try {
gcode = parse_int(line);
} catch (Slic3r::InvalidArgument &) {
// Ignore invalid GCodes.
eatws(line);
break;
}
assert(gcode != -1);
eatws(line); eatws(line);
switch (gcode) { switch (gcode) {
case 0: case 0:
case 1: case 1:
{ {
// G0, G1: A FFF 3D printer does not make a difference between the two. // G0, G1: A FFF 3D printer does not make a difference between the two.
buf.adjustable_flow = this->opened_extrude_set_speed_block;
buf.extrude_set_speed_tag = found_extrude_set_speed_tag;
buf.extrude_end_tag = found_extrude_end_tag;
float new_pos[5]; float new_pos[5];
memcpy(new_pos, m_current_pos, sizeof(float)*5); memcpy(new_pos, m_current_pos, sizeof(float)*5);
bool changed[5] = { false, false, false, false, false }; bool changed[5] = { false, false, false, false, false };
while (!is_eol(*line)) { while (!is_eol(*line)) {
char axis = toupper(*line++); const char axis = toupper(*line++);
int i = -1; int i = -1;
switch (axis) { switch (axis) {
case 'X': case 'X':
@ -228,16 +339,16 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
i = 4; i = 4;
break; break;
default: default:
assert(false); break;
}
if (i != -1) {
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line, line_end - line);
if (i == 3 && m_use_relative_e_distances)
new_pos[i] += m_current_pos[i];
changed[i] = new_pos[i] != m_current_pos[i];
eatws(line);
} }
if (i == -1)
throw Slic3r::RuntimeError(std::string("GCode::PressureEqualizer: Invalid axis for G0/G1: ") + axis);
buf.pos_provided[i] = true;
new_pos[i] = parse_float(line);
if (i == 3 && m_config->use_relative_e_distances.value)
new_pos[i] += m_current_pos[i];
changed[i] = new_pos[i] != m_current_pos[i];
eatws(line);
} }
if (changed[3]) { if (changed[3]) {
// Extrusion, retract or unretract. // Extrusion, retract or unretract.
@ -263,15 +374,17 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
buf.volumetric_extrusion_rate = rate; buf.volumetric_extrusion_rate = rate;
buf.volumetric_extrusion_rate_start = rate; buf.volumetric_extrusion_rate_start = rate;
buf.volumetric_extrusion_rate_end = rate; buf.volumetric_extrusion_rate_end = rate;
#ifdef PRESSURE_EQUALIZER_STATISTIC
m_stat.update(rate, sqrt(len2)); m_stat.update(rate, sqrt(len2));
#endif
#ifdef PRESSURE_EQUALIZER_DEBUG
if (rate < 40.f) { if (rate < 40.f) {
printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n", printf("Extremely low flow rate: %f. Line %d, Length: %f, extrusion: %f Old position: (%f, %f, %f), new position: (%f, %f, %f)\n",
rate, rate, int(line_idx), sqrt(len2), sqrt((diff[3] * diff[3]) / len2), m_current_pos[0], m_current_pos[1], m_current_pos[2],
int(line_idx), new_pos[0], new_pos[1], new_pos[2]);
sqrt(len2), sqrt((diff[3]*diff[3])/len2),
m_current_pos[0], m_current_pos[1], m_current_pos[2],
new_pos[0], new_pos[1], new_pos[2]);
} }
#endif
} }
} else if (changed[0] || changed[1] || changed[2]) { } else if (changed[0] || changed[1] || changed[2]) {
// Moving without extrusion. // Moving without extrusion.
@ -285,26 +398,22 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
// G92 : Set Position // G92 : Set Position
// Set a logical coordinate position to a new value without actually moving the machine motors. // Set a logical coordinate position to a new value without actually moving the machine motors.
// Which axes to set? // Which axes to set?
bool set = false;
while (!is_eol(*line)) { while (!is_eol(*line)) {
char axis = toupper(*line++); const char axis = toupper(*line++);
switch (axis) { switch (axis) {
case 'X': case 'X':
case 'Y': case 'Y':
case 'Z': case 'Z':
m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f; m_current_pos[axis - 'X'] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
set = true;
break; break;
case 'E': case 'E':
m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line) : 0.f; m_current_pos[3] = (!is_ws_or_eol(*line)) ? parse_float(line, line_end - line) : 0.f;
set = true;
break; break;
default: default:
throw Slic3r::RuntimeError(std::string("GCode::PressureEqualizer: Incorrect axis in a G92 G-code: ") + axis); break;
} }
eatws(line); eatws(line);
} }
assert(set);
break; break;
} }
case 10: case 10:
@ -326,20 +435,24 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
break; break;
} }
case 'M': { case 'M': {
int mcode = parse_int(line);
eatws(line); eatws(line);
switch (mcode) { // Ignore the rest of the M-codes.
default:
// Ignore the rest of the M-codes.
break;
}
break; break;
} }
case 'T': case 'T':
{ {
// Activate an extruder head. // Activate an extruder head.
int new_extruder = parse_int(line); int new_extruder = -1;
if (new_extruder != m_current_extruder) { try {
new_extruder = parse_int(line);
} catch (Slic3r::InvalidArgument &) {
// Ignore invalid GCodes starting with T.
eatws(line);
break;
}
assert(new_extruder != -1);
if (new_extruder != int(m_current_extruder)) {
m_current_extruder = new_extruder; m_current_extruder = new_extruder;
m_retracted = true; m_retracted = true;
buf.type = GCODELINETYPE_TOOL_CHANGE; buf.type = GCODELINETYPE_TOOL_CHANGE;
@ -352,15 +465,16 @@ bool PressureEqualizer::process_line(const char *line, const size_t len, GCodeLi
buf.extruder_id = m_current_extruder; buf.extruder_id = m_current_extruder;
memcpy(buf.pos_end, m_current_pos, sizeof(float)*5); memcpy(buf.pos_end, m_current_pos, sizeof(float)*5);
#ifdef PRESSURE_EQUALIZER_DEBUG
adjust_volumetric_rate(); ++line_idx;
++ line_idx; #endif
return true; return true;
} }
void PressureEqualizer::output_gcode_line(GCodeLine &line) void PressureEqualizer::output_gcode_line(const size_t line_idx)
{ {
if (! line.modified) { GCodeLine &line = m_gcode_lines[line_idx];
if (!line.modified) {
push_to_output(line.raw.data(), line.raw_length, true); push_to_output(line.raw.data(), line.raw_length, true);
return; return;
} }
@ -370,15 +484,12 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
const char *comment = line.raw.data(); const char *comment = line.raw.data();
while (*comment != ';' && *comment != 0) ++comment; while (*comment != ';' && *comment != 0) ++comment;
if (*comment != ';') if (*comment != ';')
comment = NULL; comment = nullptr;
// Emit the line with lowered extrusion rates. // Emit the line with lowered extrusion rates.
float l2 = line.dist_xyz2(); float l = line.dist_xyz();
float l = sqrt(l2); if (auto nSegments = size_t(ceil(l / m_max_segment_length)); nSegments == 1) { // Just update this segment.
size_t nSegments = size_t(ceil(l / m_max_segment_length)); push_line_to_output(line_idx, line.feedrate() * line.volumetric_correction_avg(), comment);
if (nSegments == 1) {
// Just update this segment.
push_line_to_output(line, line.feedrate() * line.volumetric_correction_avg(), comment);
} else { } else {
bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end; bool accelerating = line.volumetric_extrusion_rate_start < line.volumetric_extrusion_rate_end;
// Update the initial and final feed rate values. // Update the initial and final feed rate values.
@ -386,8 +497,8 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate; line.pos_end [4] = line.volumetric_extrusion_rate_end * line.pos_end[4] / line.volumetric_extrusion_rate;
float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]); float feed_avg = 0.5f * (line.pos_start[4] + line.pos_end[4]);
// Limiting volumetric extrusion rate slope for this segment. // Limiting volumetric extrusion rate slope for this segment.
float max_volumetric_extrusion_rate_slope = accelerating ? float max_volumetric_extrusion_rate_slope = accelerating ? line.max_volumetric_extrusion_rate_slope_positive :
line.max_volumetric_extrusion_rate_slope_positive : line.max_volumetric_extrusion_rate_slope_negative; line.max_volumetric_extrusion_rate_slope_negative;
// Total time for the segment, corrected for the possibly lowered volumetric feed rate, // Total time for the segment, corrected for the possibly lowered volumetric feed rate,
// if accelerating / decelerating over the complete segment. // if accelerating / decelerating over the complete segment.
float t_total = line.dist_xyz() / feed_avg; float t_total = line.dist_xyz() / feed_avg;
@ -398,8 +509,8 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
float l_steady = 0.f; float l_steady = 0.f;
if (t_acc < t_total) { if (t_acc < t_total) {
// One may achieve higher print speeds if part of the segment is not speed limited. // One may achieve higher print speeds if part of the segment is not speed limited.
float l_acc = t_acc * feed_avg; l_acc = t_acc * feed_avg;
float l_steady = l - l_acc; l_steady = l - l_acc;
if (l_steady < 0.5f * m_max_segment_length) { if (l_steady < 0.5f * m_max_segment_length) {
l_acc = l; l_acc = l;
l_steady = 0.f; l_steady = 0.f;
@ -407,10 +518,10 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
nSegments = size_t(ceil(l_acc / m_max_segment_length)); nSegments = size_t(ceil(l_acc / m_max_segment_length));
} }
float pos_start[5]; float pos_start[5];
float pos_end [5]; float pos_end[5];
float pos_end2 [4]; float pos_end2[4];
memcpy(pos_start, line.pos_start, sizeof(float)*5); memcpy(pos_start, line.pos_start, sizeof(float) * 5);
memcpy(pos_end , line.pos_end , sizeof(float)*5); memcpy(pos_end, line.pos_end, sizeof(float) * 5);
if (l_steady > 0.f) { if (l_steady > 0.f) {
// There will be a steady feed segment emitted. // There will be a steady feed segment emitted.
if (accelerating) { if (accelerating) {
@ -428,10 +539,16 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t; line.pos_end[i] = pos_start[i] + (pos_end[i] - pos_start[i]) * t;
line.pos_provided[i] = true; line.pos_provided[i] = true;
} }
push_line_to_output(line, pos_start[4], comment); push_line_to_output(line_idx, pos_start[4], comment);
comment = NULL; comment = nullptr;
float new_pos_start_feedrate = pos_start[4];
memcpy(line.pos_start, line.pos_end, sizeof(float)*5); memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
memcpy(pos_start, line.pos_end, sizeof(float)*5); memcpy(pos_start, line.pos_end, sizeof(float)*5);
line.pos_start[4] = new_pos_start_feedrate;
pos_start[4] = new_pos_start_feedrate;
} }
} }
// Split the segment into pieces. // Split the segment into pieces.
@ -442,8 +559,8 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_provided[j] = true; line.pos_provided[j] = true;
} }
// Interpolate the feed rate at the center of the segment. // Interpolate the feed rate at the center of the segment.
push_line_to_output(line, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment); push_line_to_output(line_idx, pos_start[4] + (pos_end[4] - pos_start[4]) * (float(i) - 0.5f) / float(nSegments), comment);
comment = NULL; comment = nullptr;
memcpy(line.pos_start, line.pos_end, sizeof(float)*5); memcpy(line.pos_start, line.pos_end, sizeof(float)*5);
} }
if (l_steady > 0.f && accelerating) { if (l_steady > 0.f && accelerating) {
@ -451,136 +568,161 @@ void PressureEqualizer::output_gcode_line(GCodeLine &line)
line.pos_end[i] = pos_end2[i]; line.pos_end[i] = pos_end2[i];
line.pos_provided[i] = true; line.pos_provided[i] = true;
} }
push_line_to_output(line, pos_end[4], comment); push_line_to_output(line_idx, pos_end[4], comment);
} else {
for (int i = 0; i < 4; ++ i) {
line.pos_end[i] = pos_end[i];
line.pos_provided[i] = true;
}
push_line_to_output(line_idx, pos_end[4], comment);
} }
} }
} }
void PressureEqualizer::adjust_volumetric_rate() void PressureEqualizer::adjust_volumetric_rate(const size_t fist_line_idx, const size_t last_line_idx)
{ {
if (circular_buffer_items < 2) // don't bother adjusting volumetric rate if there's no gcode to adjust
if (last_line_idx-fist_line_idx < 2)
return; return;
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes. size_t line_idx = last_line_idx;
const size_t idx_head = circular_buffer_idx_head(); if (line_idx == fist_line_idx || !m_gcode_lines[line_idx].extruding())
const size_t idx_tail = circular_buffer_idx_prev(circular_buffer_idx_tail());
size_t idx = idx_tail;
if (idx == idx_head || ! circular_buffer[idx].extruding())
// Nothing to do, the last move is not extruding. // Nothing to do, the last move is not extruding.
return; return;
float feedrate_per_extrusion_role[numExtrusionRoles]; std::array<float, size_t(GCodeExtrusionRole::Count)> feedrate_per_extrusion_role{};
for (size_t i = 0; i < numExtrusionRoles; ++ i) feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
feedrate_per_extrusion_role[i] = FLT_MAX; feedrate_per_extrusion_role[int(m_gcode_lines[line_idx].extrusion_role)] = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_start;
bool modified = true; while (line_idx != fist_line_idx) {
while (modified && idx != idx_head) { size_t idx_prev = line_idx - 1;
size_t idx_prev = circular_buffer_idx_prev(idx); for (; !m_gcode_lines[idx_prev].extruding() && idx_prev != fist_line_idx; --idx_prev);
for (; ! circular_buffer[idx_prev].extruding() && idx_prev != idx_head; idx_prev = circular_buffer_idx_prev(idx_prev)) ; if (!m_gcode_lines[idx_prev].extruding())
if (! circular_buffer[idx_prev].extruding()) break;
break; // Don't decelerate before ironing.
if (m_gcode_lines[line_idx].extrusion_role == GCodeExtrusionRole::Ironing) { line_idx = idx_prev;
continue;
}
// Volumetric extrusion rate at the start of the succeding segment. // Volumetric extrusion rate at the start of the succeding segment.
float rate_succ = circular_buffer[idx].volumetric_extrusion_rate_start; float rate_succ = m_gcode_lines[line_idx].volumetric_extrusion_rate_start;
// What is the gradient of the extrusion rate between idx_prev and idx? // What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_prev; line_idx = idx_prev;
GCodeLine &line = circular_buffer[idx]; GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative; for (size_t iRole = 1; iRole < size_t(GCodeExtrusionRole::Count); ++ iRole) {
if (rate_slope == 0) const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].negative;
// The negative rate is unlimited. if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; continue; // The negative rate is unlimited or the rate for GCodeExtrusionRole iRole is unlimited.
float rate_end = feedrate_per_extrusion_role[iRole]; float rate_end = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_succ < rate_end) if (iRole == size_t(line.extrusion_role) && rate_succ < rate_end)
// Limit by the succeeding volumetric flow rate. // Limit by the succeeding volumetric flow rate.
rate_end = rate_succ; rate_end = rate_succ;
if (line.volumetric_extrusion_rate_end > rate_end) {
line.volumetric_extrusion_rate_end = rate_end; // don't alter the flow rate for these extrusion types
line.modified = true; if (!line.adjustable_flow || line.extrusion_role == GCodeExtrusionRole::BridgeInfill || line.extrusion_role == GCodeExtrusionRole::Ironing) {
} else if (iRole == line.extrusion_role) { rate_end = line.volumetric_extrusion_rate_end;
} else if (line.volumetric_extrusion_rate_end > rate_end) {
line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
line.modified = true;
} else if (iRole == size_t(line.extrusion_role)) {
rate_end = line.volumetric_extrusion_rate_end; rate_end = line.volumetric_extrusion_rate_end;
} else if (rate_end == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else { } else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter. // Use the original, 'floating' extrusion rate as a starting point for the limiter.
} }
// modified = false;
float rate_start = rate_end + rate_slope * line.time_corrected(); if (line.adjustable_flow) {
if (rate_start < line.volumetric_extrusion_rate_start) { float rate_start = rate_end + rate_slope * line.time_corrected();
// Limit the volumetric extrusion rate at the start of this segment due to a segment if (rate_start < line.volumetric_extrusion_rate_start) {
// of ExtrusionType iRole, which will be extruded in the future. // Limit the volumetric extrusion rate at the start of this segment due to a segment
line.volumetric_extrusion_rate_start = rate_start; // of ExtrusionType iRole, which will be extruded in the future.
line.max_volumetric_extrusion_rate_slope_negative = rate_slope; line.volumetric_extrusion_rate_start = rate_start;
line.modified = true; line.max_volumetric_extrusion_rate_slope_negative = rate_slope;
// modified = true; line.modified = true;
}
} }
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start; // feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_start : rate_start;
// Don't store feed rate for ironing
if (line.extrusion_role != GCodeExtrusionRole::Ironing)
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_start;
} }
} }
// Go forward and adjust the feedrate to decrease the slope of the extrusion rate changes. feedrate_per_extrusion_role.fill(std::numeric_limits<float>::max());
for (size_t i = 0; i < numExtrusionRoles; ++ i) feedrate_per_extrusion_role[size_t(m_gcode_lines[line_idx].extrusion_role)] = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
feedrate_per_extrusion_role[i] = FLT_MAX;
feedrate_per_extrusion_role[circular_buffer[idx].extrusion_role] = circular_buffer[idx].volumetric_extrusion_rate_end;
assert(circular_buffer[idx].extruding()); assert(m_gcode_lines[line_idx].extruding());
while (idx != idx_tail) { while (line_idx != last_line_idx) {
size_t idx_next = circular_buffer_idx_next(idx); size_t idx_next = line_idx + 1;
for (; ! circular_buffer[idx_next].extruding() && idx_next != idx_tail; idx_next = circular_buffer_idx_next(idx_next)) ; for (; !m_gcode_lines[idx_next].extruding() && idx_next != last_line_idx; ++idx_next);
if (! circular_buffer[idx_next].extruding()) if (!m_gcode_lines[idx_next].extruding())
break; break;
float rate_prec = circular_buffer[idx].volumetric_extrusion_rate_end; // Don't accelerate after ironing.
if (m_gcode_lines[line_idx].extrusion_role == GCodeExtrusionRole::Ironing) {
line_idx = idx_next;
continue;
}
float rate_prec = m_gcode_lines[line_idx].volumetric_extrusion_rate_end;
// What is the gradient of the extrusion rate between idx_prev and idx? // What is the gradient of the extrusion rate between idx_prev and idx?
idx = idx_next; line_idx = idx_next;
GCodeLine &line = circular_buffer[idx]; GCodeLine &line = m_gcode_lines[line_idx];
for (size_t iRole = 1; iRole < numExtrusionRoles; ++ iRole) {
float rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive; for (size_t iRole = 1; iRole < size_t(GCodeExtrusionRole::Count); ++ iRole) {
if (rate_slope == 0) const float &rate_slope = m_max_volumetric_extrusion_rate_slopes[iRole].positive;
// The positive rate is unlimited. if (rate_slope == 0 || feedrate_per_extrusion_role[iRole] == std::numeric_limits<float>::max())
continue; continue; // The positive rate is unlimited or the rate for GCodeExtrusionRole iRole is unlimited.
float rate_start = feedrate_per_extrusion_role[iRole]; float rate_start = feedrate_per_extrusion_role[iRole];
if (iRole == line.extrusion_role && rate_prec < rate_start) // don't alter the flow rate for these extrusion types
if (!line.adjustable_flow || line.extrusion_role == GCodeExtrusionRole::BridgeInfill || line.extrusion_role == GCodeExtrusionRole::Ironing) {
rate_start = line.volumetric_extrusion_rate_start;
} else if (iRole == size_t(line.extrusion_role) && rate_prec < rate_start)
rate_start = rate_prec; rate_start = rate_prec;
if (line.volumetric_extrusion_rate_start > rate_start) { if (line.volumetric_extrusion_rate_start > rate_start) {
line.volumetric_extrusion_rate_start = rate_start; line.volumetric_extrusion_rate_start = rate_start;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true; line.modified = true;
} else if (iRole == line.extrusion_role) { } else if (iRole == size_t(line.extrusion_role)) {
rate_start = line.volumetric_extrusion_rate_start; rate_start = line.volumetric_extrusion_rate_start;
} else if (rate_start == FLT_MAX) {
// The rate for ExtrusionRole iRole is unlimited.
continue;
} else { } else {
// Use the original, 'floating' extrusion rate as a starting point for the limiter. // Use the original, 'floating' extrusion rate as a starting point for the limiter.
} }
float rate_end = (rate_slope == 0) ? FLT_MAX : rate_start + rate_slope * line.time_corrected();
if (rate_end < line.volumetric_extrusion_rate_end) { if (line.adjustable_flow) {
// Limit the volumetric extrusion rate at the start of this segment due to a segment float rate_end = rate_start + rate_slope * line.time_corrected();
// of ExtrusionType iRole, which was extruded before. if (rate_end < line.volumetric_extrusion_rate_end) {
line.volumetric_extrusion_rate_end = rate_end; // Limit the volumetric extrusion rate at the start of this segment due to a segment
line.max_volumetric_extrusion_rate_slope_positive = rate_slope; // of ExtrusionType iRole, which was extruded before.
line.modified = true; line.volumetric_extrusion_rate_end = rate_end;
line.max_volumetric_extrusion_rate_slope_positive = rate_slope;
line.modified = true;
}
} }
feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end; // feedrate_per_extrusion_role[iRole] = (iRole == line.extrusion_role) ? line.volumetric_extrusion_rate_end : rate_end;
// Don't store feed rate for ironing
if (line.extrusion_role != GCodeExtrusionRole::Ironing)
feedrate_per_extrusion_role[iRole] = line.volumetric_extrusion_rate_end;
} }
} }
} }
void PressureEqualizer::push_axis_to_output(const char axis, const float value, bool add_eol) inline void PressureEqualizer::push_to_output(GCodeG1Formatter &formatter)
{ {
char buf[2048]; return this->push_to_output(formatter.string(), false);
int len = sprintf(buf,
(axis == 'E') ? " %c%.3f" : " %c%.5f",
axis, value);
push_to_output(buf, len, add_eol);
} }
void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol) inline void PressureEqualizer::push_to_output(const std::string &text, bool add_eol)
{
return this->push_to_output(text.data(), text.size(), add_eol);
}
inline void PressureEqualizer::push_to_output(const char *text, const size_t len, bool add_eol)
{ {
// New length of the output buffer content. // New length of the output buffer content.
size_t len_new = output_buffer_length + len + 1; size_t len_new = output_buffer_length + len + 1;
if (add_eol) if (add_eol)
++ len_new; ++len_new;
// Resize the output buffer to a power of 2 higher than the required memory. // Resize the output buffer to a power of 2 higher than the required memory.
if (output_buffer.size() < len_new) { if (output_buffer.size() < len_new) {
@ -600,24 +742,63 @@ void PressureEqualizer::push_to_output(const char *text, const size_t len, bool
// Copy the text to the output. // Copy the text to the output.
if (len != 0) { if (len != 0) {
memcpy(output_buffer.data() + output_buffer_length, text, len); memcpy(output_buffer.data() + output_buffer_length, text, len);
this->output_buffer_prev_length = this->output_buffer_length;
output_buffer_length += len; output_buffer_length += len;
} }
if (add_eol) if (add_eol)
output_buffer[output_buffer_length ++] = '\n'; output_buffer[output_buffer_length++] = '\n';
output_buffer[output_buffer_length] = 0; output_buffer[output_buffer_length] = 0;
} }
void PressureEqualizer::push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment) inline bool is_just_line_with_extrude_set_speed_tag(const std::string &line)
{ {
push_to_output("G1", 2, false); if (line.empty() && !boost::starts_with(line, "G1 ") && !boost::ends_with(line, EXTRUDE_SET_SPEED_TAG))
for (char i = 0; i < 3; ++ i) return false;
if (line.pos_provided[i])
push_axis_to_output('X'+i, line.pos_end[i]); const char *p_line = line.data() + 3;
push_axis_to_output('E', m_config->use_relative_e_distances.value ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3]); const char *const line_end = line.data() + line.length() - 1;
// if (line.pos_provided[4] || fabs(line.feedrate() - new_feedrate) > 1e-5) while (!is_eol(*p_line)) {
push_axis_to_output('F', new_feedrate); if (toupper(*p_line++) == 'F')
// output comment and EOL break;
push_to_output(comment, (comment == NULL) ? 0 : strlen(comment), true); else
} return false;
}
parse_float(p_line, line_end - p_line);
eatws(p_line);
p_line += EXTRUDE_SET_SPEED_TAG.length();
return p_line <= line_end && is_eol(*p_line);
}
void PressureEqualizer::push_line_to_output(const size_t line_idx, const float new_feedrate, const char *comment)
{
const GCodeLine &line = m_gcode_lines[line_idx];
if (line_idx > 0 && output_buffer_length > 0) {
const std::string prev_line_str = std::string(output_buffer.begin() + int(this->output_buffer_prev_length),
output_buffer.begin() + int(this->output_buffer_length) + 1);
if (is_just_line_with_extrude_set_speed_tag(prev_line_str))
this->output_buffer_length = this->output_buffer_prev_length; // Remove the last line because it only sets the speed for an empty block of g-code lines, so it is useless.
else
push_to_output(EXTRUDE_END_TAG.data(), EXTRUDE_END_TAG.length(), true);
} else
push_to_output(EXTRUDE_END_TAG.data(), EXTRUDE_END_TAG.length(), true);
GCodeG1Formatter feedrate_formatter;
feedrate_formatter.emit_f(new_feedrate);
feedrate_formatter.emit_string(std::string(EXTRUDE_SET_SPEED_TAG.data(), EXTRUDE_SET_SPEED_TAG.length()));
if (line.extrusion_role == GCodeExtrusionRole::ExternalPerimeter)
feedrate_formatter.emit_string(std::string(EXTERNAL_PERIMETER_TAG.data(), EXTERNAL_PERIMETER_TAG.length()));
push_to_output(feedrate_formatter);
GCodeG1Formatter extrusion_formatter;
for (size_t axis_idx = 0; axis_idx < 3; ++axis_idx)
if (line.pos_provided[axis_idx])
extrusion_formatter.emit_axis(char('X' + axis_idx), line.pos_end[axis_idx], GCodeFormatter::XYZF_EXPORT_DIGITS);
extrusion_formatter.emit_axis('E', m_use_relative_e_distances ? (line.pos_end[3] - line.pos_start[3]) : line.pos_end[3], GCodeFormatter::E_EXPORT_DIGITS);
if (comment != nullptr)
extrusion_formatter.emit_string(std::string(comment));
push_to_output(extrusion_formatter);
}
} // namespace Slic3r } // namespace Slic3r

View file

@ -1,41 +1,59 @@
///|/ Copyright (c) Prusa Research 2016 - 2023 Vojtěch Bubník @bubnikv, Lukáš Hejl @hejllukas
///|/ Copyright (c) SuperSlicer 2023 Remi Durand @supermerill
///|/
///|/ PrusaSlicer is released under the terms of the AGPLv3 or higher
///|/
#ifndef slic3r_GCode_PressureEqualizer_hpp_ #ifndef slic3r_GCode_PressureEqualizer_hpp_
#define slic3r_GCode_PressureEqualizer_hpp_ #define slic3r_GCode_PressureEqualizer_hpp_
#include "../libslic3r.h" #include "../libslic3r.h"
#include "../PrintConfig.hpp" #include "../PrintConfig.hpp"
#include "../ExtrusionEntity.hpp" #include "../ExtrusionRole.hpp"
#include <queue>
namespace Slic3r { namespace Slic3r {
struct LayerResult;
class GCodeG1Formatter;
//#define PRESSURE_EQUALIZER_STATISTIC
//#define PRESSURE_EQUALIZER_DEBUG
// Processes a G-code. Finds changes in the volumetric extrusion speed and adjusts the transitions // Processes a G-code. Finds changes in the volumetric extrusion speed and adjusts the transitions
// between these paths to limit fast changes in the volumetric extrusion speed. // between these paths to limit fast changes in the volumetric extrusion speed.
class PressureEqualizer class PressureEqualizer
{ {
public: public:
PressureEqualizer(const Slic3r::GCodeConfig *config); PressureEqualizer() = delete;
~PressureEqualizer(); explicit PressureEqualizer(const Slic3r::GCodeConfig &config);
~PressureEqualizer() = default;
void reset();
// Process a next batch of G-code lines. Flush the internal buffers if asked for.
const char* process(const char *szGCode, bool flush);
size_t get_output_buffer_length() const { return output_buffer_length; }
// Process a next batch of G-code lines.
// The last LayerResult must be LayerResult::make_nop_layer_result() because it always returns GCode for the previous layer.
// When process_layer is called for the first layer, then LayerResult::make_nop_layer_result() is returned.
LayerResult process_layer(LayerResult &&input);
private: private:
void process_layer(const std::string &gcode);
#ifdef PRESSURE_EQUALIZER_STATISTIC
struct Statistics struct Statistics
{ {
void reset() { void reset()
volumetric_extrusion_rate_min = std::numeric_limits<float>::max(); {
volumetric_extrusion_rate_min = std::numeric_limits<float>::max();
volumetric_extrusion_rate_max = 0.f; volumetric_extrusion_rate_max = 0.f;
volumetric_extrusion_rate_avg = 0.f; volumetric_extrusion_rate_avg = 0.f;
extrusion_length = 0.f; extrusion_length = 0.f;
} }
void update(float volumetric_extrusion_rate, float length) { void update(float volumetric_extrusion_rate, float length)
volumetric_extrusion_rate_min = std::min(volumetric_extrusion_rate_min, volumetric_extrusion_rate); {
volumetric_extrusion_rate_max = std::max(volumetric_extrusion_rate_max, volumetric_extrusion_rate); volumetric_extrusion_rate_min = std::min(volumetric_extrusion_rate_min, volumetric_extrusion_rate);
volumetric_extrusion_rate_max = std::max(volumetric_extrusion_rate_max, volumetric_extrusion_rate);
volumetric_extrusion_rate_avg += volumetric_extrusion_rate * length; volumetric_extrusion_rate_avg += volumetric_extrusion_rate * length;
extrusion_length += length; extrusion_length += length;
} }
float volumetric_extrusion_rate_min; float volumetric_extrusion_rate_min;
float volumetric_extrusion_rate_max; float volumetric_extrusion_rate_max;
@ -44,9 +62,7 @@ private:
}; };
struct Statistics m_stat; struct Statistics m_stat;
#endif
// Keeps the reference, does not own the config.
const Slic3r::GCodeConfig *m_config;
// Private configuration values // Private configuration values
// How fast could the volumetric extrusion rate increase / decrase? mm^3/sec^2 // How fast could the volumetric extrusion rate increase / decrase? mm^3/sec^2
@ -54,12 +70,9 @@ private:
float positive; float positive;
float negative; float negative;
}; };
enum { numExtrusionRoles = erSupportMaterialInterface + 1 }; ExtrusionRateSlope m_max_volumetric_extrusion_rate_slopes[size_t(GCodeExtrusionRole::Count)];
ExtrusionRateSlope m_max_volumetric_extrusion_rate_slopes[numExtrusionRoles];
float m_max_volumetric_extrusion_rate_slope_positive; float m_max_volumetric_extrusion_rate_slope_positive;
float m_max_volumetric_extrusion_rate_slope_negative; float m_max_volumetric_extrusion_rate_slope_negative;
// Maximum segment length to split a long segment, if the initial and the final flow rate differ.
float m_max_segment_length;
// Configuration extracted from config. // Configuration extracted from config.
// Area of the crossestion of each filament. Necessary to calculate the volumetric flow rate. // Area of the crossestion of each filament. Necessary to calculate the volumetric flow rate.
@ -69,11 +82,19 @@ private:
// X,Y,Z,E,F // X,Y,Z,E,F
float m_current_pos[5]; float m_current_pos[5];
size_t m_current_extruder; size_t m_current_extruder;
ExtrusionRole m_current_extrusion_role; GCodeExtrusionRole m_current_extrusion_role;
bool m_retracted; bool m_retracted;
bool m_use_relative_e_distances;
enum GCodeLineType // Maximum segment length to split a long segment if the initial and the final flow rate differ.
{ // Smaller value means a smoother transition between two different flow rates.
float m_max_segment_length;
// Indicate if extrude set speed block was opened using the tag ";_EXTRUDE_SET_SPEED"
// or not (not opened, or it was closed using the tag ";_EXTRUDE_END").
bool opened_extrude_set_speed_block = false;
enum GCodeLineType {
GCODELINETYPE_INVALID, GCODELINETYPE_INVALID,
GCODELINETYPE_NOOP, GCODELINETYPE_NOOP,
GCODELINETYPE_OTHER, GCODELINETYPE_OTHER,
@ -128,18 +149,16 @@ private:
// or maybe the line needs to be split into multiple lines. // or maybe the line needs to be split into multiple lines.
bool modified; bool modified;
// float timeStart;
// float timeEnd;
// X,Y,Z,E,F. Storing the state of the currently active extruder only. // X,Y,Z,E,F. Storing the state of the currently active extruder only.
float pos_start[5]; float pos_start[5];
float pos_end[5]; float pos_end[5];
// Was the axis found on the G-code line? X,Y,Z,F // Was the axis found on the G-code line? X,Y,Z,E,F
bool pos_provided[5]; bool pos_provided[5];
// Index of the active extruder. // Index of the active extruder.
size_t extruder_id; size_t extruder_id;
// Extrusion role of this segment. // Extrusion role of this segment.
ExtrusionRole extrusion_role; GCodeExtrusionRole extrusion_role;
// Current volumetric extrusion rate. // Current volumetric extrusion rate.
float volumetric_extrusion_rate; float volumetric_extrusion_rate;
@ -152,59 +171,42 @@ private:
// If set to zero, the slope is unlimited. // If set to zero, the slope is unlimited.
float max_volumetric_extrusion_rate_slope_positive; float max_volumetric_extrusion_rate_slope_positive;
float max_volumetric_extrusion_rate_slope_negative; float max_volumetric_extrusion_rate_slope_negative;
};
// Circular buffer of GCode lines. The circular buffer size will be limited to circular_buffer_size. bool adjustable_flow = false;
std::vector<GCodeLine> circular_buffer;
// Current position of the circular buffer (index, where to write the next line to, the line has to be pushed out before it is overwritten). bool extrude_set_speed_tag = false;
size_t circular_buffer_pos; bool extrude_end_tag = false;
// Circular buffer size, configuration value. };
size_t circular_buffer_size;
// Number of valid lines in the circular buffer. Lower or equal to circular_buffer_size.
size_t circular_buffer_items;
// Output buffer will only grow. It will not be reallocated over and over. // Output buffer will only grow. It will not be reallocated over and over.
std::vector<char> output_buffer; std::vector<char> output_buffer;
size_t output_buffer_length; size_t output_buffer_length;
size_t output_buffer_prev_length;
#ifdef PRESSURE_EQUALIZER_DEBUG
// For debugging purposes. Index of the G-code line processed. // For debugging purposes. Index of the G-code line processed.
size_t line_idx; size_t line_idx;
#endif
bool process_line(const char *line, const size_t len, GCodeLine &buf); bool process_line(const char *line, const char *line_end, GCodeLine &buf);
void output_gcode_line(GCodeLine &buf); long advance_segment_beyond_small_gap(long idx_cur_pos);
void output_gcode_line(size_t line_idx);
// Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes. // Go back from the current circular_buffer_pos and lower the feedtrate to decrease the slope of the extrusion rate changes.
// Then go forward and adjust the feedrate to decrease the slope of the extrusion rate changes. // Then go forward and adjust the feedrate to decrease the slope of the extrusion rate changes.
void adjust_volumetric_rate(); void adjust_volumetric_rate(size_t first_line_idx, size_t last_line_idx);
// Push the text to the end of the output_buffer. // Push the text to the end of the output_buffer.
void push_to_output(const char *text, const size_t len, bool add_eol = true); inline void push_to_output(GCodeG1Formatter &formatter);
// Push an axis assignment to the end of the output buffer. inline void push_to_output(const std::string &text, bool add_eol);
void push_axis_to_output(const char axis, const float value, bool add_eol = false); inline void push_to_output(const char *text, size_t len, bool add_eol = true);
// Push a G-code line to the output, // Push a G-code line to the output.
void push_line_to_output(const GCodeLine &line, const float new_feedrate, const char *comment); void push_line_to_output(size_t line_idx, float new_feedrate, const char *comment);
size_t circular_buffer_idx_head() const { public:
size_t idx = circular_buffer_pos + circular_buffer_size - circular_buffer_items; std::queue<LayerResult*> m_layer_results;
if (idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
size_t circular_buffer_idx_tail() const { return circular_buffer_pos; } std::vector<GCodeLine> m_gcode_lines;
size_t circular_buffer_idx_prev(size_t idx) const {
idx += circular_buffer_size - 1;
if (idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
size_t circular_buffer_idx_next(size_t idx) const {
if (++ idx >= circular_buffer_size)
idx -= circular_buffer_size;
return idx;
}
}; };
} // namespace Slic3r } // namespace Slic3r

View file

@ -725,9 +725,7 @@ static std::vector<std::string> s_Preset_print_options {
"ironing_type", "ironing_pattern", "ironing_flow", "ironing_speed", "ironing_spacing", "ironing_type", "ironing_pattern", "ironing_flow", "ironing_speed", "ironing_spacing",
"max_travel_detour_distance", "max_travel_detour_distance",
"fuzzy_skin", "fuzzy_skin_thickness", "fuzzy_skin_point_distance", "fuzzy_skin", "fuzzy_skin_thickness", "fuzzy_skin_point_distance",
#ifdef HAS_PRESSURE_EQUALIZER "max_volumetric_extrusion_rate_slope", "max_volumetric_extrusion_rate_slope_segment_length",
"max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"inner_wall_speed", "outer_wall_speed", "sparse_infill_speed", "internal_solid_infill_speed", "inner_wall_speed", "outer_wall_speed", "sparse_infill_speed", "internal_solid_infill_speed",
"top_surface_speed", "support_speed", "support_object_xy_distance", "support_interface_speed", "top_surface_speed", "support_speed", "support_object_xy_distance", "support_interface_speed",
"bridge_speed", "internal_bridge_speed", "gap_infill_speed", "travel_speed", "travel_speed_z", "initial_layer_speed", "bridge_speed", "internal_bridge_speed", "gap_infill_speed", "travel_speed", "travel_speed_z", "initial_layer_speed",

View file

@ -150,10 +150,8 @@ bool Print::invalidate_state_by_config_options(const ConfigOptionResolver & /* n
"fan_max_speed", "fan_max_speed",
"printable_height", "printable_height",
"slow_down_min_speed", "slow_down_min_speed",
#ifdef HAS_PRESSURE_EQUALIZER "max_volumetric_extrusion_rate_slope",
"max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_segment_length",
"max_volumetric_extrusion_rate_slope_negative",
#endif /* HAS_PRESSURE_EQUALIZER */
"reduce_infill_retraction", "reduce_infill_retraction",
"filename_format", "filename_format",
"retraction_minimum_travel", "retraction_minimum_travel",

View file

@ -2470,29 +2470,37 @@ def = this->add("filament_loading_speed", coFloats);
def->mode = comAdvanced; def->mode = comAdvanced;
def->set_default_value(new ConfigOptionFloats { 0. }); def->set_default_value(new ConfigOptionFloats { 0. });
#ifdef HAS_PRESSURE_EQUALIZER def = this->add("max_volumetric_extrusion_rate_slope", coFloat);
//def = this->add("max_volumetric_extrusion_rate_slope_positive", coFloat); def->label = L("Extrusion rate smoothing");
//def->label = L("Max volumetric slope positive"); def->tooltip = L("This parameter smooths out sudden extrusion rate changes that happen when "
//def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate. " "the printer transitions from printing a high flow (high speed/larger width) "
// "A value of 1.8 mm³/s² ensures, that a change from the extrusion rate " "extrusion to a lower flow (lower speed/smaller width) extrusion and vice versa.\n\n"
// "of 1.8 mm³/s (0.45mm extrusion width, 0.2mm extrusion height, feedrate 20 mm/s) " "It defines the maximum rate by which the extruded volumetric flow in mm3/sec can change over time. "
// "to 5.4 mm³/s (feedrate 60 mm/s) will take at least 2 seconds."); "Higher values mean higher extrusion rate changes are allowed, resulting in faster speed transitions.\n\n"
//def->sidetext = L("mm³/s²"); "A value of 0 disables the feature. \n\n"
//def->min = 0; "For a high speed, high flow direct drive printer (like the Bambu lab or Voron) this value is usually not needed. "
//def->mode = comAdvanced; "However it can provide some marginal benefit in certain cases where feature speeds vary greatly. For example, "
//def->set_default_value(new ConfigOptionFloat(0)); "when there are aggressive slowdowns due to overhangs. In these cases a high value of around 300-350mm3/s2 is "
"recommended as this allows for just enough smoothing to assist pressure advance achieve a smoother flow transition.\n\n"
//def = this->add("max_volumetric_extrusion_rate_slope_negative", coFloat); "For slower printers without pressure advance, the value should be set much lower. A value of 10-15mm3/s2 is a "
//def->label = L("Max volumetric slope negative"); "good starting point for direct drive extruders and 5-10mm3/s2 for Bowden style. \n\n"
//def->tooltip = L("This experimental setting is used to limit the speed of change in extrusion rate. " "This feature is known as Pressure Equalizer in Prusa slicer.\n\n"
// "A value of 1.8 mm³/s² ensures, that a change from the extrusion rate " "Note: this parameter disables arc fitting.");
// "of 1.8 mm³/s (0.45mm extrusion width, 0.2mm extrusion height, feedrate 20 mm/s) " def->sidetext = L("mm³/s²");
// "to 5.4 mm³/s (feedrate 60 mm/s) will take at least 2 seconds."); def->min = 0;
//def->sidetext = L("mm³/s²"); def->mode = comAdvanced;
//def->min = 0; def->set_default_value(new ConfigOptionFloat(0));
//def->mode = comAdvanced;
//def->set_default_value(new ConfigOptionFloat(0)); def = this->add("max_volumetric_extrusion_rate_slope_segment_length", coInt);
#endif /* HAS_PRESSURE_EQUALIZER */ def->label = L("Smoothing segment length");
def->tooltip = L("A lower value results in smoother extrusion rate transitions. However, this results in a significantly larger gcode file "
"and more instructions for the printer to process. \n\n"
"Default value of 3 works well for most cases. If your printer is stuttering, increase this value to reduce the number of adjustments made\n\n"
"Allowed values: 1-5");
def->min = 1;
def->max = 5;
def->mode = comAdvanced;
def->set_default_value(new ConfigOptionInt(3));
def = this->add("fan_min_speed", coInts); def = this->add("fan_min_speed", coInts);
def->label = L("Fan speed"); def->label = L("Fan speed");
@ -4962,9 +4970,6 @@ void PrintConfigDef::handle_legacy(t_config_option_key &opt_key, std::string &va
"acceleration", "scale", "rotate", "duplicate", "duplicate_grid", "acceleration", "scale", "rotate", "duplicate", "duplicate_grid",
"bed_size", "bed_size",
"print_center", "g0", "wipe_tower_per_color_wipe" "print_center", "g0", "wipe_tower_per_color_wipe"
#ifndef HAS_PRESSURE_EQUALIZER
, "max_volumetric_extrusion_rate_slope_positive", "max_volumetric_extrusion_rate_slope_negative"
#endif /* HAS_PRESSURE_EQUALIZER */
// BBS // BBS
, "support_sharp_tails","support_remove_small_overhangs", "support_with_sheath", , "support_sharp_tails","support_remove_small_overhangs", "support_with_sheath",
"tree_support_collision_resolution", "tree_support_with_infill", "tree_support_collision_resolution", "tree_support_with_infill",

View file

@ -27,8 +27,6 @@
#include <boost/preprocessor/tuple/elem.hpp> #include <boost/preprocessor/tuple/elem.hpp>
#include <boost/preprocessor/tuple/to_seq.hpp> #include <boost/preprocessor/tuple/to_seq.hpp>
// #define HAS_PRESSURE_EQUALIZER
namespace Slic3r { namespace Slic3r {
enum GCodeFlavor : unsigned char { enum GCodeFlavor : unsigned char {
@ -883,10 +881,10 @@ PRINT_CONFIG_CLASS_DEFINE(
((ConfigOptionEnum<GCodeFlavor>, gcode_flavor)) ((ConfigOptionEnum<GCodeFlavor>, gcode_flavor))
((ConfigOptionString, layer_change_gcode)) ((ConfigOptionString, layer_change_gcode))
//#ifdef HAS_PRESSURE_EQUALIZER
// ((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_positive)) ((ConfigOptionFloat, max_volumetric_extrusion_rate_slope))
// ((ConfigOptionFloat, max_volumetric_extrusion_rate_slope_negative)) ((ConfigOptionInt, max_volumetric_extrusion_rate_slope_segment_length))
//#endif
((ConfigOptionPercents, retract_before_wipe)) ((ConfigOptionPercents, retract_before_wipe))
((ConfigOptionFloats, retraction_length)) ((ConfigOptionFloats, retraction_length))
((ConfigOptionFloats, retract_length_toolchange)) ((ConfigOptionFloats, retract_length_toolchange))

View file

@ -31,14 +31,25 @@ public:
constexpr enum_bitmask(option_type o) : m_bits(mask_value(o)) {} constexpr enum_bitmask(option_type o) : m_bits(mask_value(o)) {}
// Set the bit corresponding to the given option. // Set the bit corresponding to the given option.
constexpr enum_bitmask operator|(option_type t) { return enum_bitmask(m_bits | mask_value(t)); } constexpr enum_bitmask operator|(option_type t) const { return enum_bitmask(m_bits | mask_value(t)); }
// Combine with another enum_bitmask of the same type. // Combine with another enum_bitmask of the same type.
constexpr enum_bitmask operator|(enum_bitmask<option_type> t) { return enum_bitmask(m_bits | t.m_bits); } constexpr enum_bitmask operator|(enum_bitmask<option_type> t) const { return enum_bitmask(m_bits | t.m_bits); }
// Set the bit corresponding to the given option.
constexpr void operator|=(option_type t) { m_bits = enum_bitmask(m_bits | mask_value(t)); }
// Combine with another enum_bitmask of the same type.
constexpr void operator|=(enum_bitmask<option_type> t) { m_bits = enum_bitmask(m_bits | t.m_bits); }
// Get the value of the bit corresponding to the given option. // Get the value of the bit corresponding to the given option.
constexpr bool operator&(option_type t) { return m_bits & mask_value(t); } constexpr bool operator&(option_type t) const { return m_bits & mask_value(t); }
constexpr bool has(option_type t) { return m_bits & mask_value(t); } constexpr bool has(option_type t) const { return m_bits & mask_value(t); }
constexpr bool operator==(const enum_bitmask r) const { return m_bits == r.m_bits; }
constexpr bool operator!=(const enum_bitmask r) const { return m_bits != r.m_bits; }
// For sorting by the enum values.
constexpr bool lower(const enum_bitmask r) const { return m_bits < r.m_bits; }
private: private:
underlying_type m_bits = 0; underlying_type m_bits = 0;

View file

@ -475,6 +475,7 @@ void ConfigManipulation::update_print_fff_config(DynamicPrintConfig* config, con
apply(config, &new_conf); apply(config, &new_conf);
is_msg_dlg_already_exist = false; is_msg_dlg_already_exist = false;
} }
} }
void ConfigManipulation::apply_null_fff_config(DynamicPrintConfig *config, std::vector<std::string> const &keys, std::map<ObjectBase *, ModelConfig *> const &configs) void ConfigManipulation::apply_null_fff_config(DynamicPrintConfig *config, std::vector<std::string> const &keys, std::map<ObjectBase *, ModelConfig *> const &configs)
@ -508,6 +509,17 @@ void ConfigManipulation::toggle_print_fff_options(DynamicPrintConfig *config, co
//SoftFever //SoftFever
auto gcflavor = preset_bundle->printers.get_edited_preset().config.option<ConfigOptionEnum<GCodeFlavor>>("gcode_flavor")->value; auto gcflavor = preset_bundle->printers.get_edited_preset().config.option<ConfigOptionEnum<GCodeFlavor>>("gcode_flavor")->value;
bool have_volumetric_extrusion_rate_slope = config->option<ConfigOptionFloat>("max_volumetric_extrusion_rate_slope")->value > 0;
int have_volumetric_extrusion_rate_slope_segment_length = config->option<ConfigOptionInt>("max_volumetric_extrusion_rate_slope_segment_length")->value;
toggle_field("enable_arc_fitting", !have_volumetric_extrusion_rate_slope);
toggle_line("max_volumetric_extrusion_rate_slope_segment_length", have_volumetric_extrusion_rate_slope);
if(have_volumetric_extrusion_rate_slope) config->set_key_value("enable_arc_fitting", new ConfigOptionBool(false));
if(have_volumetric_extrusion_rate_slope_segment_length==0) {
DynamicPrintConfig new_conf = *config;
new_conf.set_key_value("max_volumetric_extrusion_rate_slope_segment_length", new ConfigOptionInt(1));
apply(config, &new_conf);
}
bool have_perimeters = config->opt_int("wall_loops") > 0; bool have_perimeters = config->opt_int("wall_loops") > 0;
for (auto el : { "extra_perimeters_on_overhangs", "ensure_vertical_shell_thickness", "detect_thin_wall", "detect_overhang_wall", for (auto el : { "extra_perimeters_on_overhangs", "ensure_vertical_shell_thickness", "detect_thin_wall", "detect_overhang_wall",
"seam_position", "staggered_inner_seams", "wall_infill_order", "outer_wall_line_width", "seam_position", "staggered_inner_seams", "wall_infill_order", "outer_wall_line_width",

View file

@ -1995,11 +1995,10 @@ void TabPrint::build()
optgroup->append_single_option_line("top_surface_jerk"); optgroup->append_single_option_line("top_surface_jerk");
optgroup->append_single_option_line("initial_layer_jerk"); optgroup->append_single_option_line("initial_layer_jerk");
optgroup->append_single_option_line("travel_jerk"); optgroup->append_single_option_line("travel_jerk");
#ifdef HAS_PRESSURE_EQUALIZER optgroup = page->new_optgroup(L("Advanced"), L"param_advanced", 15);
optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope_positive"); optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope");
optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope_negative"); optgroup->append_single_option_line("max_volumetric_extrusion_rate_slope_segment_length");
#endif /* HAS_PRESSURE_EQUALIZER */
page = add_options_page(L("Support"), "support"); page = add_options_page(L("Support"), "support");
optgroup = page->new_optgroup(L("Support"), L"param_support"); optgroup = page->new_optgroup(L("Support"), L"param_support");