mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-10-22 16:21:24 -06:00
Merge remote-tracking branch 'origin/master' into feature_slice_to_png
This commit is contained in:
commit
9559ad77e5
121 changed files with 18093 additions and 3459 deletions
|
@ -2,6 +2,8 @@
|
|||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
|
||||
#include <Eigen/Dense>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template BoundingBoxBase<Point>::BoundingBoxBase(const std::vector<Point> &points);
|
||||
|
@ -251,4 +253,41 @@ void BoundingBox::align_to_grid(const coord_t cell_size)
|
|||
}
|
||||
}
|
||||
|
||||
BoundingBoxf3 BoundingBoxf3::transformed(const std::vector<float>& matrix) const
|
||||
{
|
||||
Eigen::Matrix<float, 3, 8> vertices;
|
||||
|
||||
vertices(0, 0) = (float)min.x; vertices(1, 0) = (float)min.y; vertices(2, 0) = (float)min.z;
|
||||
vertices(0, 1) = (float)max.x; vertices(1, 1) = (float)min.y; vertices(2, 1) = (float)min.z;
|
||||
vertices(0, 2) = (float)max.x; vertices(1, 2) = (float)max.y; vertices(2, 2) = (float)min.z;
|
||||
vertices(0, 3) = (float)min.x; vertices(1, 3) = (float)max.y; vertices(2, 3) = (float)min.z;
|
||||
vertices(0, 4) = (float)min.x; vertices(1, 4) = (float)min.y; vertices(2, 4) = (float)max.z;
|
||||
vertices(0, 5) = (float)max.x; vertices(1, 5) = (float)min.y; vertices(2, 5) = (float)max.z;
|
||||
vertices(0, 6) = (float)max.x; vertices(1, 6) = (float)max.y; vertices(2, 6) = (float)max.z;
|
||||
vertices(0, 7) = (float)min.x; vertices(1, 7) = (float)max.y; vertices(2, 7) = (float)max.z;
|
||||
|
||||
Eigen::Transform<float, 3, Eigen::Affine> m;
|
||||
::memcpy((void*)m.data(), (const void*)matrix.data(), 16 * sizeof(float));
|
||||
Eigen::Matrix<float, 3, 8> transf_vertices = m * vertices.colwise().homogeneous();
|
||||
|
||||
float min_x = transf_vertices(0, 0);
|
||||
float max_x = transf_vertices(0, 0);
|
||||
float min_y = transf_vertices(1, 0);
|
||||
float max_y = transf_vertices(1, 0);
|
||||
float min_z = transf_vertices(2, 0);
|
||||
float max_z = transf_vertices(2, 0);
|
||||
|
||||
for (int i = 1; i < 8; ++i)
|
||||
{
|
||||
min_x = std::min(min_x, transf_vertices(0, i));
|
||||
max_x = std::max(max_x, transf_vertices(0, i));
|
||||
min_y = std::min(min_y, transf_vertices(1, i));
|
||||
max_y = std::max(max_y, transf_vertices(1, i));
|
||||
min_z = std::min(min_z, transf_vertices(2, i));
|
||||
max_z = std::max(max_z, transf_vertices(2, i));
|
||||
}
|
||||
|
||||
return BoundingBoxf3(Pointf3((coordf_t)min_x, (coordf_t)min_y, (coordf_t)min_z), Pointf3((coordf_t)max_x, (coordf_t)max_y, (coordf_t)max_z));
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -148,6 +148,8 @@ public:
|
|||
BoundingBoxf3() : BoundingBox3Base<Pointf3>() {};
|
||||
BoundingBoxf3(const Pointf3 &pmin, const Pointf3 &pmax) : BoundingBox3Base<Pointf3>(pmin, pmax) {};
|
||||
BoundingBoxf3(const std::vector<Pointf3> &points) : BoundingBox3Base<Pointf3>(points) {};
|
||||
|
||||
BoundingBoxf3 transformed(const std::vector<float>& matrix) const;
|
||||
};
|
||||
|
||||
template<typename VT>
|
||||
|
|
|
@ -20,6 +20,7 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
// Escape \n, \r and backslash
|
||||
std::string escape_string_cstyle(const std::string &str)
|
||||
{
|
||||
// Allocate a buffer twice the input string length,
|
||||
|
@ -28,9 +29,15 @@ std::string escape_string_cstyle(const std::string &str)
|
|||
char *outptr = out.data();
|
||||
for (size_t i = 0; i < str.size(); ++ i) {
|
||||
char c = str[i];
|
||||
if (c == '\n' || c == '\r') {
|
||||
if (c == '\r') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'r';
|
||||
} else if (c == '\n') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'n';
|
||||
} else if (c == '\\') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = '\\';
|
||||
} else
|
||||
(*outptr ++) = c;
|
||||
}
|
||||
|
@ -69,7 +76,10 @@ std::string escape_strings_cstyle(const std::vector<std::string> &strs)
|
|||
if (c == '\\' || c == '"') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = c;
|
||||
} else if (c == '\n' || c == '\r') {
|
||||
} else if (c == '\r') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'r';
|
||||
} else if (c == '\n') {
|
||||
(*outptr ++) = '\\';
|
||||
(*outptr ++) = 'n';
|
||||
} else
|
||||
|
@ -84,6 +94,7 @@ std::string escape_strings_cstyle(const std::vector<std::string> &strs)
|
|||
return std::string(out.data(), outptr - out.data());
|
||||
}
|
||||
|
||||
// Unescape \n, \r and backslash
|
||||
bool unescape_string_cstyle(const std::string &str, std::string &str_out)
|
||||
{
|
||||
std::vector<char> out(str.size(), 0);
|
||||
|
@ -94,8 +105,12 @@ bool unescape_string_cstyle(const std::string &str, std::string &str_out)
|
|||
if (++ i == str.size())
|
||||
return false;
|
||||
c = str[i];
|
||||
if (c == 'n')
|
||||
if (c == 'r')
|
||||
(*outptr ++) = '\r';
|
||||
else if (c == 'n')
|
||||
(*outptr ++) = '\n';
|
||||
else
|
||||
(*outptr ++) = c;
|
||||
} else
|
||||
(*outptr ++) = c;
|
||||
}
|
||||
|
@ -134,7 +149,9 @@ bool unescape_strings_cstyle(const std::string &str, std::vector<std::string> &o
|
|||
if (++ i == str.size())
|
||||
return false;
|
||||
c = str[i];
|
||||
if (c == 'n')
|
||||
if (c == 'r')
|
||||
c = '\r';
|
||||
else if (c == 'n')
|
||||
c = '\n';
|
||||
}
|
||||
buf.push_back(c);
|
||||
|
@ -188,7 +205,10 @@ void ConfigBase::apply_only(const ConfigBase &other, const t_config_option_keys
|
|||
throw UnknownOptionException(opt_key);
|
||||
}
|
||||
const ConfigOption *other_opt = other.option(opt_key);
|
||||
if (other_opt != nullptr)
|
||||
if (other_opt == nullptr) {
|
||||
// The key was not found in the source config, therefore it will not be initialized!
|
||||
// printf("Not found, therefore not initialized: %s\n", opt_key.c_str());
|
||||
} else
|
||||
my_opt->set(other_opt);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -291,6 +291,8 @@ public:
|
|||
ConfigOptionFloats() : ConfigOptionVector<double>() {}
|
||||
explicit ConfigOptionFloats(size_t n, double value) : ConfigOptionVector<double>(n, value) {}
|
||||
explicit ConfigOptionFloats(std::initializer_list<double> il) : ConfigOptionVector<double>(std::move(il)) {}
|
||||
explicit ConfigOptionFloats(const std::vector<double> &vec) : ConfigOptionVector<double>(vec) {}
|
||||
explicit ConfigOptionFloats(std::vector<double> &&vec) : ConfigOptionVector<double>(std::move(vec)) {}
|
||||
|
||||
static ConfigOptionType static_type() { return coFloats; }
|
||||
ConfigOptionType type() const override { return static_type(); }
|
||||
|
|
|
@ -92,6 +92,7 @@ public:
|
|||
virtual double min_mm3_per_mm() const = 0;
|
||||
virtual Polyline as_polyline() const = 0;
|
||||
virtual double length() const = 0;
|
||||
virtual double total_volume() const = 0;
|
||||
};
|
||||
|
||||
typedef std::vector<ExtrusionEntity*> ExtrusionEntitiesPtr;
|
||||
|
@ -148,6 +149,7 @@ public:
|
|||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const { return this->mm3_per_mm; }
|
||||
Polyline as_polyline() const { return this->polyline; }
|
||||
virtual double total_volume() const { return mm3_per_mm * unscale(length()); }
|
||||
|
||||
private:
|
||||
void _inflate_collection(const Polylines &polylines, ExtrusionEntityCollection* collection) const;
|
||||
|
@ -194,6 +196,7 @@ public:
|
|||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const;
|
||||
Polyline as_polyline() const;
|
||||
virtual double total_volume() const { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||||
};
|
||||
|
||||
// Single continuous extrusion loop, possibly with varying extrusion thickness, extrusion height or bridging / non bridging.
|
||||
|
@ -241,6 +244,7 @@ public:
|
|||
// Minimum volumetric velocity of this extrusion entity. Used by the constant nozzle pressure algorithm.
|
||||
double min_mm3_per_mm() const;
|
||||
Polyline as_polyline() const { return this->polygon().split_at_first_point(); }
|
||||
virtual double total_volume() const { double volume =0.; for (const auto& path : paths) volume += path.total_volume(); return volume; }
|
||||
|
||||
private:
|
||||
ExtrusionLoopRole m_loop_role;
|
||||
|
|
|
@ -125,6 +125,7 @@ void ExtrusionEntityCollection::chained_path_from(Point start_near, ExtrusionEnt
|
|||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
ExtrusionEntity* entity = (*it)->clone();
|
||||
my_paths.push_back(entity);
|
||||
if (orig_indices != NULL) indices_map[entity] = it - this->entities.begin();
|
||||
|
|
|
@ -79,6 +79,7 @@ public:
|
|||
void flatten(ExtrusionEntityCollection* retval) const;
|
||||
ExtrusionEntityCollection flatten() const;
|
||||
double min_mm3_per_mm() const;
|
||||
virtual double total_volume() const {double volume=0.; for (const auto& ent : entities) volume+=ent->total_volume(); return volume; }
|
||||
|
||||
// Following methods shall never be called on an ExtrusionEntityCollection.
|
||||
Polyline as_polyline() const {
|
||||
|
|
|
@ -470,9 +470,9 @@ static bool prepare_infill_hatching_segments(
|
|||
int ir = std::min<int>(int(out.segs.size()) - 1, (r - x0) / line_spacing);
|
||||
// The previous tests were done with floating point arithmetics over an epsilon-extended interval.
|
||||
// Now do the same tests with exact arithmetics over the exact interval.
|
||||
while (il <= ir && Int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
|
||||
while (il <= ir && int128::orient(out.segs[il].pos, out.segs[il].pos + out.direction, *pl) < 0)
|
||||
++ il;
|
||||
while (il <= ir && Int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
|
||||
while (il <= ir && int128::orient(out.segs[ir].pos, out.segs[ir].pos + out.direction, *pr) > 0)
|
||||
-- ir;
|
||||
// Here it is ensured, that
|
||||
// 1) out.seg is not parallel to (pl, pr)
|
||||
|
@ -489,8 +489,8 @@ static bool prepare_infill_hatching_segments(
|
|||
is.iSegment = iSegment;
|
||||
// Test whether the calculated intersection point falls into the bounding box of the input segment.
|
||||
// +-1 to take rounding into account.
|
||||
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
|
||||
assert(Int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
|
||||
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pl) >= 0);
|
||||
assert(int128::orient(out.segs[i].pos, out.segs[i].pos + out.direction, *pr) <= 0);
|
||||
assert(is.pos().x + 1 >= std::min(pl->x, pr->x));
|
||||
assert(is.pos().y + 1 >= std::min(pl->y, pr->y));
|
||||
assert(is.pos().x <= std::max(pl->x, pr->x) + 1);
|
||||
|
@ -527,7 +527,7 @@ static bool prepare_infill_hatching_segments(
|
|||
const Points &contour = poly_with_offset.contour(iContour).points;
|
||||
size_t iSegment = sil.intersections[i].iSegment;
|
||||
size_t iPrev = ((iSegment == 0) ? contour.size() : iSegment) - 1;
|
||||
int dir = Int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
|
||||
int dir = int128::cross(contour[iSegment] - contour[iPrev], sil.dir);
|
||||
bool low = dir > 0;
|
||||
sil.intersections[i].type = poly_with_offset.is_contour_outer(iContour) ?
|
||||
(low ? SegmentIntersection::OUTER_LOW : SegmentIntersection::OUTER_HIGH) :
|
||||
|
|
|
@ -13,9 +13,7 @@
|
|||
|
||||
#include <boost/filesystem/operations.hpp>
|
||||
#include <boost/algorithm/string.hpp>
|
||||
//############################################################################################################################################
|
||||
#include <boost/nowide/fstream.hpp>
|
||||
//############################################################################################################################################
|
||||
#include <miniz/miniz_zip.h>
|
||||
|
||||
#if 0
|
||||
|
|
|
@ -374,6 +374,12 @@ void GCode::do_export(Print *print, const char *path, GCodePreviewData *preview_
|
|||
throw std::runtime_error(std::string("G-code export to ") + path + " failed\nIs the disk full?\n");
|
||||
}
|
||||
fclose(file);
|
||||
|
||||
m_normal_time_estimator.post_process_remaining_times(path_tmp, 60.0f);
|
||||
|
||||
if (m_silent_time_estimator_enabled)
|
||||
m_silent_time_estimator.post_process_remaining_times(path_tmp, 60.0f);
|
||||
|
||||
if (! this->m_placeholder_parser_failed_templates.empty()) {
|
||||
// G-code export proceeded, but some of the PlaceholderParser substitutions failed.
|
||||
std::string msg = std::string("G-code export to ") + path + " failed due to invalid custom G-code sections:\n\n";
|
||||
|
@ -403,10 +409,48 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
{
|
||||
PROFILE_FUNC();
|
||||
|
||||
// resets time estimator
|
||||
m_time_estimator.reset();
|
||||
m_time_estimator.set_dialect(print.config.gcode_flavor);
|
||||
// resets time estimators
|
||||
m_normal_time_estimator.reset();
|
||||
m_normal_time_estimator.set_dialect(print.config.gcode_flavor);
|
||||
m_normal_time_estimator.set_acceleration(print.config.machine_max_acceleration_extruding.values[0]);
|
||||
m_normal_time_estimator.set_retract_acceleration(print.config.machine_max_acceleration_retracting.values[0]);
|
||||
m_normal_time_estimator.set_minimum_feedrate(print.config.machine_min_extruding_rate.values[0]);
|
||||
m_normal_time_estimator.set_minimum_travel_feedrate(print.config.machine_min_travel_rate.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::X, print.config.machine_max_acceleration_x.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::Y, print.config.machine_max_acceleration_y.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::Z, print.config.machine_max_acceleration_z.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::E, print.config.machine_max_acceleration_e.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::X, print.config.machine_max_feedrate_x.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::Y, print.config.machine_max_feedrate_y.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::Z, print.config.machine_max_feedrate_z.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::E, print.config.machine_max_feedrate_e.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::X, print.config.machine_max_jerk_x.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Y, print.config.machine_max_jerk_y.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Z, print.config.machine_max_jerk_z.values[0]);
|
||||
m_normal_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::E, print.config.machine_max_jerk_e.values[0]);
|
||||
|
||||
m_silent_time_estimator_enabled = (print.config.gcode_flavor == gcfMarlin) && print.config.silent_mode && boost::starts_with(print.config.printer_model.value, "MK3");
|
||||
if (m_silent_time_estimator_enabled)
|
||||
{
|
||||
m_silent_time_estimator.reset();
|
||||
m_silent_time_estimator.set_dialect(print.config.gcode_flavor);
|
||||
m_silent_time_estimator.set_acceleration(print.config.machine_max_acceleration_extruding.values[1]);
|
||||
m_silent_time_estimator.set_retract_acceleration(print.config.machine_max_acceleration_retracting.values[1]);
|
||||
m_silent_time_estimator.set_minimum_feedrate(print.config.machine_min_extruding_rate.values[1]);
|
||||
m_silent_time_estimator.set_minimum_travel_feedrate(print.config.machine_min_travel_rate.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::X, print.config.machine_max_acceleration_x.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::Y, print.config.machine_max_acceleration_y.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::Z, print.config.machine_max_acceleration_z.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_acceleration(GCodeTimeEstimator::E, print.config.machine_max_acceleration_e.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::X, print.config.machine_max_feedrate_x.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::Y, print.config.machine_max_feedrate_y.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::Z, print.config.machine_max_feedrate_z.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_feedrate(GCodeTimeEstimator::E, print.config.machine_max_feedrate_e.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::X, print.config.machine_max_jerk_x.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Y, print.config.machine_max_jerk_y.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::Z, print.config.machine_max_jerk_z.values[1]);
|
||||
m_silent_time_estimator.set_axis_max_jerk(GCodeTimeEstimator::E, print.config.machine_max_jerk_e.values[1]);
|
||||
}
|
||||
// resets analyzer
|
||||
m_analyzer.reset();
|
||||
m_enable_analyzer = preview_data != nullptr;
|
||||
|
@ -764,7 +808,7 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
}
|
||||
// Extrude the layers.
|
||||
for (auto &layer : layers_to_print) {
|
||||
const ToolOrdering::LayerTools &layer_tools = tool_ordering.tools_for_layer(layer.first);
|
||||
const LayerTools &layer_tools = tool_ordering.tools_for_layer(layer.first);
|
||||
if (m_wipe_tower && layer_tools.has_wipe_tower)
|
||||
m_wipe_tower->next_layer();
|
||||
this->process_layer(file, print, layer.second, layer_tools, size_t(-1));
|
||||
|
@ -806,7 +850,9 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
_write(file, m_writer.postamble());
|
||||
|
||||
// calculates estimated printing time
|
||||
m_time_estimator.calculate_time();
|
||||
m_normal_time_estimator.calculate_time();
|
||||
if (m_silent_time_estimator_enabled)
|
||||
m_silent_time_estimator.calculate_time();
|
||||
|
||||
// Get filament stats.
|
||||
print.filament_stats.clear();
|
||||
|
@ -814,13 +860,14 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
print.total_extruded_volume = 0.;
|
||||
print.total_weight = 0.;
|
||||
print.total_cost = 0.;
|
||||
print.estimated_print_time = m_time_estimator.get_time_hms();
|
||||
print.estimated_normal_print_time = m_normal_time_estimator.get_time_dhms();
|
||||
print.estimated_silent_print_time = m_silent_time_estimator_enabled ? m_silent_time_estimator.get_time_dhms() : "N/A";
|
||||
for (const Extruder &extruder : m_writer.extruders()) {
|
||||
double used_filament = extruder.used_filament();
|
||||
double extruded_volume = extruder.extruded_volume();
|
||||
double filament_weight = extruded_volume * extruder.filament_density() * 0.001;
|
||||
double filament_cost = filament_weight * extruder.filament_cost() * 0.001;
|
||||
print.filament_stats.insert(std::pair<size_t,float>(extruder.id(), used_filament));
|
||||
print.filament_stats.insert(std::pair<size_t, float>(extruder.id(), (float)used_filament));
|
||||
_write_format(file, "; filament used = %.1lfmm (%.1lfcm3)\n", used_filament, extruded_volume * 0.001);
|
||||
if (filament_weight > 0.) {
|
||||
print.total_weight = print.total_weight + filament_weight;
|
||||
|
@ -834,7 +881,9 @@ void GCode::_do_export(Print &print, FILE *file, GCodePreviewData *preview_data)
|
|||
print.total_extruded_volume = print.total_extruded_volume + extruded_volume;
|
||||
}
|
||||
_write_format(file, "; total filament cost = %.1lf\n", print.total_cost);
|
||||
_write_format(file, "; estimated printing time = %s\n", m_time_estimator.get_time_hms().c_str());
|
||||
_write_format(file, "; estimated printing time (normal mode) = %s\n", m_normal_time_estimator.get_time_dhms().c_str());
|
||||
if (m_silent_time_estimator_enabled)
|
||||
_write_format(file, "; estimated printing time (silent mode) = %s\n", m_silent_time_estimator.get_time_dhms().c_str());
|
||||
|
||||
// Append full config.
|
||||
_write(file, "\n");
|
||||
|
@ -1009,7 +1058,7 @@ void GCode::process_layer(
|
|||
const Print &print,
|
||||
// Set of object & print layers of the same PrintObject and with the same print_z.
|
||||
const std::vector<LayerToPrint> &layers,
|
||||
const ToolOrdering::LayerTools &layer_tools,
|
||||
const LayerTools &layer_tools,
|
||||
// If set to size_t(-1), then print all copies of all objects.
|
||||
// Otherwise print a single copy of a single object.
|
||||
const size_t single_object_idx)
|
||||
|
@ -1147,7 +1196,6 @@ void GCode::process_layer(
|
|||
|
||||
// Group extrusions by an extruder, then by an object, an island and a region.
|
||||
std::map<unsigned int, std::vector<ObjectByExtruder>> by_extruder;
|
||||
|
||||
for (const LayerToPrint &layer_to_print : layers) {
|
||||
if (layer_to_print.support_layer != nullptr) {
|
||||
const SupportLayer &support_layer = *layer_to_print.support_layer;
|
||||
|
@ -1224,70 +1272,66 @@ void GCode::process_layer(
|
|||
if (layerm == nullptr)
|
||||
continue;
|
||||
const PrintRegion ®ion = *print.regions[region_id];
|
||||
|
||||
// process perimeters
|
||||
for (const ExtrusionEntity *ee : layerm->perimeters.entities) {
|
||||
// perimeter_coll represents perimeter extrusions of a single island.
|
||||
const auto *perimeter_coll = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (perimeter_coll->entities.empty())
|
||||
// This shouldn't happen but first_point() would fail.
|
||||
continue;
|
||||
// Init by_extruder item only if we actually use the extruder.
|
||||
std::vector<ObjectByExtruder::Island> &islands = object_islands_by_extruder(
|
||||
by_extruder,
|
||||
std::max<int>(region.config.perimeter_extruder.value - 1, 0),
|
||||
&layer_to_print - layers.data(),
|
||||
layers.size(), n_slices+1);
|
||||
for (size_t i = 0; i <= n_slices; ++ i)
|
||||
if (// perimeter_coll->first_point does not fit inside any slice
|
||||
i == n_slices ||
|
||||
// perimeter_coll->first_point fits inside ith slice
|
||||
point_inside_surface(i, perimeter_coll->first_point())) {
|
||||
if (islands[i].by_region.empty())
|
||||
islands[i].by_region.assign(print.regions.size(), ObjectByExtruder::Island::Region());
|
||||
islands[i].by_region[region_id].perimeters.append(perimeter_coll->entities);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// process infill
|
||||
// layerm->fills is a collection of Slic3r::ExtrusionPath::Collection objects (C++ class ExtrusionEntityCollection),
|
||||
// each one containing the ExtrusionPath objects of a certain infill "group" (also called "surface"
|
||||
// throughout the code). We can redefine the order of such Collections but we have to
|
||||
// do each one completely at once.
|
||||
for (const ExtrusionEntity *ee : layerm->fills.entities) {
|
||||
// fill represents infill extrusions of a single island.
|
||||
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (fill->entities.empty())
|
||||
// This shouldn't happen but first_point() would fail.
|
||||
continue;
|
||||
// init by_extruder item only if we actually use the extruder
|
||||
int extruder_id = std::max<int>(0, (is_solid_infill(fill->entities.front()->role()) ? region.config.solid_infill_extruder : region.config.infill_extruder) - 1);
|
||||
// Init by_extruder item only if we actually use the extruder.
|
||||
std::vector<ObjectByExtruder::Island> &islands = object_islands_by_extruder(
|
||||
by_extruder,
|
||||
extruder_id,
|
||||
&layer_to_print - layers.data(),
|
||||
layers.size(), n_slices+1);
|
||||
for (size_t i = 0; i <= n_slices; ++i)
|
||||
if (// fill->first_point does not fit inside any slice
|
||||
i == n_slices ||
|
||||
// fill->first_point fits inside ith slice
|
||||
point_inside_surface(i, fill->first_point())) {
|
||||
if (islands[i].by_region.empty())
|
||||
islands[i].by_region.assign(print.regions.size(), ObjectByExtruder::Island::Region());
|
||||
islands[i].by_region[region_id].infills.append(fill->entities);
|
||||
break;
|
||||
|
||||
|
||||
// Now we must process perimeters and infills and create islands of extrusions in by_region std::map.
|
||||
// It is also necessary to save which extrusions are part of MM wiping and which are not.
|
||||
// The process is almost the same for perimeters and infills - we will do it in a cycle that repeats twice:
|
||||
for (std::string entity_type("infills") ; entity_type != "done" ; entity_type = entity_type=="infills" ? "perimeters" : "done") {
|
||||
|
||||
const ExtrusionEntitiesPtr& source_entities = entity_type=="infills" ? layerm->fills.entities : layerm->perimeters.entities;
|
||||
|
||||
for (const ExtrusionEntity *ee : source_entities) {
|
||||
// fill represents infill extrusions of a single island.
|
||||
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (fill->entities.empty()) // This shouldn't happen but first_point() would fail.
|
||||
continue;
|
||||
|
||||
// This extrusion is part of certain Region, which tells us which extruder should be used for it:
|
||||
int correct_extruder_id = Print::get_extruder(*fill, region); entity_type=="infills" ? std::max<int>(0, (is_solid_infill(fill->entities.front()->role()) ? region.config.solid_infill_extruder : region.config.infill_extruder) - 1) :
|
||||
std::max<int>(region.config.perimeter_extruder.value - 1, 0);
|
||||
|
||||
// Let's recover vector of extruder overrides:
|
||||
const ExtruderPerCopy* entity_overrides = const_cast<LayerTools&>(layer_tools).wiping_extrusions().get_extruder_overrides(fill, correct_extruder_id, layer_to_print.object()->_shifted_copies.size());
|
||||
|
||||
// Now we must add this extrusion into the by_extruder map, once for each extruder that will print it:
|
||||
for (unsigned int extruder : layer_tools.extruders)
|
||||
{
|
||||
// Init by_extruder item only if we actually use the extruder:
|
||||
if (std::find(entity_overrides->begin(), entity_overrides->end(), extruder) != entity_overrides->end() || // at least one copy is overridden to use this extruder
|
||||
std::find(entity_overrides->begin(), entity_overrides->end(), -extruder-1) != entity_overrides->end() || // at least one copy would normally be printed with this extruder (see get_extruder_overrides function for explanation)
|
||||
(std::find(layer_tools.extruders.begin(), layer_tools.extruders.end(), correct_extruder_id) == layer_tools.extruders.end() && extruder == layer_tools.extruders.back())) // this entity is not overridden, but its extruder is not in layer_tools - we'll print it
|
||||
//by last extruder on this layer (could happen e.g. when a wiping object is taller than others - dontcare extruders are eradicated from layer_tools)
|
||||
{
|
||||
std::vector<ObjectByExtruder::Island> &islands = object_islands_by_extruder(
|
||||
by_extruder,
|
||||
extruder,
|
||||
&layer_to_print - layers.data(),
|
||||
layers.size(), n_slices+1);
|
||||
for (size_t i = 0; i <= n_slices; ++i)
|
||||
if (// fill->first_point does not fit inside any slice
|
||||
i == n_slices ||
|
||||
// fill->first_point fits inside ith slice
|
||||
point_inside_surface(i, fill->first_point())) {
|
||||
if (islands[i].by_region.empty())
|
||||
islands[i].by_region.assign(print.regions.size(), ObjectByExtruder::Island::Region());
|
||||
islands[i].by_region[region_id].append(entity_type, fill, entity_overrides, layer_to_print.object()->_shifted_copies.size());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} // for regions
|
||||
}
|
||||
} // for objects
|
||||
|
||||
|
||||
|
||||
// Extrude the skirt, brim, support, perimeters, infill ordered by the extruders.
|
||||
std::vector<std::unique_ptr<EdgeGrid::Grid>> lower_layer_edge_grids(layers.size());
|
||||
for (unsigned int extruder_id : layer_tools.extruders)
|
||||
{
|
||||
{
|
||||
gcode += (layer_tools.has_wipe_tower && m_wipe_tower) ?
|
||||
m_wipe_tower->tool_change(*this, extruder_id, extruder_id == layer_tools.extruders.back()) :
|
||||
this->set_extruder(extruder_id);
|
||||
|
@ -1312,7 +1356,7 @@ void GCode::process_layer(
|
|||
for (ExtrusionPath &path : loop.paths) {
|
||||
path.height = (float)layer.height;
|
||||
path.mm3_per_mm = mm3_per_mm;
|
||||
}
|
||||
}
|
||||
gcode += this->extrude_loop(loop, "skirt", m_config.support_material_speed.value);
|
||||
}
|
||||
m_avoid_crossing_perimeters.use_external_mp = false;
|
||||
|
@ -1321,7 +1365,7 @@ void GCode::process_layer(
|
|||
m_avoid_crossing_perimeters.disable_once = true;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Extrude brim with the extruder of the 1st region.
|
||||
if (! m_brim_done) {
|
||||
this->set_origin(0., 0.);
|
||||
|
@ -1334,49 +1378,61 @@ void GCode::process_layer(
|
|||
m_avoid_crossing_perimeters.disable_once = true;
|
||||
}
|
||||
|
||||
|
||||
auto objects_by_extruder_it = by_extruder.find(extruder_id);
|
||||
if (objects_by_extruder_it == by_extruder.end())
|
||||
continue;
|
||||
for (const ObjectByExtruder &object_by_extruder : objects_by_extruder_it->second) {
|
||||
const size_t layer_id = &object_by_extruder - objects_by_extruder_it->second.data();
|
||||
const PrintObject *print_object = layers[layer_id].object();
|
||||
if (print_object == nullptr)
|
||||
// This layer is empty for this particular object, it has neither object extrusions nor support extrusions at this print_z.
|
||||
continue;
|
||||
|
||||
m_config.apply(print_object->config, true);
|
||||
m_layer = layers[layer_id].layer();
|
||||
if (m_config.avoid_crossing_perimeters)
|
||||
m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->slices, true));
|
||||
Points copies;
|
||||
if (single_object_idx == size_t(-1))
|
||||
copies = print_object->_shifted_copies;
|
||||
else
|
||||
copies.push_back(print_object->_shifted_copies[single_object_idx]);
|
||||
// Sort the copies by the closest point starting with the current print position.
|
||||
|
||||
for (const Point © : copies) {
|
||||
// When starting a new object, use the external motion planner for the first travel move.
|
||||
std::pair<const PrintObject*, Point> this_object_copy(print_object, copy);
|
||||
if (m_last_obj_copy != this_object_copy)
|
||||
m_avoid_crossing_perimeters.use_external_mp_once = true;
|
||||
m_last_obj_copy = this_object_copy;
|
||||
this->set_origin(unscale(copy.x), unscale(copy.y));
|
||||
if (object_by_extruder.support != nullptr) {
|
||||
m_layer = layers[layer_id].support_layer;
|
||||
gcode += this->extrude_support(
|
||||
// support_extrusion_role is erSupportMaterial, erSupportMaterialInterface or erMixed for all extrusion paths.
|
||||
object_by_extruder.support->chained_path_from(m_last_pos, false, object_by_extruder.support_extrusion_role));
|
||||
m_layer = layers[layer_id].layer();
|
||||
}
|
||||
for (const ObjectByExtruder::Island &island : object_by_extruder.islands) {
|
||||
if (print.config.infill_first) {
|
||||
gcode += this->extrude_infill(print, island.by_region);
|
||||
gcode += this->extrude_perimeters(print, island.by_region, lower_layer_edge_grids[layer_id]);
|
||||
} else {
|
||||
gcode += this->extrude_perimeters(print, island.by_region, lower_layer_edge_grids[layer_id]);
|
||||
gcode += this->extrude_infill(print, island.by_region);
|
||||
// We are almost ready to print. However, we must go through all the objects twice to print the the overridden extrusions first (infill/perimeter wiping feature):
|
||||
for (int print_wipe_extrusions=const_cast<LayerTools&>(layer_tools).wiping_extrusions().is_anything_overridden(); print_wipe_extrusions>=0; --print_wipe_extrusions) {
|
||||
if (print_wipe_extrusions == 0)
|
||||
gcode+="; PURGING FINISHED\n";
|
||||
|
||||
for (ObjectByExtruder &object_by_extruder : objects_by_extruder_it->second) {
|
||||
const size_t layer_id = &object_by_extruder - objects_by_extruder_it->second.data();
|
||||
const PrintObject *print_object = layers[layer_id].object();
|
||||
if (print_object == nullptr)
|
||||
// This layer is empty for this particular object, it has neither object extrusions nor support extrusions at this print_z.
|
||||
continue;
|
||||
|
||||
m_config.apply(print_object->config, true);
|
||||
m_layer = layers[layer_id].layer();
|
||||
if (m_config.avoid_crossing_perimeters)
|
||||
m_avoid_crossing_perimeters.init_layer_mp(union_ex(m_layer->slices, true));
|
||||
Points copies;
|
||||
if (single_object_idx == size_t(-1))
|
||||
copies = print_object->_shifted_copies;
|
||||
else
|
||||
copies.push_back(print_object->_shifted_copies[single_object_idx]);
|
||||
// Sort the copies by the closest point starting with the current print position.
|
||||
|
||||
unsigned int copy_id = 0;
|
||||
for (const Point © : copies) {
|
||||
// When starting a new object, use the external motion planner for the first travel move.
|
||||
std::pair<const PrintObject*, Point> this_object_copy(print_object, copy);
|
||||
if (m_last_obj_copy != this_object_copy)
|
||||
m_avoid_crossing_perimeters.use_external_mp_once = true;
|
||||
m_last_obj_copy = this_object_copy;
|
||||
this->set_origin(unscale(copy.x), unscale(copy.y));
|
||||
if (object_by_extruder.support != nullptr && !print_wipe_extrusions) {
|
||||
m_layer = layers[layer_id].support_layer;
|
||||
gcode += this->extrude_support(
|
||||
// support_extrusion_role is erSupportMaterial, erSupportMaterialInterface or erMixed for all extrusion paths.
|
||||
object_by_extruder.support->chained_path_from(m_last_pos, false, object_by_extruder.support_extrusion_role));
|
||||
m_layer = layers[layer_id].layer();
|
||||
}
|
||||
for (ObjectByExtruder::Island &island : object_by_extruder.islands) {
|
||||
const auto& by_region_specific = const_cast<LayerTools&>(layer_tools).wiping_extrusions().is_anything_overridden() ? island.by_region_per_copy(copy_id, extruder_id, print_wipe_extrusions) : island.by_region;
|
||||
|
||||
if (print.config.infill_first) {
|
||||
gcode += this->extrude_infill(print, by_region_specific);
|
||||
gcode += this->extrude_perimeters(print, by_region_specific, lower_layer_edge_grids[layer_id]);
|
||||
} else {
|
||||
gcode += this->extrude_perimeters(print, by_region_specific, lower_layer_edge_grids[layer_id]);
|
||||
gcode += this->extrude_infill(print,by_region_specific);
|
||||
}
|
||||
}
|
||||
++copy_id;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -1399,7 +1455,7 @@ void GCode::process_layer(
|
|||
if (m_pressure_equalizer)
|
||||
gcode = m_pressure_equalizer->process(gcode.c_str(), false);
|
||||
// printf("G-code after filter:\n%s\n", out.c_str());
|
||||
|
||||
|
||||
_write(file, gcode);
|
||||
}
|
||||
|
||||
|
@ -1411,15 +1467,22 @@ void GCode::apply_print_config(const PrintConfig &print_config)
|
|||
|
||||
void GCode::append_full_config(const Print& print, std::string& str)
|
||||
{
|
||||
const StaticPrintConfig *configs[] = { &print.config, &print.default_object_config, &print.default_region_config };
|
||||
const StaticPrintConfig *configs[] = { static_cast<const GCodeConfig*>(&print.config), &print.default_object_config, &print.default_region_config };
|
||||
for (size_t i = 0; i < sizeof(configs) / sizeof(configs[0]); ++i) {
|
||||
const StaticPrintConfig *cfg = configs[i];
|
||||
for (const std::string &key : cfg->keys())
|
||||
{
|
||||
if (key != "compatible_printers")
|
||||
str += "; " + key + " = " + cfg->serialize(key) + "\n";
|
||||
}
|
||||
}
|
||||
const DynamicConfig &full_config = print.placeholder_parser.config();
|
||||
for (const char *key : {
|
||||
"print_settings_id", "filament_settings_id", "printer_settings_id",
|
||||
"printer_model", "printer_variant", "default_print_profile", "default_filament_profile",
|
||||
"compatible_printers_condition_cummulative", "inherits_cummulative" }) {
|
||||
const ConfigOption *opt = full_config.option(key);
|
||||
if (opt != nullptr)
|
||||
str += std::string("; ") + key + " = " + opt->serialize() + "\n";
|
||||
}
|
||||
}
|
||||
|
||||
void GCode::set_extruders(const std::vector<unsigned int> &extruder_ids)
|
||||
|
@ -2059,7 +2122,9 @@ void GCode::_write(FILE* file, const char *what)
|
|||
// writes string to file
|
||||
fwrite(gcode, 1, ::strlen(gcode), file);
|
||||
// updates time estimator and gcode lines vector
|
||||
m_time_estimator.add_gcode_block(gcode);
|
||||
m_normal_time_estimator.add_gcode_block(gcode);
|
||||
if (m_silent_time_estimator_enabled)
|
||||
m_silent_time_estimator.add_gcode_block(gcode);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2438,4 +2503,62 @@ Point GCode::gcode_to_point(const Pointf &point) const
|
|||
scale_(point.y - m_origin.y + extruder_offset.y));
|
||||
}
|
||||
|
||||
|
||||
// Goes through by_region std::vector and returns reference to a subvector of entities, that are to be printed
|
||||
// during infill/perimeter wiping, or normally (depends on wiping_entities parameter)
|
||||
// Returns a reference to member to avoid copying.
|
||||
const std::vector<GCode::ObjectByExtruder::Island::Region>& GCode::ObjectByExtruder::Island::by_region_per_copy(unsigned int copy, int extruder, bool wiping_entities)
|
||||
{
|
||||
by_region_per_copy_cache.clear();
|
||||
|
||||
for (const auto& reg : by_region) {
|
||||
by_region_per_copy_cache.push_back(ObjectByExtruder::Island::Region()); // creates a region in the newly created Island
|
||||
|
||||
// Now we are going to iterate through perimeters and infills and pick ones that are supposed to be printed
|
||||
// References are used so that we don't have to repeat the same code
|
||||
for (int iter = 0; iter < 2; ++iter) {
|
||||
const ExtrusionEntitiesPtr& entities = (iter ? reg.infills.entities : reg.perimeters.entities);
|
||||
ExtrusionEntityCollection& target_eec = (iter ? by_region_per_copy_cache.back().infills : by_region_per_copy_cache.back().perimeters);
|
||||
const std::vector<const ExtruderPerCopy*>& overrides = (iter ? reg.infills_overrides : reg.perimeters_overrides);
|
||||
|
||||
// Now the most important thing - which extrusion should we print.
|
||||
// See function ToolOrdering::get_extruder_overrides for details about the negative numbers hack.
|
||||
int this_extruder_mark = wiping_entities ? extruder : -extruder-1;
|
||||
|
||||
for (unsigned int i=0;i<entities.size();++i)
|
||||
if (overrides[i]->at(copy) == this_extruder_mark) // this copy should be printed with this extruder
|
||||
target_eec.append((*entities[i]));
|
||||
}
|
||||
}
|
||||
return by_region_per_copy_cache;
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This function takes the eec and appends its entities to either perimeters or infills of this Region (depending on the first parameter)
|
||||
// It also saves pointer to ExtruderPerCopy struct (for each entity), that holds information about which extruders should be used for which copy.
|
||||
void GCode::ObjectByExtruder::Island::Region::append(const std::string& type, const ExtrusionEntityCollection* eec, const ExtruderPerCopy* copies_extruder, unsigned int object_copies_num)
|
||||
{
|
||||
// We are going to manipulate either perimeters or infills, exactly in the same way. Let's create pointers to the proper structure to not repeat ourselves:
|
||||
ExtrusionEntityCollection* perimeters_or_infills = &infills;
|
||||
std::vector<const ExtruderPerCopy*>* perimeters_or_infills_overrides = &infills_overrides;
|
||||
|
||||
if (type == "perimeters") {
|
||||
perimeters_or_infills = &perimeters;
|
||||
perimeters_or_infills_overrides = &perimeters_overrides;
|
||||
}
|
||||
else
|
||||
if (type != "infills") {
|
||||
CONFESS("Unknown parameter!");
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
// First we append the entities, there are eec->entities.size() of them:
|
||||
perimeters_or_infills->append(eec->entities);
|
||||
|
||||
for (unsigned int i=0;i<eec->entities.size();++i)
|
||||
perimeters_or_infills_overrides->push_back(copies_extruder);
|
||||
}
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
@ -133,6 +133,9 @@ public:
|
|||
m_last_height(GCodeAnalyzer::Default_Height),
|
||||
m_brim_done(false),
|
||||
m_second_layer_things_done(false),
|
||||
m_normal_time_estimator(GCodeTimeEstimator::Normal),
|
||||
m_silent_time_estimator(GCodeTimeEstimator::Silent),
|
||||
m_silent_time_estimator_enabled(false),
|
||||
m_last_obj_copy(nullptr, Point(std::numeric_limits<coord_t>::max(), std::numeric_limits<coord_t>::max()))
|
||||
{}
|
||||
~GCode() {}
|
||||
|
@ -185,7 +188,7 @@ protected:
|
|||
const Print &print,
|
||||
// Set of object & print layers of the same PrintObject and with the same print_z.
|
||||
const std::vector<LayerToPrint> &layers,
|
||||
const ToolOrdering::LayerTools &layer_tools,
|
||||
const LayerTools &layer_tools,
|
||||
// If set to size_t(-1), then print all copies of all objects.
|
||||
// Otherwise print a single copy of a single object.
|
||||
const size_t single_object_idx = size_t(-1));
|
||||
|
@ -200,6 +203,7 @@ protected:
|
|||
std::string extrude_multi_path(ExtrusionMultiPath multipath, std::string description = "", double speed = -1.);
|
||||
std::string extrude_path(ExtrusionPath path, std::string description = "", double speed = -1.);
|
||||
|
||||
typedef std::vector<int> ExtruderPerCopy;
|
||||
// Extruding multiple objects with soluble / non-soluble / combined supports
|
||||
// on a multi-material printer, trying to minimize tool switches.
|
||||
// Following structures sort extrusions by the extruder ID, by an order of objects and object islands.
|
||||
|
@ -215,11 +219,24 @@ protected:
|
|||
struct Region {
|
||||
ExtrusionEntityCollection perimeters;
|
||||
ExtrusionEntityCollection infills;
|
||||
|
||||
std::vector<const ExtruderPerCopy*> infills_overrides;
|
||||
std::vector<const ExtruderPerCopy*> perimeters_overrides;
|
||||
|
||||
// Appends perimeter/infill entities and writes don't indices of those that are not to be extruder as part of perimeter/infill wiping
|
||||
void append(const std::string& type, const ExtrusionEntityCollection* eec, const ExtruderPerCopy* copy_extruders, unsigned int object_copies_num);
|
||||
};
|
||||
std::vector<Region> by_region;
|
||||
|
||||
std::vector<Region> by_region; // all extrusions for this island, grouped by regions
|
||||
const std::vector<Region>& by_region_per_copy(unsigned int copy, int extruder, bool wiping_entities = false); // returns reference to subvector of by_region
|
||||
|
||||
private:
|
||||
std::vector<Region> by_region_per_copy_cache; // caches vector generated by function above to avoid copying and recalculating
|
||||
};
|
||||
std::vector<Island> islands;
|
||||
};
|
||||
|
||||
|
||||
std::string extrude_perimeters(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region, std::unique_ptr<EdgeGrid::Grid> &lower_layer_edge_grid);
|
||||
std::string extrude_infill(const Print &print, const std::vector<ObjectByExtruder::Island::Region> &by_region);
|
||||
std::string extrude_support(const ExtrusionEntityCollection &support_fills);
|
||||
|
@ -289,8 +306,10 @@ protected:
|
|||
// Index of a last object copy extruded.
|
||||
std::pair<const PrintObject*, Point> m_last_obj_copy;
|
||||
|
||||
// Time estimator
|
||||
GCodeTimeEstimator m_time_estimator;
|
||||
// Time estimators
|
||||
GCodeTimeEstimator m_normal_time_estimator;
|
||||
GCodeTimeEstimator m_silent_time_estimator;
|
||||
bool m_silent_time_estimator_enabled;
|
||||
|
||||
// Analyzer
|
||||
GCodeAnalyzer m_analyzer;
|
||||
|
|
|
@ -2,7 +2,12 @@
|
|||
#include "PreviewData.hpp"
|
||||
#include <float.h>
|
||||
#include <wx/intl.h>
|
||||
#include "slic3r/GUI/GUI.hpp"
|
||||
#include <I18N.hpp>
|
||||
|
||||
#include <boost/format.hpp>
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
#define L(s) (s)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
|
@ -405,7 +410,7 @@ GCodePreviewData::LegendItemsList GCodePreviewData::get_legend_items(const std::
|
|||
items.reserve(last_valid - first_valid + 1);
|
||||
for (unsigned int i = (unsigned int)first_valid; i <= (unsigned int)last_valid; ++i)
|
||||
{
|
||||
items.emplace_back(_CHB(extrusion.role_names[i].c_str()).data(), extrusion.role_colors[i]);
|
||||
items.emplace_back(Slic3r::I18N::translate(extrusion.role_names[i]), extrusion.role_colors[i]);
|
||||
}
|
||||
|
||||
break;
|
||||
|
@ -436,13 +441,9 @@ GCodePreviewData::LegendItemsList GCodePreviewData::get_legend_items(const std::
|
|||
items.reserve(tools_colors_count);
|
||||
for (unsigned int i = 0; i < tools_colors_count; ++i)
|
||||
{
|
||||
char buf[MIN_BUF_LENGTH_FOR_L];
|
||||
sprintf(buf, _CHB(L("Extruder %d")), i + 1);
|
||||
|
||||
GCodePreviewData::Color color;
|
||||
::memcpy((void*)color.rgba, (const void*)(tool_colors.data() + i * 4), 4 * sizeof(float));
|
||||
|
||||
items.emplace_back(buf, color);
|
||||
items.emplace_back((boost::format(Slic3r::I18N::translate(L("Extruder %d"))) % (i + 1)).str(), color);
|
||||
}
|
||||
|
||||
break;
|
||||
|
|
|
@ -15,6 +15,24 @@
|
|||
|
||||
namespace Slic3r {
|
||||
|
||||
|
||||
// Returns true in case that extruder a comes before b (b does not have to be present). False otherwise.
|
||||
bool LayerTools::is_extruder_order(unsigned int a, unsigned int b) const
|
||||
{
|
||||
if (a==b)
|
||||
return false;
|
||||
|
||||
for (auto extruder : extruders) {
|
||||
if (extruder == a)
|
||||
return true;
|
||||
if (extruder == b)
|
||||
return false;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// For the use case when each object is printed separately
|
||||
// (print.config.complete_objects is true).
|
||||
ToolOrdering::ToolOrdering(const PrintObject &object, unsigned int first_extruder, bool prime_multi_material)
|
||||
|
@ -48,6 +66,7 @@ ToolOrdering::ToolOrdering(const PrintObject &object, unsigned int first_extrude
|
|||
// (print.config.complete_objects is false).
|
||||
ToolOrdering::ToolOrdering(const Print &print, unsigned int first_extruder, bool prime_multi_material)
|
||||
{
|
||||
m_print_config_ptr = &print.config;
|
||||
// Initialize the print layers for all objects and all layers.
|
||||
coordf_t object_bottom_z = 0.;
|
||||
{
|
||||
|
@ -76,9 +95,10 @@ ToolOrdering::ToolOrdering(const Print &print, unsigned int first_extruder, bool
|
|||
this->collect_extruder_statistics(prime_multi_material);
|
||||
}
|
||||
|
||||
ToolOrdering::LayerTools& ToolOrdering::tools_for_layer(coordf_t print_z)
|
||||
|
||||
LayerTools& ToolOrdering::tools_for_layer(coordf_t print_z)
|
||||
{
|
||||
auto it_layer_tools = std::lower_bound(m_layer_tools.begin(), m_layer_tools.end(), ToolOrdering::LayerTools(print_z - EPSILON));
|
||||
auto it_layer_tools = std::lower_bound(m_layer_tools.begin(), m_layer_tools.end(), LayerTools(print_z - EPSILON));
|
||||
assert(it_layer_tools != m_layer_tools.end());
|
||||
coordf_t dist_min = std::abs(it_layer_tools->print_z - print_z);
|
||||
for (++ it_layer_tools; it_layer_tools != m_layer_tools.end(); ++it_layer_tools) {
|
||||
|
@ -102,7 +122,7 @@ void ToolOrdering::initialize_layers(std::vector<coordf_t> &zs)
|
|||
coordf_t zmax = zs[i] + EPSILON;
|
||||
for (; j < zs.size() && zs[j] <= zmax; ++ j) ;
|
||||
// Assign an average print_z to the set of layers with nearly equal print_z.
|
||||
m_layer_tools.emplace_back(LayerTools(0.5 * (zs[i] + zs[j-1])));
|
||||
m_layer_tools.emplace_back(LayerTools(0.5 * (zs[i] + zs[j-1]), m_print_config_ptr));
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
|
@ -134,12 +154,29 @@ void ToolOrdering::collect_extruders(const PrintObject &object)
|
|||
if (layerm == nullptr)
|
||||
continue;
|
||||
const PrintRegion ®ion = *object.print()->regions[region_id];
|
||||
|
||||
if (! layerm->perimeters.entities.empty()) {
|
||||
layer_tools.extruders.push_back(region.config.perimeter_extruder.value);
|
||||
bool something_nonoverriddable = true;
|
||||
|
||||
if (m_print_config_ptr) { // in this case complete_objects is false (see ToolOrdering constructors)
|
||||
something_nonoverriddable = false;
|
||||
for (const auto& eec : layerm->perimeters.entities) // let's check if there are nonoverriddable entities
|
||||
if (!layer_tools.wiping_extrusions().is_overriddable(dynamic_cast<const ExtrusionEntityCollection&>(*eec), *m_print_config_ptr, object, region)) {
|
||||
something_nonoverriddable = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (something_nonoverriddable)
|
||||
layer_tools.extruders.push_back(region.config.perimeter_extruder.value);
|
||||
|
||||
layer_tools.has_object = true;
|
||||
}
|
||||
|
||||
|
||||
bool has_infill = false;
|
||||
bool has_solid_infill = false;
|
||||
bool something_nonoverriddable = false;
|
||||
for (const ExtrusionEntity *ee : layerm->fills.entities) {
|
||||
// fill represents infill extrusions of a single island.
|
||||
const auto *fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
|
@ -148,19 +185,33 @@ void ToolOrdering::collect_extruders(const PrintObject &object)
|
|||
has_solid_infill = true;
|
||||
else if (role != erNone)
|
||||
has_infill = true;
|
||||
|
||||
if (m_print_config_ptr) {
|
||||
if (!something_nonoverriddable && !layer_tools.wiping_extrusions().is_overriddable(*fill, *m_print_config_ptr, object, region))
|
||||
something_nonoverriddable = true;
|
||||
}
|
||||
}
|
||||
|
||||
if (something_nonoverriddable || !m_print_config_ptr)
|
||||
{
|
||||
if (has_solid_infill)
|
||||
layer_tools.extruders.push_back(region.config.solid_infill_extruder);
|
||||
if (has_infill)
|
||||
layer_tools.extruders.push_back(region.config.infill_extruder);
|
||||
}
|
||||
if (has_solid_infill)
|
||||
layer_tools.extruders.push_back(region.config.solid_infill_extruder);
|
||||
if (has_infill)
|
||||
layer_tools.extruders.push_back(region.config.infill_extruder);
|
||||
if (has_solid_infill || has_infill)
|
||||
layer_tools.has_object = true;
|
||||
}
|
||||
}
|
||||
|
||||
// Sort and remove duplicates
|
||||
for (LayerTools < : m_layer_tools)
|
||||
sort_remove_duplicates(lt.extruders);
|
||||
for (auto& layer : m_layer_tools) {
|
||||
// Sort and remove duplicates
|
||||
sort_remove_duplicates(layer.extruders);
|
||||
|
||||
// make sure that there are some tools for each object layer (e.g. tall wiping object will result in empty extruders vector)
|
||||
if (layer.extruders.empty() && layer.has_object)
|
||||
layer.extruders.push_back(0); // 0="dontcare" extruder - it will be taken care of in reorder_extruders
|
||||
}
|
||||
}
|
||||
|
||||
// Reorder extruders to minimize layer changes.
|
||||
|
@ -217,6 +268,8 @@ void ToolOrdering::reorder_extruders(unsigned int last_extruder_id)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void ToolOrdering::fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z)
|
||||
{
|
||||
if (m_layer_tools.empty())
|
||||
|
@ -327,4 +380,250 @@ void ToolOrdering::collect_extruder_statistics(bool prime_multi_material)
|
|||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// This function is called from Print::mark_wiping_extrusions and sets extruder this entity should be printed with (-1 .. as usual)
|
||||
void WipingExtrusions::set_extruder_override(const ExtrusionEntity* entity, unsigned int copy_id, int extruder, unsigned int num_of_copies)
|
||||
{
|
||||
something_overridden = true;
|
||||
|
||||
auto entity_map_it = (entity_map.insert(std::make_pair(entity, std::vector<int>()))).first; // (add and) return iterator
|
||||
auto& copies_vector = entity_map_it->second;
|
||||
if (copies_vector.size() < num_of_copies)
|
||||
copies_vector.resize(num_of_copies, -1);
|
||||
|
||||
if (copies_vector[copy_id] != -1)
|
||||
std::cout << "ERROR: Entity extruder overriden multiple times!!!\n"; // A debugging message - this must never happen.
|
||||
|
||||
copies_vector[copy_id] = extruder;
|
||||
}
|
||||
|
||||
|
||||
// Finds first non-soluble extruder on the layer
|
||||
int WipingExtrusions::first_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
for (auto extruders_it = lt.extruders.begin(); extruders_it != lt.extruders.end(); ++extruders_it)
|
||||
if (!print_config.filament_soluble.get_at(*extruders_it))
|
||||
return (*extruders_it);
|
||||
|
||||
return (-1);
|
||||
}
|
||||
|
||||
// Finds last non-soluble extruder on the layer
|
||||
int WipingExtrusions::last_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
for (auto extruders_it = lt.extruders.rbegin(); extruders_it != lt.extruders.rend(); ++extruders_it)
|
||||
if (!print_config.filament_soluble.get_at(*extruders_it))
|
||||
return (*extruders_it);
|
||||
|
||||
return (-1);
|
||||
}
|
||||
|
||||
|
||||
// Decides whether this entity could be overridden
|
||||
bool WipingExtrusions::is_overriddable(const ExtrusionEntityCollection& eec, const PrintConfig& print_config, const PrintObject& object, const PrintRegion& region) const
|
||||
{
|
||||
if (print_config.filament_soluble.get_at(Print::get_extruder(eec, region)))
|
||||
return false;
|
||||
|
||||
if (object.config.wipe_into_objects)
|
||||
return true;
|
||||
|
||||
if (!region.config.wipe_into_infill || eec.role() != erInternalInfill)
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// Following function iterates through all extrusions on the layer, remembers those that could be used for wiping after toolchange
|
||||
// and returns volume that is left to be wiped on the wipe tower.
|
||||
float WipingExtrusions::mark_wiping_extrusions(const Print& print, unsigned int new_extruder, float volume_to_wipe)
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
const float min_infill_volume = 0.f; // ignore infill with smaller volume than this
|
||||
|
||||
if (print.config.filament_soluble.get_at(new_extruder))
|
||||
return volume_to_wipe; // Soluble filament cannot be wiped in a random infill
|
||||
|
||||
// we will sort objects so that dedicated for wiping are at the beginning:
|
||||
PrintObjectPtrs object_list = print.objects;
|
||||
std::sort(object_list.begin(), object_list.end(), [](const PrintObject* a, const PrintObject* b) { return a->config.wipe_into_objects; });
|
||||
|
||||
|
||||
// We will now iterate through
|
||||
// - first the dedicated objects to mark perimeters or infills (depending on infill_first)
|
||||
// - second through the dedicated ones again to mark infills or perimeters (depending on infill_first)
|
||||
// - then all the others to mark infills (in case that !infill_first, we must also check that the perimeter is finished already
|
||||
// this is controlled by the following variable:
|
||||
bool perimeters_done = false;
|
||||
|
||||
for (int i=0 ; i<(int)object_list.size() + (perimeters_done ? 0 : 1); ++i) {
|
||||
if (!perimeters_done && (i==(int)object_list.size() || !object_list[i]->config.wipe_into_objects)) { // we passed the last dedicated object in list
|
||||
perimeters_done = true;
|
||||
i=-1; // let's go from the start again
|
||||
continue;
|
||||
}
|
||||
|
||||
const auto& object = object_list[i];
|
||||
|
||||
// Finds this layer:
|
||||
auto this_layer_it = std::find_if(object->layers.begin(), object->layers.end(), [<](const Layer* lay) { return std::abs(lt.print_z - lay->print_z)<EPSILON; });
|
||||
if (this_layer_it == object->layers.end())
|
||||
continue;
|
||||
const Layer* this_layer = *this_layer_it;
|
||||
unsigned int num_of_copies = object->_shifted_copies.size();
|
||||
|
||||
for (unsigned int copy = 0; copy < num_of_copies; ++copy) { // iterate through copies first, so that we mark neighbouring infills to minimize travel moves
|
||||
|
||||
for (size_t region_id = 0; region_id < object->print()->regions.size(); ++ region_id) {
|
||||
const auto& region = *object->print()->regions[region_id];
|
||||
|
||||
if (!region.config.wipe_into_infill && !object->config.wipe_into_objects)
|
||||
continue;
|
||||
|
||||
|
||||
if ((!print.config.infill_first ? perimeters_done : !perimeters_done) || (!object->config.wipe_into_objects && region.config.wipe_into_infill)) {
|
||||
for (const ExtrusionEntity* ee : this_layer->regions[region_id]->fills.entities) { // iterate through all infill Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
|
||||
if (!is_overriddable(*fill, print.config, *object, region))
|
||||
continue;
|
||||
|
||||
// What extruder would this normally be printed with?
|
||||
unsigned int correct_extruder = Print::get_extruder(*fill, region);
|
||||
|
||||
if (volume_to_wipe<=0)
|
||||
continue;
|
||||
|
||||
if (!object->config.wipe_into_objects && !print.config.infill_first && region.config.wipe_into_infill)
|
||||
// In this case we must check that the original extruder is used on this layer before the one we are overridding
|
||||
// (and the perimeters will be finished before the infill is printed):
|
||||
if (!lt.is_extruder_order(region.config.perimeter_extruder - 1, new_extruder))
|
||||
continue;
|
||||
|
||||
if ((!is_entity_overridden(fill, copy) && fill->total_volume() > min_infill_volume)) { // this infill will be used to wipe this extruder
|
||||
set_extruder_override(fill, copy, new_extruder, num_of_copies);
|
||||
volume_to_wipe -= fill->total_volume();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Now the same for perimeters - see comments above for explanation:
|
||||
if (object->config.wipe_into_objects && (print.config.infill_first ? perimeters_done : !perimeters_done))
|
||||
{
|
||||
for (const ExtrusionEntity* ee : this_layer->regions[region_id]->perimeters.entities) {
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (!is_overriddable(*fill, print.config, *object, region))
|
||||
continue;
|
||||
|
||||
if (volume_to_wipe<=0)
|
||||
continue;
|
||||
|
||||
if ((!is_entity_overridden(fill, copy) && fill->total_volume() > min_infill_volume)) {
|
||||
set_extruder_override(fill, copy, new_extruder, num_of_copies);
|
||||
volume_to_wipe -= fill->total_volume();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::max(0.f, volume_to_wipe);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Called after all toolchanges on a layer were mark_infill_overridden. There might still be overridable entities,
|
||||
// that were not actually overridden. If they are part of a dedicated object, printing them with the extruder
|
||||
// they were initially assigned to might mean violating the perimeter-infill order. We will therefore go through
|
||||
// them again and make sure we override it.
|
||||
void WipingExtrusions::ensure_perimeters_infills_order(const Print& print)
|
||||
{
|
||||
const LayerTools& lt = *m_layer_tools;
|
||||
unsigned int first_nonsoluble_extruder = first_nonsoluble_extruder_on_layer(print.config);
|
||||
unsigned int last_nonsoluble_extruder = last_nonsoluble_extruder_on_layer(print.config);
|
||||
|
||||
for (const PrintObject* object : print.objects) {
|
||||
// Finds this layer:
|
||||
auto this_layer_it = std::find_if(object->layers.begin(), object->layers.end(), [<](const Layer* lay) { return std::abs(lt.print_z - lay->print_z)<EPSILON; });
|
||||
if (this_layer_it == object->layers.end())
|
||||
continue;
|
||||
const Layer* this_layer = *this_layer_it;
|
||||
unsigned int num_of_copies = object->_shifted_copies.size();
|
||||
|
||||
for (unsigned int copy = 0; copy < num_of_copies; ++copy) { // iterate through copies first, so that we mark neighbouring infills to minimize travel moves
|
||||
for (size_t region_id = 0; region_id < object->print()->regions.size(); ++ region_id) {
|
||||
const auto& region = *object->print()->regions[region_id];
|
||||
|
||||
if (!region.config.wipe_into_infill && !object->config.wipe_into_objects)
|
||||
continue;
|
||||
|
||||
for (const ExtrusionEntity* ee : this_layer->regions[region_id]->fills.entities) { // iterate through all infill Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
|
||||
if (!is_overriddable(*fill, print.config, *object, region)
|
||||
|| is_entity_overridden(fill, copy) )
|
||||
continue;
|
||||
|
||||
// This infill could have been overridden but was not - unless we do something, it could be
|
||||
// printed before its perimeter, or not be printed at all (in case its original extruder has
|
||||
// not been added to LayerTools
|
||||
// Either way, we will now force-override it with something suitable:
|
||||
if (print.config.infill_first
|
||||
|| object->config.wipe_into_objects // in this case the perimeter is overridden, so we can override by the last one safely
|
||||
|| lt.is_extruder_order(region.config.perimeter_extruder - 1, last_nonsoluble_extruder // !infill_first, but perimeter is already printed when last extruder prints
|
||||
|| std::find(lt.extruders.begin(), lt.extruders.end(), region.config.infill_extruder - 1) == lt.extruders.end()) // we have to force override - this could violate infill_first (FIXME)
|
||||
)
|
||||
set_extruder_override(fill, copy, (print.config.infill_first ? first_nonsoluble_extruder : last_nonsoluble_extruder), num_of_copies);
|
||||
else {
|
||||
// In this case we can (and should) leave it to be printed normally.
|
||||
// Force overriding would mean it gets printed before its perimeter.
|
||||
}
|
||||
}
|
||||
|
||||
// Now the same for perimeters - see comments above for explanation:
|
||||
for (const ExtrusionEntity* ee : this_layer->regions[region_id]->perimeters.entities) { // iterate through all perimeter Collections
|
||||
auto* fill = dynamic_cast<const ExtrusionEntityCollection*>(ee);
|
||||
if (!is_overriddable(*fill, print.config, *object, region)
|
||||
|| is_entity_overridden(fill, copy) )
|
||||
continue;
|
||||
|
||||
set_extruder_override(fill, copy, (print.config.infill_first ? last_nonsoluble_extruder : first_nonsoluble_extruder), num_of_copies);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// Following function is called from process_layer and returns pointer to vector with information about which extruders should be used for given copy of this entity.
|
||||
// It first makes sure the pointer is valid (creates the vector if it does not exist) and contains a record for each copy
|
||||
// It also modifies the vector in place and changes all -1 to correct_extruder_id (at the time the overrides were created, correct extruders were not known,
|
||||
// so -1 was used as "print as usual".
|
||||
// The resulting vector has to keep track of which extrusions are the ones that were overridden and which were not. In the extruder is used as overridden,
|
||||
// its number is saved as it is (zero-based index). Usual extrusions are saved as -number-1 (unfortunately there is no negative zero).
|
||||
const std::vector<int>* WipingExtrusions::get_extruder_overrides(const ExtrusionEntity* entity, int correct_extruder_id, int num_of_copies)
|
||||
{
|
||||
auto entity_map_it = entity_map.find(entity);
|
||||
if (entity_map_it == entity_map.end())
|
||||
entity_map_it = (entity_map.insert(std::make_pair(entity, std::vector<int>()))).first;
|
||||
|
||||
// Now the entity_map_it should be valid, let's make sure the vector is long enough:
|
||||
entity_map_it->second.resize(num_of_copies, -1);
|
||||
|
||||
// Each -1 now means "print as usual" - we will replace it with actual extruder id (shifted it so we don't lose that information):
|
||||
std::replace(entity_map_it->second.begin(), entity_map_it->second.end(), -1, -correct_extruder_id-1);
|
||||
|
||||
return &(entity_map_it->second);
|
||||
}
|
||||
|
||||
|
||||
} // namespace Slic3r
|
||||
|
|
|
@ -9,38 +9,97 @@ namespace Slic3r {
|
|||
|
||||
class Print;
|
||||
class PrintObject;
|
||||
class LayerTools;
|
||||
|
||||
class ToolOrdering
|
||||
|
||||
|
||||
// Object of this class holds information about whether an extrusion is printed immediately
|
||||
// after a toolchange (as part of infill/perimeter wiping) or not. One extrusion can be a part
|
||||
// of several copies - this has to be taken into account.
|
||||
class WipingExtrusions
|
||||
{
|
||||
public:
|
||||
struct LayerTools
|
||||
{
|
||||
LayerTools(const coordf_t z) :
|
||||
print_z(z),
|
||||
has_object(false),
|
||||
has_support(false),
|
||||
has_wipe_tower(false),
|
||||
wipe_tower_partitions(0),
|
||||
wipe_tower_layer_height(0.) {}
|
||||
bool is_anything_overridden() const { // if there are no overrides, all the agenda can be skipped - this function can tell us if that's the case
|
||||
return something_overridden;
|
||||
}
|
||||
|
||||
bool operator< (const LayerTools &rhs) const { return print_z < rhs.print_z; }
|
||||
bool operator==(const LayerTools &rhs) const { return print_z == rhs.print_z; }
|
||||
// This is called from GCode::process_layer - see implementation for further comments:
|
||||
const std::vector<int>* get_extruder_overrides(const ExtrusionEntity* entity, int correct_extruder_id, int num_of_copies);
|
||||
|
||||
coordf_t print_z;
|
||||
bool has_object;
|
||||
bool has_support;
|
||||
// Zero based extruder IDs, ordered to minimize tool switches.
|
||||
std::vector<unsigned int> extruders;
|
||||
// Will there be anything extruded on this layer for the wipe tower?
|
||||
// Due to the support layers possibly interleaving the object layers,
|
||||
// wipe tower will be disabled for some support only layers.
|
||||
bool has_wipe_tower;
|
||||
// Number of wipe tower partitions to support the required number of tool switches
|
||||
// and to support the wipe tower partitions above this one.
|
||||
size_t wipe_tower_partitions;
|
||||
coordf_t wipe_tower_layer_height;
|
||||
};
|
||||
// This function goes through all infill entities, decides which ones will be used for wiping and
|
||||
// marks them by the extruder id. Returns volume that remains to be wiped on the wipe tower:
|
||||
float mark_wiping_extrusions(const Print& print, unsigned int new_extruder, float volume_to_wipe);
|
||||
|
||||
void ensure_perimeters_infills_order(const Print& print);
|
||||
|
||||
bool is_overriddable(const ExtrusionEntityCollection& ee, const PrintConfig& print_config, const PrintObject& object, const PrintRegion& region) const;
|
||||
|
||||
void set_layer_tools_ptr(const LayerTools* lt) { m_layer_tools = lt; }
|
||||
|
||||
private:
|
||||
int first_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const;
|
||||
int last_nonsoluble_extruder_on_layer(const PrintConfig& print_config) const;
|
||||
|
||||
// This function is called from mark_wiping_extrusions and sets extruder that it should be printed with (-1 .. as usual)
|
||||
void set_extruder_override(const ExtrusionEntity* entity, unsigned int copy_id, int extruder, unsigned int num_of_copies);
|
||||
|
||||
// Returns true in case that entity is not printed with its usual extruder for a given copy:
|
||||
bool is_entity_overridden(const ExtrusionEntity* entity, int copy_id) const {
|
||||
return (entity_map.find(entity) == entity_map.end() ? false : entity_map.at(entity).at(copy_id) != -1);
|
||||
}
|
||||
|
||||
std::map<const ExtrusionEntity*, std::vector<int>> entity_map; // to keep track of who prints what
|
||||
bool something_overridden = false;
|
||||
const LayerTools* m_layer_tools; // so we know which LayerTools object this belongs to
|
||||
};
|
||||
|
||||
|
||||
|
||||
class LayerTools
|
||||
{
|
||||
public:
|
||||
LayerTools(const coordf_t z, const PrintConfig* print_config_ptr = nullptr) :
|
||||
print_z(z),
|
||||
has_object(false),
|
||||
has_support(false),
|
||||
has_wipe_tower(false),
|
||||
wipe_tower_partitions(0),
|
||||
wipe_tower_layer_height(0.) {}
|
||||
|
||||
bool operator< (const LayerTools &rhs) const { return print_z - EPSILON < rhs.print_z; }
|
||||
bool operator==(const LayerTools &rhs) const { return std::abs(print_z - rhs.print_z) < EPSILON; }
|
||||
|
||||
bool is_extruder_order(unsigned int a, unsigned int b) const;
|
||||
|
||||
coordf_t print_z;
|
||||
bool has_object;
|
||||
bool has_support;
|
||||
// Zero based extruder IDs, ordered to minimize tool switches.
|
||||
std::vector<unsigned int> extruders;
|
||||
// Will there be anything extruded on this layer for the wipe tower?
|
||||
// Due to the support layers possibly interleaving the object layers,
|
||||
// wipe tower will be disabled for some support only layers.
|
||||
bool has_wipe_tower;
|
||||
// Number of wipe tower partitions to support the required number of tool switches
|
||||
// and to support the wipe tower partitions above this one.
|
||||
size_t wipe_tower_partitions;
|
||||
coordf_t wipe_tower_layer_height;
|
||||
|
||||
WipingExtrusions& wiping_extrusions() {
|
||||
m_wiping_extrusions.set_layer_tools_ptr(this);
|
||||
return m_wiping_extrusions;
|
||||
}
|
||||
|
||||
private:
|
||||
// This object holds list of extrusion that will be used for extruder wiping
|
||||
WipingExtrusions m_wiping_extrusions;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class ToolOrdering
|
||||
{
|
||||
public:
|
||||
ToolOrdering() {}
|
||||
|
||||
// For the use case when each object is printed separately
|
||||
|
@ -72,7 +131,7 @@ public:
|
|||
std::vector<LayerTools>::const_iterator begin() const { return m_layer_tools.begin(); }
|
||||
std::vector<LayerTools>::const_iterator end() const { return m_layer_tools.end(); }
|
||||
bool empty() const { return m_layer_tools.empty(); }
|
||||
const std::vector<LayerTools>& layer_tools() const { return m_layer_tools; }
|
||||
std::vector<LayerTools>& layer_tools() { return m_layer_tools; }
|
||||
bool has_wipe_tower() const { return ! m_layer_tools.empty() && m_first_printing_extruder != (unsigned int)-1 && m_layer_tools.front().wipe_tower_partitions > 0; }
|
||||
|
||||
private:
|
||||
|
@ -80,17 +139,22 @@ private:
|
|||
void collect_extruders(const PrintObject &object);
|
||||
void reorder_extruders(unsigned int last_extruder_id);
|
||||
void fill_wipe_tower_partitions(const PrintConfig &config, coordf_t object_bottom_z);
|
||||
void collect_extruder_statistics(bool prime_multi_material);
|
||||
void collect_extruder_statistics(bool prime_multi_material);
|
||||
|
||||
std::vector<LayerTools> m_layer_tools;
|
||||
// First printing extruder, including the multi-material priming sequence.
|
||||
unsigned int m_first_printing_extruder = (unsigned int)-1;
|
||||
// Final printing extruder.
|
||||
unsigned int m_last_printing_extruder = (unsigned int)-1;
|
||||
// All extruders, which extrude some material over m_layer_tools.
|
||||
std::vector<unsigned int> m_all_printing_extruders;
|
||||
std::vector<LayerTools> m_layer_tools;
|
||||
// First printing extruder, including the multi-material priming sequence.
|
||||
unsigned int m_first_printing_extruder = (unsigned int)-1;
|
||||
// Final printing extruder.
|
||||
unsigned int m_last_printing_extruder = (unsigned int)-1;
|
||||
// All extruders, which extrude some material over m_layer_tools.
|
||||
std::vector<unsigned int> m_all_printing_extruders;
|
||||
|
||||
|
||||
const PrintConfig* m_print_config_ptr = nullptr;
|
||||
};
|
||||
|
||||
|
||||
|
||||
} // namespace SLic3r
|
||||
|
||||
#endif /* slic3r_ToolOrdering_hpp_ */
|
||||
|
|
|
@ -21,7 +21,6 @@ TODO LIST
|
|||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
#include <algorithm>
|
||||
|
||||
#include "Analyzer.hpp"
|
||||
|
||||
|
@ -138,7 +137,7 @@ public:
|
|||
width += m_layer_height * float(1. - M_PI / 4.);
|
||||
if (m_extrusions.empty() || m_extrusions.back().pos != rotated_current_pos)
|
||||
m_extrusions.emplace_back(WipeTower::Extrusion(rotated_current_pos, 0, m_current_tool));
|
||||
m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(rot.x, rot.y), width, m_current_tool));
|
||||
m_extrusions.emplace_back(WipeTower::Extrusion(WipeTower::xy(rot.x, rot.y), width, m_current_tool));
|
||||
}
|
||||
|
||||
m_gcode += "G1";
|
||||
|
@ -231,6 +230,17 @@ public:
|
|||
Writer& retract(float e, float f = 0.f)
|
||||
{ return load(-e, f); }
|
||||
|
||||
// Loads filament while also moving towards given points in x-axis (x feedrate is limited by cutting the distance short if necessary)
|
||||
Writer& load_move_x_advanced(float farthest_x, float loading_dist, float loading_speed, float max_x_speed = 50.f)
|
||||
{
|
||||
float time = std::abs(loading_dist / loading_speed);
|
||||
float x_speed = std::min(max_x_speed, std::abs(farthest_x - x()) / time);
|
||||
float feedrate = 60.f * std::hypot(x_speed, loading_speed);
|
||||
|
||||
float end_point = x() + (farthest_x > x() ? 1.f : -1.f) * x_speed * time;
|
||||
return extrude_explicit(end_point, y(), loading_dist, feedrate);
|
||||
}
|
||||
|
||||
// Elevate the extruder head above the current print_z position.
|
||||
Writer& z_hop(float hop, float f = 0.f)
|
||||
{
|
||||
|
@ -276,12 +286,9 @@ public:
|
|||
// Set extruder temperature, don't wait by default.
|
||||
Writer& set_extruder_temp(int temperature, bool wait = false)
|
||||
{
|
||||
if (temperature != current_temp) {
|
||||
char buf[128];
|
||||
sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature);
|
||||
m_gcode += buf;
|
||||
current_temp = temperature;
|
||||
}
|
||||
char buf[128];
|
||||
sprintf(buf, "M%d S%d\n", wait ? 109 : 104, temperature);
|
||||
m_gcode += buf;
|
||||
return *this;
|
||||
};
|
||||
|
||||
|
@ -399,8 +406,7 @@ private:
|
|||
int current_temp = -1;
|
||||
const float m_default_analyzer_line_width;
|
||||
|
||||
std::string
|
||||
set_format_X(float x)
|
||||
std::string set_format_X(float x)
|
||||
{
|
||||
char buf[64];
|
||||
sprintf(buf, " X%.3f", x);
|
||||
|
@ -475,7 +481,6 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::prime(
|
|||
// If false, the last priming are will be large enough to wipe the last extruder sufficiently.
|
||||
bool last_wipe_inside_wipe_tower)
|
||||
{
|
||||
|
||||
this->set_layer(first_layer_height, first_layer_height, tools.size(), true, false);
|
||||
this->m_current_tool = tools.front();
|
||||
|
||||
|
@ -558,7 +563,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::tool_change(unsigned int tool, boo
|
|||
{
|
||||
for (const auto &b : m_layer_info->tool_changes)
|
||||
if ( b.new_tool == tool ) {
|
||||
wipe_volume = wipe_volumes[b.old_tool][b.new_tool];
|
||||
wipe_volume = b.wipe_volume;
|
||||
if (tool == m_layer_info->tool_changes.back().new_tool)
|
||||
last_change_in_layer = true;
|
||||
wipe_area = b.required_depth * m_layer_info->extra_spacing;
|
||||
|
@ -783,51 +788,44 @@ void WipeTowerPrusaMM::toolchange_Unload(
|
|||
WipeTower::xy end_of_ramming(writer.x(),writer.y());
|
||||
writer.change_analyzer_line_width(m_perimeter_width); // so the next lines are not affected by ramming_line_width_multiplier
|
||||
|
||||
// Pull the filament end to the BEGINNING of the cooling tube while still moving the print head
|
||||
float oldx = writer.x();
|
||||
float turning_point = (!m_left_to_right ? std::max(xl,oldx-15.f) : std::min(xr,oldx+15.f) ); // so it's not too far
|
||||
float xdist = std::abs(oldx-turning_point);
|
||||
float edist = -(m_cooling_tube_retraction+m_cooling_tube_length/2.f-42);
|
||||
|
||||
// Retraction:
|
||||
float old_x = writer.x();
|
||||
float turning_point = (!m_left_to_right ? xl : xr );
|
||||
float total_retraction_distance = m_cooling_tube_retraction + m_cooling_tube_length/2.f - 15.f; // the 15mm is reserved for the first part after ramming
|
||||
writer.suppress_preview()
|
||||
.load_move_x(turning_point,-15 , 60.f * std::hypot(xdist,15)/15 * 83 ) // fixed speed after ramming
|
||||
.load_move_x(oldx ,edist , 60.f * std::hypot(xdist,edist)/std::abs(edist) * m_filpar[m_current_tool].unloading_speed )
|
||||
.load_move_x(turning_point,-15 , 60.f * std::hypot(xdist,15)/15 * m_filpar[m_current_tool].unloading_speed*0.55f )
|
||||
.load_move_x(oldx ,-12 , 60.f * std::hypot(xdist,12)/12 * m_filpar[m_current_tool].unloading_speed*0.35f )
|
||||
.load_move_x_advanced(turning_point, -15.f, 83.f, 50.f) // this is done at fixed speed
|
||||
.load_move_x_advanced(old_x, -0.70f * total_retraction_distance, 1.0f * m_filpar[m_current_tool].unloading_speed)
|
||||
.load_move_x_advanced(turning_point, -0.20f * total_retraction_distance, 0.5f * m_filpar[m_current_tool].unloading_speed)
|
||||
.load_move_x_advanced(old_x, -0.10f * total_retraction_distance, 0.3f * m_filpar[m_current_tool].unloading_speed)
|
||||
.travel(old_x, writer.y()) // in case previous move was shortened to limit feedrate
|
||||
.resume_preview();
|
||||
|
||||
if (new_temperature != 0) // Set the extruder temperature, but don't wait.
|
||||
if (new_temperature != 0 && new_temperature != m_old_temperature ) { // Set the extruder temperature, but don't wait.
|
||||
writer.set_extruder_temp(new_temperature, false);
|
||||
m_old_temperature = new_temperature;
|
||||
}
|
||||
|
||||
// cooling:
|
||||
writer.suppress_preview();
|
||||
writer.travel(writer.x(), writer.y() + y_step);
|
||||
const float start_x = writer.x();
|
||||
turning_point = ( xr-start_x > start_x-xl ? xr : xl );
|
||||
const float max_x_dist = 2*std::abs(start_x-turning_point);
|
||||
const unsigned int N = 4 + std::max(0.f, (m_filpar[m_current_tool].cooling_time-14)/3);
|
||||
float time = m_filpar[m_current_tool].cooling_time / float(N);
|
||||
// Cooling:
|
||||
const int& number_of_moves = m_filpar[m_current_tool].cooling_moves;
|
||||
if (number_of_moves > 0) {
|
||||
const float& initial_speed = m_filpar[m_current_tool].cooling_initial_speed;
|
||||
const float& final_speed = m_filpar[m_current_tool].cooling_final_speed;
|
||||
|
||||
i = 0;
|
||||
while (i<N) {
|
||||
const float speed = std::min(3.4,2.2 + i*0.3 + (i==0 ? 0 : 0.3)); // mm per second: 2.2, 2.8, 3.1, 3.4, 3.4, 3.4, ...
|
||||
const float e_dist = std::min(speed * time,2*m_cooling_tube_length); // distance to travel
|
||||
|
||||
// this move is the last one at this speed or someone set tube_length to zero
|
||||
if (speed * time < 2*m_cooling_tube_length || m_cooling_tube_length<WT_EPSILON) {
|
||||
++i;
|
||||
time = m_filpar[m_current_tool].cooling_time / float(N);
|
||||
}
|
||||
else
|
||||
time -= e_dist / speed; // subtract time this part will really take
|
||||
float speed_inc = (final_speed - initial_speed) / (2.f * number_of_moves - 1.f);
|
||||
|
||||
// as for x, we will make sure the feedrate is at most 2000
|
||||
float x_dist = (turning_point - WT_EPSILON < xl ? -1.f : 1.f) * std::min(e_dist * (float)sqrt(pow(2000 / (60 * speed), 2) - 1),max_x_dist);
|
||||
const float feedrate = std::hypot(e_dist, x_dist) / ((e_dist / speed) / 60.f);
|
||||
writer.cool(start_x+x_dist/2.f,start_x,e_dist/2.f,-e_dist/2.f, feedrate);
|
||||
}
|
||||
writer.suppress_preview()
|
||||
.travel(writer.x(), writer.y() + y_step);
|
||||
old_x = writer.x();
|
||||
turning_point = xr-old_x > old_x-xl ? xr : xl;
|
||||
for (int i=0; i<number_of_moves; ++i) {
|
||||
float speed = initial_speed + speed_inc * 2*i;
|
||||
writer.load_move_x_advanced(turning_point, m_cooling_tube_length, speed);
|
||||
speed += speed_inc;
|
||||
writer.load_move_x_advanced(old_x, -m_cooling_tube_length, speed);
|
||||
}
|
||||
}
|
||||
|
||||
// let's wait is necessary
|
||||
// let's wait is necessary:
|
||||
writer.wait(m_filpar[m_current_tool].delay);
|
||||
// we should be at the beginning of the cooling tube again - let's move to parking position:
|
||||
writer.retract(-m_cooling_tube_length/2.f+m_parking_pos_retraction-m_cooling_tube_retraction, 2000);
|
||||
|
@ -871,16 +869,16 @@ void WipeTowerPrusaMM::toolchange_Load(
|
|||
float oldx = writer.x(); // the nozzle is in place to do the first wiping moves, we will remember the position
|
||||
|
||||
// Load the filament while moving left / right, so the excess material will not create a blob at a single position.
|
||||
float loading_speed = m_filpar[m_current_tool].loading_speed; // mm/s in e axis
|
||||
float turning_point = ( oldx-xl < xr-oldx ? xr : xl );
|
||||
float dist = std::abs(oldx-turning_point);
|
||||
float edist = m_parking_pos_retraction-50-2; // loading is 2mm shorter that previous retraction, 50mm reserved for acceleration/deceleration
|
||||
writer.append("; CP TOOLCHANGE LOAD\n")
|
||||
float edist = m_parking_pos_retraction+m_extra_loading_move;
|
||||
|
||||
writer.append("; CP TOOLCHANGE LOAD\n")
|
||||
.suppress_preview()
|
||||
.load_move_x(turning_point, 20, 60*std::hypot(dist,20.f)/20.f * loading_speed*0.3f) // Acceleration
|
||||
.load_move_x(oldx,edist,60*std::hypot(dist,edist)/edist * loading_speed) // Fast phase
|
||||
.load_move_x(turning_point, 20, 60*std::hypot(dist,20.f)/20.f * loading_speed*0.3f) // Slowing down
|
||||
.load_move_x(oldx, 10, 60*std::hypot(dist,10.f)/10.f * loading_speed*0.1f) // Super slow
|
||||
.load_move_x_advanced(turning_point, 0.2f * edist, 0.3f * m_filpar[m_current_tool].loading_speed) // Acceleration
|
||||
.load_move_x_advanced(oldx, 0.5f * edist, m_filpar[m_current_tool].loading_speed) // Fast phase
|
||||
.load_move_x_advanced(turning_point, 0.2f * edist, 0.3f * m_filpar[m_current_tool].loading_speed) // Slowing down
|
||||
.load_move_x_advanced(oldx, 0.1f * edist, 0.1f * m_filpar[m_current_tool].loading_speed) // Super slow
|
||||
.travel(oldx, writer.y()) // in case last move was shortened to limit x feedrate
|
||||
.resume_preview();
|
||||
|
||||
// Reset the extruder current to the normal value.
|
||||
|
@ -1057,7 +1055,7 @@ WipeTower::ToolChangeResult WipeTowerPrusaMM::finish_layer()
|
|||
}
|
||||
|
||||
// Appends a toolchange into m_plan and calculates neccessary depth of the corresponding box
|
||||
void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool,bool brim)
|
||||
void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume)
|
||||
{
|
||||
assert(m_plan.back().z <= z_par + WT_EPSILON ); // refuses to add a layer below the last one
|
||||
|
||||
|
@ -1082,13 +1080,13 @@ void WipeTowerPrusaMM::plan_toolchange(float z_par, float layer_height_par, unsi
|
|||
float ramming_depth = depth;
|
||||
length_to_extrude = width*((length_to_extrude / width)-int(length_to_extrude / width)) - width;
|
||||
float first_wipe_line = -length_to_extrude;
|
||||
length_to_extrude += volume_to_length(wipe_volumes[old_tool][new_tool], m_perimeter_width, layer_height_par);
|
||||
length_to_extrude += volume_to_length(wipe_volume, m_perimeter_width, layer_height_par);
|
||||
length_to_extrude = std::max(length_to_extrude,0.f);
|
||||
|
||||
depth += (int(length_to_extrude / width) + 1) * m_perimeter_width;
|
||||
depth *= m_extra_spacing;
|
||||
|
||||
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth,first_wipe_line));
|
||||
m_plan.back().tool_changes.push_back(WipeTowerInfo::ToolChange(old_tool, new_tool, depth, ramming_depth, first_wipe_line, wipe_volume));
|
||||
}
|
||||
|
||||
|
||||
|
@ -1128,7 +1126,7 @@ void WipeTowerPrusaMM::save_on_last_wipe()
|
|||
|
||||
float width = m_wipe_tower_width - 3*m_perimeter_width; // width we draw into
|
||||
float length_to_save = 2*(m_wipe_tower_width+m_wipe_tower_depth) + (!layer_finished() ? finish_layer().total_extrusion_length_in_plane() : 0.f);
|
||||
float length_to_wipe = volume_to_length(wipe_volumes[m_layer_info->tool_changes.back().old_tool][m_layer_info->tool_changes.back().new_tool],
|
||||
float length_to_wipe = volume_to_length(m_layer_info->tool_changes.back().wipe_volume,
|
||||
m_perimeter_width,m_layer_info->height) - m_layer_info->tool_changes.back().first_wipe_line - length_to_save;
|
||||
|
||||
length_to_wipe = std::max(length_to_wipe,0.f);
|
||||
|
@ -1145,7 +1143,8 @@ void WipeTowerPrusaMM::save_on_last_wipe()
|
|||
void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result)
|
||||
{
|
||||
if (m_plan.empty())
|
||||
return;
|
||||
|
||||
return;
|
||||
|
||||
m_extra_spacing = 1.f;
|
||||
|
||||
|
@ -1165,8 +1164,6 @@ void WipeTowerPrusaMM::generate(std::vector<std::vector<WipeTower::ToolChangeRes
|
|||
for (auto layer : m_plan)
|
||||
{
|
||||
set_layer(layer.z,layer.height,0,layer.z == m_plan.front().z,layer.z == m_plan.back().z);
|
||||
|
||||
|
||||
if (m_peters_wipe_tower)
|
||||
m_wipe_tower_rotation_angle += 90.f;
|
||||
else
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
#include <string>
|
||||
#include <sstream>
|
||||
#include <utility>
|
||||
#include <algorithm>
|
||||
|
||||
#include "WipeTower.hpp"
|
||||
|
||||
|
@ -43,8 +44,8 @@ public:
|
|||
// width -- width of wipe tower in mm ( default 60 mm - leave as it is )
|
||||
// wipe_area -- space available for one toolchange in mm
|
||||
WipeTowerPrusaMM(float x, float y, float width, float rotation_angle, float cooling_tube_retraction,
|
||||
float cooling_tube_length, float parking_pos_retraction, float bridging, const std::vector<float>& wiping_matrix,
|
||||
unsigned int initial_tool) :
|
||||
float cooling_tube_length, float parking_pos_retraction, float extra_loading_move, float bridging,
|
||||
const std::vector<std::vector<float>>& wiping_matrix, unsigned int initial_tool) :
|
||||
m_wipe_tower_pos(x, y),
|
||||
m_wipe_tower_width(width),
|
||||
m_wipe_tower_rotation_angle(rotation_angle),
|
||||
|
@ -54,20 +55,19 @@ public:
|
|||
m_cooling_tube_retraction(cooling_tube_retraction),
|
||||
m_cooling_tube_length(cooling_tube_length),
|
||||
m_parking_pos_retraction(parking_pos_retraction),
|
||||
m_extra_loading_move(extra_loading_move),
|
||||
m_bridging(bridging),
|
||||
m_current_tool(initial_tool)
|
||||
{
|
||||
unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+WT_EPSILON);
|
||||
for (unsigned int i = 0; i<number_of_extruders; ++i)
|
||||
wipe_volumes.push_back(std::vector<float>(wiping_matrix.begin()+i*number_of_extruders,wiping_matrix.begin()+(i+1)*number_of_extruders));
|
||||
}
|
||||
m_current_tool(initial_tool),
|
||||
wipe_volumes(wiping_matrix)
|
||||
{}
|
||||
|
||||
virtual ~WipeTowerPrusaMM() {}
|
||||
|
||||
|
||||
// Set the extruder properties.
|
||||
void set_extruder(size_t idx, material_type material, int temp, int first_layer_temp, float loading_speed,
|
||||
float unloading_speed, float delay, std::string ramming_parameters, float nozzle_diameter)
|
||||
float unloading_speed, float delay, int cooling_moves, float cooling_initial_speed,
|
||||
float cooling_final_speed, std::string ramming_parameters, float nozzle_diameter)
|
||||
{
|
||||
//while (m_filpar.size() < idx+1) // makes sure the required element is in the vector
|
||||
m_filpar.push_back(FilamentParameters());
|
||||
|
@ -78,7 +78,9 @@ public:
|
|||
m_filpar[idx].loading_speed = loading_speed;
|
||||
m_filpar[idx].unloading_speed = unloading_speed;
|
||||
m_filpar[idx].delay = delay;
|
||||
m_filpar[idx].cooling_time = 14.f; // let's fix it for now, cooling moves will be reworked for 1.41 anyway
|
||||
m_filpar[idx].cooling_moves = cooling_moves;
|
||||
m_filpar[idx].cooling_initial_speed = cooling_initial_speed;
|
||||
m_filpar[idx].cooling_final_speed = cooling_final_speed;
|
||||
m_filpar[idx].nozzle_diameter = nozzle_diameter; // to be used in future with (non-single) multiextruder MM
|
||||
|
||||
m_perimeter_width = nozzle_diameter * Width_To_Nozzle_Ratio; // all extruders are now assumed to have the same diameter
|
||||
|
@ -95,7 +97,7 @@ public:
|
|||
|
||||
// Appends into internal structure m_plan containing info about the future wipe tower
|
||||
// to be used before building begins. The entries must be added ordered in z.
|
||||
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim);
|
||||
void plan_toolchange(float z_par, float layer_height_par, unsigned int old_tool, unsigned int new_tool, bool brim, float wipe_volume = 0.f);
|
||||
|
||||
// Iterates through prepared m_plan, generates ToolChangeResults and appends them to "result"
|
||||
void generate(std::vector<std::vector<WipeTower::ToolChangeResult>> &result);
|
||||
|
@ -192,11 +194,13 @@ private:
|
|||
float m_layer_height = 0.f; // Current layer height.
|
||||
size_t m_max_color_changes = 0; // Maximum number of color changes per layer.
|
||||
bool m_is_first_layer = false;// Is this the 1st layer of the print? If so, print the brim around the waste tower.
|
||||
int m_old_temperature = -1; // To keep track of what was the last temp that we set (so we don't issue the command when not neccessary)
|
||||
|
||||
// G-code generator parameters.
|
||||
float m_cooling_tube_retraction = 0.f;
|
||||
float m_cooling_tube_length = 0.f;
|
||||
float m_parking_pos_retraction = 0.f;
|
||||
float m_extra_loading_move = 0.f;
|
||||
float m_bridging = 0.f;
|
||||
bool m_adhesion = true;
|
||||
|
||||
|
@ -211,7 +215,9 @@ private:
|
|||
float loading_speed = 0.f;
|
||||
float unloading_speed = 0.f;
|
||||
float delay = 0.f ;
|
||||
float cooling_time = 0.f;
|
||||
int cooling_moves = 0;
|
||||
float cooling_initial_speed = 0.f;
|
||||
float cooling_final_speed = 0.f;
|
||||
float ramming_line_width_multiplicator = 0.f;
|
||||
float ramming_step_multiplicator = 0.f;
|
||||
std::vector<float> ramming_speed;
|
||||
|
@ -229,14 +235,13 @@ private:
|
|||
bool m_print_brim = true;
|
||||
// A fill-in direction (positive Y, negative Y) alternates with each layer.
|
||||
wipe_shape m_current_shape = SHAPE_NORMAL;
|
||||
unsigned int m_current_tool;
|
||||
std::vector<std::vector<float>> wipe_volumes;
|
||||
unsigned int m_current_tool = 0;
|
||||
const std::vector<std::vector<float>> wipe_volumes;
|
||||
|
||||
float m_depth_traversed = 0.f; // Current y position at the wipe tower.
|
||||
bool m_left_to_right = true;
|
||||
float m_extra_spacing = 1.f;
|
||||
|
||||
|
||||
// Calculates extrusion flow needed to produce required line width for given layer height
|
||||
float extrusion_flow(float layer_height = -1.f) const // negative layer_height - return current m_extrusion_flow
|
||||
{
|
||||
|
@ -247,7 +252,7 @@ private:
|
|||
|
||||
// Calculates length of extrusion line to extrude given volume
|
||||
float volume_to_length(float volume, float line_width, float layer_height) const {
|
||||
return volume / (layer_height * (line_width - layer_height * (1. - M_PI / 4.)));
|
||||
return std::max(0., volume / (layer_height * (line_width - layer_height * (1. - M_PI / 4.))));
|
||||
}
|
||||
|
||||
// Calculates depth for all layers and propagates them downwards
|
||||
|
@ -300,8 +305,9 @@ private:
|
|||
float required_depth;
|
||||
float ramming_depth;
|
||||
float first_wipe_line;
|
||||
ToolChange(unsigned int old,unsigned int newtool,float depth=0.f,float ramming_depth=0.f,float fwl=0.f)
|
||||
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth},first_wipe_line{fwl} {}
|
||||
float wipe_volume;
|
||||
ToolChange(unsigned int old, unsigned int newtool, float depth=0.f, float ramming_depth=0.f, float fwl=0.f, float wv=0.f)
|
||||
: old_tool{old}, new_tool{newtool}, required_depth{depth}, ramming_depth{ramming_depth}, first_wipe_line{fwl}, wipe_volume{wv} {}
|
||||
};
|
||||
float z; // z position of the layer
|
||||
float height; // layer height
|
||||
|
|
|
@ -4,15 +4,20 @@
|
|||
|
||||
#include <Shiny/Shiny.h>
|
||||
|
||||
#include <boost/nowide/fstream.hpp>
|
||||
#include <boost/nowide/cstdio.hpp>
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
|
||||
static const float MMMIN_TO_MMSEC = 1.0f / 60.0f;
|
||||
static const float MILLISEC_TO_SEC = 0.001f;
|
||||
static const float INCHES_TO_MM = 25.4f;
|
||||
|
||||
static const float DEFAULT_FEEDRATE = 1500.0f; // from Prusa Firmware (Marlin_main.cpp)
|
||||
static const float DEFAULT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
|
||||
static const float DEFAULT_RETRACT_ACCELERATION = 1500.0f; // Prusa Firmware 1_75mm_MK2
|
||||
static const float DEFAULT_AXIS_MAX_FEEDRATE[] = { 500.0f, 500.0f, 12.0f, 120.0f }; // Prusa Firmware 1_75mm_MK2
|
||||
static const float DEFAULT_AXIS_MAX_ACCELERATION[] = { 9000.0f, 9000.0f, 500.0f, 10000.0f }; // Prusa Firmware 1_75mm_MK2
|
||||
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.2f, 2.5f }; // from Prusa Firmware (Configuration.h)
|
||||
static const float DEFAULT_AXIS_MAX_JERK[] = { 10.0f, 10.0f, 0.4f, 2.5f }; // from Prusa Firmware (Configuration.h)
|
||||
static const float DEFAULT_MINIMUM_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
|
||||
static const float DEFAULT_MINIMUM_TRAVEL_FEEDRATE = 0.0f; // from Prusa Firmware (Configuration_adv.h)
|
||||
static const float DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE = 1.0f; // 100 percent
|
||||
|
@ -73,6 +78,11 @@ namespace Slic3r {
|
|||
return ::sqrt(value);
|
||||
}
|
||||
|
||||
GCodeTimeEstimator::Block::Block()
|
||||
: st_synchronized(false)
|
||||
{
|
||||
}
|
||||
|
||||
float GCodeTimeEstimator::Block::move_length() const
|
||||
{
|
||||
float length = ::sqrt(sqr(delta_pos[X]) + sqr(delta_pos[Y]) + sqr(delta_pos[Z]));
|
||||
|
@ -159,63 +169,13 @@ namespace Slic3r {
|
|||
}
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
GCodeTimeEstimator::GCodeTimeEstimator()
|
||||
GCodeTimeEstimator::GCodeTimeEstimator(EMode mode)
|
||||
: _mode(mode)
|
||||
{
|
||||
reset();
|
||||
set_default();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
|
||||
{
|
||||
reset();
|
||||
|
||||
_parser.parse_buffer(gcode,
|
||||
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
|
||||
{ this->_process_gcode_line(reader, line); });
|
||||
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
_reset_blocks();
|
||||
_reset();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
|
||||
{
|
||||
reset();
|
||||
|
||||
_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
_reset_blocks();
|
||||
_reset();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::calculate_time_from_lines(const std::vector<std::string>& gcode_lines)
|
||||
{
|
||||
reset();
|
||||
|
||||
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
|
||||
{ this->_process_gcode_line(reader, line); };
|
||||
for (const std::string& line : gcode_lines)
|
||||
_parser.parse_line(line, action);
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
_reset_blocks();
|
||||
_reset();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::add_gcode_line(const std::string& gcode_line)
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
|
@ -239,14 +199,167 @@ namespace Slic3r {
|
|||
void GCodeTimeEstimator::calculate_time()
|
||||
{
|
||||
PROFILE_FUNC();
|
||||
_reset_time();
|
||||
_set_blocks_st_synchronize(false);
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
}
|
||||
|
||||
_reset_blocks();
|
||||
_reset();
|
||||
void GCodeTimeEstimator::calculate_time_from_text(const std::string& gcode)
|
||||
{
|
||||
reset();
|
||||
|
||||
_parser.parse_buffer(gcode,
|
||||
[this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
|
||||
{ this->_process_gcode_line(reader, line); });
|
||||
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::calculate_time_from_file(const std::string& file)
|
||||
{
|
||||
reset();
|
||||
|
||||
_parser.parse_file(file, boost::bind(&GCodeTimeEstimator::_process_gcode_line, this, _1, _2));
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::calculate_time_from_lines(const std::vector<std::string>& gcode_lines)
|
||||
{
|
||||
reset();
|
||||
|
||||
auto action = [this](GCodeReader &reader, const GCodeReader::GCodeLine &line)
|
||||
{ this->_process_gcode_line(reader, line); };
|
||||
for (const std::string& line : gcode_lines)
|
||||
_parser.parse_line(line, action);
|
||||
_calculate_time();
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
_log_moves_stats();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
}
|
||||
|
||||
bool GCodeTimeEstimator::post_process_remaining_times(const std::string& filename, float interval)
|
||||
{
|
||||
boost::nowide::ifstream in(filename);
|
||||
if (!in.good())
|
||||
throw std::runtime_error(std::string("Remaining times export failed.\nCannot open file for reading.\n"));
|
||||
|
||||
std::string path_tmp = filename + ".times";
|
||||
|
||||
FILE* out = boost::nowide::fopen(path_tmp.c_str(), "wb");
|
||||
if (out == nullptr)
|
||||
throw std::runtime_error(std::string("Remaining times export failed.\nCannot open file for writing.\n"));
|
||||
|
||||
std::string time_mask;
|
||||
switch (_mode)
|
||||
{
|
||||
default:
|
||||
case Normal:
|
||||
{
|
||||
time_mask = "M73 P%s R%s\n";
|
||||
break;
|
||||
}
|
||||
case Silent:
|
||||
{
|
||||
time_mask = "M73 Q%s S%s\n";
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
unsigned int g1_lines_count = 0;
|
||||
float last_recorded_time = 0.0f;
|
||||
std::string gcode_line;
|
||||
// buffer line to export only when greater than 64K to reduce writing calls
|
||||
std::string export_line;
|
||||
char time_line[64];
|
||||
while (std::getline(in, gcode_line))
|
||||
{
|
||||
if (!in.good())
|
||||
{
|
||||
fclose(out);
|
||||
throw std::runtime_error(std::string("Remaining times export failed.\nError while reading from file.\n"));
|
||||
}
|
||||
|
||||
gcode_line += "\n";
|
||||
|
||||
// add remaining time lines where needed
|
||||
_parser.parse_line(gcode_line,
|
||||
[this, &g1_lines_count, &last_recorded_time, &time_line, &gcode_line, time_mask, interval](GCodeReader& reader, const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
if (line.cmd_is("G1"))
|
||||
{
|
||||
++g1_lines_count;
|
||||
|
||||
if (!line.has_e())
|
||||
return;
|
||||
|
||||
G1LineIdToBlockIdMap::const_iterator it = _g1_line_ids.find(g1_lines_count);
|
||||
if ((it != _g1_line_ids.end()) && (it->second < (unsigned int)_blocks.size()))
|
||||
{
|
||||
const Block& block = _blocks[it->second];
|
||||
if (block.elapsed_time != -1.0f)
|
||||
{
|
||||
float block_remaining_time = _time - block.elapsed_time;
|
||||
if (std::abs(last_recorded_time - block_remaining_time) > interval)
|
||||
{
|
||||
sprintf(time_line, time_mask.c_str(), std::to_string((int)(100.0f * block.elapsed_time / _time)).c_str(), _get_time_minutes(block_remaining_time).c_str());
|
||||
gcode_line += time_line;
|
||||
|
||||
last_recorded_time = block_remaining_time;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
export_line += gcode_line;
|
||||
if (export_line.length() > 65535)
|
||||
{
|
||||
fwrite((const void*)export_line.c_str(), 1, export_line.length(), out);
|
||||
if (ferror(out))
|
||||
{
|
||||
in.close();
|
||||
fclose(out);
|
||||
boost::nowide::remove(path_tmp.c_str());
|
||||
throw std::runtime_error(std::string("Remaining times export failed.\nIs the disk full?\n"));
|
||||
}
|
||||
export_line.clear();
|
||||
}
|
||||
}
|
||||
|
||||
if (export_line.length() > 0)
|
||||
{
|
||||
fwrite((const void*)export_line.c_str(), 1, export_line.length(), out);
|
||||
if (ferror(out))
|
||||
{
|
||||
in.close();
|
||||
fclose(out);
|
||||
boost::nowide::remove(path_tmp.c_str());
|
||||
throw std::runtime_error(std::string("Remaining times export failed.\nIs the disk full?\n"));
|
||||
}
|
||||
}
|
||||
|
||||
fclose(out);
|
||||
in.close();
|
||||
|
||||
boost::nowide::remove(filename.c_str());
|
||||
if (boost::nowide::rename(path_tmp.c_str(), filename.c_str()) != 0)
|
||||
throw std::runtime_error(std::string("Failed to rename the output G-code file from ") + path_tmp + " to " + filename + '\n' +
|
||||
"Is " + path_tmp + " locked?" + '\n');
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::set_axis_position(EAxis axis, float position)
|
||||
|
@ -389,6 +502,21 @@ namespace Slic3r {
|
|||
return _state.e_local_positioning_type;
|
||||
}
|
||||
|
||||
int GCodeTimeEstimator::get_g1_line_id() const
|
||||
{
|
||||
return _state.g1_line_id;
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::increment_g1_line_id()
|
||||
{
|
||||
++_state.g1_line_id;
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::reset_g1_line_id()
|
||||
{
|
||||
_state.g1_line_id = 0;
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::add_additional_time(float timeSec)
|
||||
{
|
||||
_state.additional_time += timeSec;
|
||||
|
@ -417,7 +545,7 @@ namespace Slic3r {
|
|||
set_minimum_feedrate(DEFAULT_MINIMUM_FEEDRATE);
|
||||
set_minimum_travel_feedrate(DEFAULT_MINIMUM_TRAVEL_FEEDRATE);
|
||||
set_extrude_factor_override_percentage(DEFAULT_EXTRUDE_FACTOR_OVERRIDE_PERCENTAGE);
|
||||
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
EAxis axis = (EAxis)a;
|
||||
|
@ -429,7 +557,7 @@ namespace Slic3r {
|
|||
|
||||
void GCodeTimeEstimator::reset()
|
||||
{
|
||||
_time = 0.0f;
|
||||
_reset_time();
|
||||
#if ENABLE_MOVE_STATS
|
||||
_moves_stats.clear();
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
@ -442,23 +570,14 @@ namespace Slic3r {
|
|||
return _time;
|
||||
}
|
||||
|
||||
std::string GCodeTimeEstimator::get_time_hms() const
|
||||
std::string GCodeTimeEstimator::get_time_dhms() const
|
||||
{
|
||||
float timeinsecs = get_time();
|
||||
int hours = (int)(timeinsecs / 3600.0f);
|
||||
timeinsecs -= (float)hours * 3600.0f;
|
||||
int minutes = (int)(timeinsecs / 60.0f);
|
||||
timeinsecs -= (float)minutes * 60.0f;
|
||||
return _get_time_dhms(get_time());
|
||||
}
|
||||
|
||||
char buffer[64];
|
||||
if (hours > 0)
|
||||
::sprintf(buffer, "%dh %dm %ds", hours, minutes, (int)timeinsecs);
|
||||
else if (minutes > 0)
|
||||
::sprintf(buffer, "%dm %ds", minutes, (int)timeinsecs);
|
||||
else
|
||||
::sprintf(buffer, "%ds", (int)timeinsecs);
|
||||
|
||||
return buffer;
|
||||
std::string GCodeTimeEstimator::get_time_minutes() const
|
||||
{
|
||||
return _get_time_minutes(get_time());
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_reset()
|
||||
|
@ -471,6 +590,14 @@ namespace Slic3r {
|
|||
set_axis_position(Z, 0.0f);
|
||||
|
||||
set_additional_time(0.0f);
|
||||
|
||||
reset_g1_line_id();
|
||||
_g1_line_ids.clear();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_reset_time()
|
||||
{
|
||||
_time = 0.0f;
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_reset_blocks()
|
||||
|
@ -478,6 +605,14 @@ namespace Slic3r {
|
|||
_blocks.clear();
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_set_blocks_st_synchronize(bool state)
|
||||
{
|
||||
for (Block& block : _blocks)
|
||||
{
|
||||
block.st_synchronized = state;
|
||||
}
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_calculate_time()
|
||||
{
|
||||
_forward_pass();
|
||||
|
@ -486,14 +621,18 @@ namespace Slic3r {
|
|||
|
||||
_time += get_additional_time();
|
||||
|
||||
for (const Block& block : _blocks)
|
||||
for (Block& block : _blocks)
|
||||
{
|
||||
if (block.st_synchronized)
|
||||
continue;
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
float block_time = 0.0f;
|
||||
block_time += block.acceleration_time();
|
||||
block_time += block.cruise_time();
|
||||
block_time += block.deceleration_time();
|
||||
_time += block_time;
|
||||
block.elapsed_time = _time;
|
||||
|
||||
MovesStatsMap::iterator it = _moves_stats.find(block.move_type);
|
||||
if (it == _moves_stats.end())
|
||||
|
@ -505,6 +644,7 @@ namespace Slic3r {
|
|||
_time += block.acceleration_time();
|
||||
_time += block.cruise_time();
|
||||
_time += block.deceleration_time();
|
||||
block.elapsed_time = _time;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
}
|
||||
}
|
||||
|
@ -642,6 +782,8 @@ namespace Slic3r {
|
|||
|
||||
void GCodeTimeEstimator::_processG1(const GCodeReader::GCodeLine& line)
|
||||
{
|
||||
increment_g1_line_id();
|
||||
|
||||
// updates axes positions from line
|
||||
EUnits units = get_units();
|
||||
float new_pos[Num_Axis];
|
||||
|
@ -690,13 +832,16 @@ namespace Slic3r {
|
|||
if (_curr.abs_axis_feedrate[a] > 0.0f)
|
||||
min_feedrate_factor = std::min(min_feedrate_factor, get_axis_max_feedrate((EAxis)a) / _curr.abs_axis_feedrate[a]);
|
||||
}
|
||||
|
||||
|
||||
block.feedrate.cruise = min_feedrate_factor * _curr.feedrate;
|
||||
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
if (min_feedrate_factor < 1.0f)
|
||||
{
|
||||
_curr.axis_feedrate[a] *= min_feedrate_factor;
|
||||
_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
|
||||
for (unsigned char a = X; a < Num_Axis; ++a)
|
||||
{
|
||||
_curr.axis_feedrate[a] *= min_feedrate_factor;
|
||||
_curr.abs_axis_feedrate[a] *= min_feedrate_factor;
|
||||
}
|
||||
}
|
||||
|
||||
// calculates block acceleration
|
||||
|
@ -829,6 +974,7 @@ namespace Slic3r {
|
|||
|
||||
// adds block to blocks list
|
||||
_blocks.emplace_back(block);
|
||||
_g1_line_ids.insert(G1LineIdToBlockIdMap::value_type(get_g1_line_id(), (unsigned int)_blocks.size() - 1));
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_processG4(const GCodeReader::GCodeLine& line)
|
||||
|
@ -1043,7 +1189,7 @@ namespace Slic3r {
|
|||
void GCodeTimeEstimator::_simulate_st_synchronize()
|
||||
{
|
||||
_calculate_time();
|
||||
_reset_blocks();
|
||||
_set_blocks_st_synchronize(true);
|
||||
}
|
||||
|
||||
void GCodeTimeEstimator::_forward_pass()
|
||||
|
@ -1051,7 +1197,10 @@ namespace Slic3r {
|
|||
if (_blocks.size() > 1)
|
||||
{
|
||||
for (unsigned int i = 0; i < (unsigned int)_blocks.size() - 1; ++i)
|
||||
{
|
||||
{
|
||||
if (_blocks[i].st_synchronized || _blocks[i + 1].st_synchronized)
|
||||
continue;
|
||||
|
||||
_planner_forward_pass_kernel(_blocks[i], _blocks[i + 1]);
|
||||
}
|
||||
}
|
||||
|
@ -1063,6 +1212,9 @@ namespace Slic3r {
|
|||
{
|
||||
for (int i = (int)_blocks.size() - 1; i >= 1; --i)
|
||||
{
|
||||
if (_blocks[i - 1].st_synchronized || _blocks[i].st_synchronized)
|
||||
continue;
|
||||
|
||||
_planner_reverse_pass_kernel(_blocks[i - 1], _blocks[i]);
|
||||
}
|
||||
}
|
||||
|
@ -1115,6 +1267,9 @@ namespace Slic3r {
|
|||
|
||||
for (Block& b : _blocks)
|
||||
{
|
||||
if (b.st_synchronized)
|
||||
continue;
|
||||
|
||||
curr = next;
|
||||
next = &b;
|
||||
|
||||
|
@ -1144,6 +1299,33 @@ namespace Slic3r {
|
|||
}
|
||||
}
|
||||
|
||||
std::string GCodeTimeEstimator::_get_time_dhms(float time_in_secs)
|
||||
{
|
||||
int days = (int)(time_in_secs / 86400.0f);
|
||||
time_in_secs -= (float)days * 86400.0f;
|
||||
int hours = (int)(time_in_secs / 3600.0f);
|
||||
time_in_secs -= (float)hours * 3600.0f;
|
||||
int minutes = (int)(time_in_secs / 60.0f);
|
||||
time_in_secs -= (float)minutes * 60.0f;
|
||||
|
||||
char buffer[64];
|
||||
if (days > 0)
|
||||
::sprintf(buffer, "%dd %dh %dm %ds", days, hours, minutes, (int)time_in_secs);
|
||||
else if (hours > 0)
|
||||
::sprintf(buffer, "%dh %dm %ds", hours, minutes, (int)time_in_secs);
|
||||
else if (minutes > 0)
|
||||
::sprintf(buffer, "%dm %ds", minutes, (int)time_in_secs);
|
||||
else
|
||||
::sprintf(buffer, "%ds", (int)time_in_secs);
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
std::string GCodeTimeEstimator::_get_time_minutes(float time_in_secs)
|
||||
{
|
||||
return std::to_string((int)(::roundf(time_in_secs / 60.0f)));
|
||||
}
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
void GCodeTimeEstimator::_log_moves_stats() const
|
||||
{
|
||||
|
|
|
@ -17,6 +17,12 @@ namespace Slic3r {
|
|||
class GCodeTimeEstimator
|
||||
{
|
||||
public:
|
||||
enum EMode : unsigned char
|
||||
{
|
||||
Normal,
|
||||
Silent
|
||||
};
|
||||
|
||||
enum EUnits : unsigned char
|
||||
{
|
||||
Millimeters,
|
||||
|
@ -70,7 +76,8 @@ namespace Slic3r {
|
|||
float additional_time; // s
|
||||
float minimum_feedrate; // mm/s
|
||||
float minimum_travel_feedrate; // mm/s
|
||||
float extrude_factor_override_percentage;
|
||||
float extrude_factor_override_percentage;
|
||||
unsigned int g1_line_id;
|
||||
};
|
||||
|
||||
public:
|
||||
|
@ -121,7 +128,6 @@ namespace Slic3r {
|
|||
bool nominal_length;
|
||||
};
|
||||
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
EMoveType move_type;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
@ -134,6 +140,11 @@ namespace Slic3r {
|
|||
|
||||
FeedrateProfile feedrate;
|
||||
Trapezoid trapezoid;
|
||||
float elapsed_time;
|
||||
|
||||
bool st_synchronized;
|
||||
|
||||
Block();
|
||||
|
||||
// Returns the length of the move covered by this block, in mm
|
||||
float move_length() const;
|
||||
|
@ -187,19 +198,34 @@ namespace Slic3r {
|
|||
typedef std::map<Block::EMoveType, MoveStats> MovesStatsMap;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
typedef std::map<unsigned int, unsigned int> G1LineIdToBlockIdMap;
|
||||
|
||||
private:
|
||||
EMode _mode;
|
||||
GCodeReader _parser;
|
||||
State _state;
|
||||
Feedrates _curr;
|
||||
Feedrates _prev;
|
||||
BlocksList _blocks;
|
||||
// Map between g1 line id and blocks id, used to speed up export of remaining times
|
||||
G1LineIdToBlockIdMap _g1_line_ids;
|
||||
float _time; // s
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
MovesStatsMap _moves_stats;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
||||
public:
|
||||
GCodeTimeEstimator();
|
||||
explicit GCodeTimeEstimator(EMode mode);
|
||||
|
||||
// Adds the given gcode line
|
||||
void add_gcode_line(const std::string& gcode_line);
|
||||
|
||||
void add_gcode_block(const char *ptr);
|
||||
void add_gcode_block(const std::string &str) { this->add_gcode_block(str.c_str()); }
|
||||
|
||||
// Calculates the time estimate from the gcode lines added using add_gcode_line() or add_gcode_block()
|
||||
void calculate_time();
|
||||
|
||||
// Calculates the time estimate from the given gcode in string format
|
||||
void calculate_time_from_text(const std::string& gcode);
|
||||
|
@ -210,14 +236,12 @@ namespace Slic3r {
|
|||
// Calculates the time estimate from the gcode contained in given list of gcode lines
|
||||
void calculate_time_from_lines(const std::vector<std::string>& gcode_lines);
|
||||
|
||||
// Adds the given gcode line
|
||||
void add_gcode_line(const std::string& gcode_line);
|
||||
|
||||
void add_gcode_block(const char *ptr);
|
||||
void add_gcode_block(const std::string &str) { this->add_gcode_block(str.c_str()); }
|
||||
|
||||
// Calculates the time estimate from the gcode lines added using add_gcode_line()
|
||||
void calculate_time();
|
||||
// Process the gcode contained in the file with the given filename,
|
||||
// placing in it new lines (M73) containing the remaining time, at the given interval in seconds
|
||||
// and saving the result back in the same file
|
||||
// This time estimator should have been already used to calculate the time estimate for the gcode
|
||||
// contained in the given file before to call this method
|
||||
bool post_process_remaining_times(const std::string& filename, float interval_sec);
|
||||
|
||||
// Set current position on the given axis with the given value
|
||||
void set_axis_position(EAxis axis, float position);
|
||||
|
@ -263,6 +287,10 @@ namespace Slic3r {
|
|||
void set_e_local_positioning_type(EPositioningType type);
|
||||
EPositioningType get_e_local_positioning_type() const;
|
||||
|
||||
int get_g1_line_id() const;
|
||||
void increment_g1_line_id();
|
||||
void reset_g1_line_id();
|
||||
|
||||
void add_additional_time(float timeSec);
|
||||
void set_additional_time(float timeSec);
|
||||
float get_additional_time() const;
|
||||
|
@ -275,13 +303,19 @@ namespace Slic3r {
|
|||
// Returns the estimated time, in seconds
|
||||
float get_time() const;
|
||||
|
||||
// Returns the estimated time, in format HHh MMm SSs
|
||||
std::string get_time_hms() const;
|
||||
// Returns the estimated time, in format DDd HHh MMm SSs
|
||||
std::string get_time_dhms() const;
|
||||
|
||||
// Returns the estimated time, in minutes (integer)
|
||||
std::string get_time_minutes() const;
|
||||
|
||||
private:
|
||||
void _reset();
|
||||
void _reset_time();
|
||||
void _reset_blocks();
|
||||
|
||||
void _set_blocks_st_synchronize(bool state);
|
||||
|
||||
// Calculates the time estimate
|
||||
void _calculate_time();
|
||||
|
||||
|
@ -353,6 +387,12 @@ namespace Slic3r {
|
|||
|
||||
void _recalculate_trapezoids();
|
||||
|
||||
// Returns the given time is seconds in format DDd HHh MMm SSs
|
||||
static std::string _get_time_dhms(float time_in_secs);
|
||||
|
||||
// Returns the given, in minutes (integer)
|
||||
static std::string _get_time_minutes(float time_in_secs);
|
||||
|
||||
#if ENABLE_MOVE_STATS
|
||||
void _log_moves_stats() const;
|
||||
#endif // ENABLE_MOVE_STATS
|
||||
|
|
18
xs/src/libslic3r/I18N.hpp
Normal file
18
xs/src/libslic3r/I18N.hpp
Normal file
|
@ -0,0 +1,18 @@
|
|||
#ifndef slic3r_I18N_hpp_
|
||||
#define slic3r_I18N_hpp_
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
namespace I18N {
|
||||
typedef std::string (*translate_fn_type)(const char*);
|
||||
extern translate_fn_type translate_fn;
|
||||
inline void set_translate_callback(translate_fn_type fn) { translate_fn = fn; }
|
||||
inline std::string translate(const std::string &s) { return (translate_fn == nullptr) ? s : (*translate_fn)(s.c_str()); }
|
||||
inline std::string translate(const char *ptr) { return (translate_fn == nullptr) ? std::string(ptr) : (*translate_fn)(ptr); }
|
||||
} // namespace I18N
|
||||
|
||||
} // namespace Slic3r
|
||||
|
||||
#endif /* slic3r_I18N_hpp_ */
|
|
@ -48,7 +48,6 @@
|
|||
#endif
|
||||
|
||||
#include <cassert>
|
||||
#include "Point.hpp"
|
||||
|
||||
#if ! defined(_MSC_VER) && defined(__SIZEOF_INT128__)
|
||||
#define HAS_INTRINSIC_128_TYPE
|
||||
|
@ -288,20 +287,4 @@ public:
|
|||
}
|
||||
return sign_determinant_2x2(p1, q1, p2, q2) * invert;
|
||||
}
|
||||
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
static int orient(const Slic3r::Point &p1, const Slic3r::Point &p2, const Slic3r::Point &p3)
|
||||
{
|
||||
Slic3r::Vector v1(p2 - p1);
|
||||
Slic3r::Vector v2(p3 - p1);
|
||||
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
|
||||
}
|
||||
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
static int cross(const Slic3r::Point &v1, const Slic3r::Point &v2)
|
||||
{
|
||||
return sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
|
||||
}
|
||||
};
|
||||
|
|
|
@ -7,6 +7,11 @@
|
|||
#include "Format/STL.hpp"
|
||||
#include "Format/3mf.hpp"
|
||||
|
||||
#include <numeric>
|
||||
#include <libnest2d.h>
|
||||
#include <ClipperUtils.hpp>
|
||||
#include "slic3r/GUI/GUI.hpp"
|
||||
|
||||
#include <float.h>
|
||||
|
||||
#include <boost/algorithm/string/predicate.hpp>
|
||||
|
@ -14,6 +19,10 @@
|
|||
#include <boost/nowide/iostream.hpp>
|
||||
#include <boost/algorithm/string/replace.hpp>
|
||||
|
||||
// #include <benchmark.h>
|
||||
#include "SVG.hpp"
|
||||
#include <Eigen/Dense>
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
unsigned int Model::s_auto_extruder_id = 1;
|
||||
|
@ -296,35 +305,414 @@ static bool _arrange(const Pointfs &sizes, coordf_t dist, const BoundingBoxf* bb
|
|||
return result;
|
||||
}
|
||||
|
||||
/* arrange objects preserving their instance count
|
||||
but altering their instance positions */
|
||||
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb)
|
||||
namespace arr {
|
||||
|
||||
using namespace libnest2d;
|
||||
|
||||
std::string toString(const Model& model) {
|
||||
std::stringstream ss;
|
||||
|
||||
ss << "{\n";
|
||||
|
||||
for(auto objptr : model.objects) {
|
||||
if(!objptr) continue;
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(!objinst) continue;
|
||||
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
tmpmesh.scale(objinst->scaling_factor);
|
||||
objinst->transform_mesh(&tmpmesh);
|
||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||
for(auto& expoly_complex : expolys) {
|
||||
|
||||
auto tmp = expoly_complex.simplify(1.0/SCALING_FACTOR);
|
||||
if(tmp.empty()) continue;
|
||||
auto expoly = tmp.front();
|
||||
expoly.contour.make_clockwise();
|
||||
for(auto& h : expoly.holes) h.make_counter_clockwise();
|
||||
|
||||
ss << "\t{\n";
|
||||
ss << "\t\t{\n";
|
||||
|
||||
for(auto v : expoly.contour.points) ss << "\t\t\t{"
|
||||
<< v.x << ", "
|
||||
<< v.y << "},\n";
|
||||
{
|
||||
auto v = expoly.contour.points.front();
|
||||
ss << "\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||
}
|
||||
ss << "\t\t},\n";
|
||||
|
||||
// Holes:
|
||||
ss << "\t\t{\n";
|
||||
// for(auto h : expoly.holes) {
|
||||
// ss << "\t\t\t{\n";
|
||||
// for(auto v : h.points) ss << "\t\t\t\t{"
|
||||
// << v.x << ", "
|
||||
// << v.y << "},\n";
|
||||
// {
|
||||
// auto v = h.points.front();
|
||||
// ss << "\t\t\t\t{" << v.x << ", " << v.y << "},\n";
|
||||
// }
|
||||
// ss << "\t\t\t},\n";
|
||||
// }
|
||||
ss << "\t\t},\n";
|
||||
|
||||
ss << "\t},\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
ss << "}\n";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
void toSVG(SVG& svg, const Model& model) {
|
||||
for(auto objptr : model.objects) {
|
||||
if(!objptr) continue;
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(!objinst) continue;
|
||||
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
tmpmesh.scale(objinst->scaling_factor);
|
||||
objinst->transform_mesh(&tmpmesh);
|
||||
ExPolygons expolys = tmpmesh.horizontal_projection();
|
||||
svg.draw(expolys);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// A container which stores a pointer to the 3D object and its projected
|
||||
// 2D shape from top view.
|
||||
using ShapeData2D =
|
||||
std::vector<std::pair<Slic3r::ModelInstance*, Item>>;
|
||||
|
||||
ShapeData2D projectModelFromTop(const Slic3r::Model &model) {
|
||||
ShapeData2D ret;
|
||||
|
||||
auto s = std::accumulate(model.objects.begin(), model.objects.end(), 0,
|
||||
[](size_t s, ModelObject* o){
|
||||
return s + o->instances.size();
|
||||
});
|
||||
|
||||
ret.reserve(s);
|
||||
|
||||
for(auto objptr : model.objects) {
|
||||
if(objptr) {
|
||||
|
||||
auto rmesh = objptr->raw_mesh();
|
||||
|
||||
for(auto objinst : objptr->instances) {
|
||||
if(objinst) {
|
||||
Slic3r::TriangleMesh tmpmesh = rmesh;
|
||||
ClipperLib::PolygonImpl pn;
|
||||
|
||||
tmpmesh.scale(objinst->scaling_factor);
|
||||
|
||||
// TODO export the exact 2D projection
|
||||
auto p = tmpmesh.convex_hull();
|
||||
|
||||
p.make_clockwise();
|
||||
p.append(p.first_point());
|
||||
pn.Contour = Slic3rMultiPoint_to_ClipperPath( p );
|
||||
|
||||
// Efficient conversion to item.
|
||||
Item item(std::move(pn));
|
||||
|
||||
// Invalid geometries would throw exceptions when arranging
|
||||
if(item.vertexCount() > 3) {
|
||||
item.rotation(objinst->rotation);
|
||||
item.translation( {
|
||||
ClipperLib::cInt(objinst->offset.x/SCALING_FACTOR),
|
||||
ClipperLib::cInt(objinst->offset.y/SCALING_FACTOR)
|
||||
});
|
||||
ret.emplace_back(objinst, item);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* \brief Arranges the model objects on the screen.
|
||||
*
|
||||
* The arrangement considers multiple bins (aka. print beds) for placing all
|
||||
* the items provided in the model argument. If the items don't fit on one
|
||||
* print bed, the remaining will be placed onto newly created print beds.
|
||||
* The first_bin_only parameter, if set to true, disables this behaviour and
|
||||
* makes sure that only one print bed is filled and the remaining items will be
|
||||
* untouched. When set to false, the items which could not fit onto the
|
||||
* print bed will be placed next to the print bed so the user should see a
|
||||
* pile of items on the print bed and some other piles outside the print
|
||||
* area that can be dragged later onto the print bed as a group.
|
||||
*
|
||||
* \param model The model object with the 3D content.
|
||||
* \param dist The minimum distance which is allowed for any pair of items
|
||||
* on the print bed in any direction.
|
||||
* \param bb The bounding box of the print bed. It corresponds to the 'bin'
|
||||
* for bin packing.
|
||||
* \param first_bin_only This parameter controls whether to place the
|
||||
* remaining items which do not fit onto the print area next to the print
|
||||
* bed or leave them untouched (let the user arrange them by hand or remove
|
||||
* them).
|
||||
*/
|
||||
bool arrange(Model &model, coordf_t dist, const Slic3r::BoundingBoxf* bb,
|
||||
bool first_bin_only,
|
||||
std::function<void(unsigned)> progressind)
|
||||
{
|
||||
// get the (transformed) size of each instance so that we take
|
||||
// into account their different transformations when packing
|
||||
Pointfs instance_sizes;
|
||||
Pointfs instance_centers;
|
||||
for (const ModelObject *o : this->objects)
|
||||
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
||||
// an accurate snug bounding box around the transformed mesh.
|
||||
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
||||
instance_sizes.push_back(bbox.size());
|
||||
instance_centers.push_back(bbox.center());
|
||||
using ArrangeResult = _IndexedPackGroup<PolygonImpl>;
|
||||
|
||||
bool ret = true;
|
||||
|
||||
// Create the arranger config
|
||||
auto min_obj_distance = static_cast<Coord>(dist/SCALING_FACTOR);
|
||||
|
||||
// Benchmark bench;
|
||||
|
||||
// std::cout << "Creating model siluett..." << std::endl;
|
||||
|
||||
// bench.start();
|
||||
// Get the 2D projected shapes with their 3D model instance pointers
|
||||
auto shapemap = arr::projectModelFromTop(model);
|
||||
// bench.stop();
|
||||
|
||||
// std::cout << "Model siluett created in " << bench.getElapsedSec()
|
||||
// << " seconds. " << "Min object distance = " << min_obj_distance << std::endl;
|
||||
|
||||
// std::cout << "{" << std::endl;
|
||||
// std::for_each(shapemap.begin(), shapemap.end(),
|
||||
// [] (ShapeData2D::value_type& it)
|
||||
// {
|
||||
// std::cout << "\t{" << std::endl;
|
||||
// Item& item = it.second;
|
||||
// for(auto& v : item) {
|
||||
// std::cout << "\t\t" << "{" << getX(v)
|
||||
// << ", " << getY(v) << "},\n";
|
||||
// }
|
||||
// std::cout << "\t}," << std::endl;
|
||||
// });
|
||||
// std::cout << "}" << std::endl;
|
||||
// return true;
|
||||
|
||||
bool hasbin = bb != nullptr && bb->defined;
|
||||
double area_max = 0;
|
||||
Item *biggest = nullptr;
|
||||
|
||||
// Copy the references for the shapes only as the arranger expects a
|
||||
// sequence of objects convertible to Item or ClipperPolygon
|
||||
std::vector<std::reference_wrapper<Item>> shapes;
|
||||
shapes.reserve(shapemap.size());
|
||||
std::for_each(shapemap.begin(), shapemap.end(),
|
||||
[&shapes, min_obj_distance, &area_max, &biggest,hasbin]
|
||||
(ShapeData2D::value_type& it)
|
||||
{
|
||||
if(!hasbin) {
|
||||
Item& item = it.second;
|
||||
item.addOffset(min_obj_distance);
|
||||
auto b = ShapeLike::boundingBox(item.transformedShape());
|
||||
auto a = b.width()*b.height();
|
||||
if(area_max < a) {
|
||||
area_max = static_cast<double>(a);
|
||||
biggest = &item;
|
||||
}
|
||||
}
|
||||
|
||||
Pointfs positions;
|
||||
if (! _arrange(instance_sizes, dist, bb, positions))
|
||||
return false;
|
||||
|
||||
size_t idx = 0;
|
||||
for (ModelObject *o : this->objects) {
|
||||
for (ModelInstance *i : o->instances) {
|
||||
i->offset = positions[idx] - instance_centers[idx];
|
||||
++ idx;
|
||||
}
|
||||
o->invalidate_bounding_box();
|
||||
shapes.push_back(std::ref(it.second));
|
||||
|
||||
});
|
||||
|
||||
Box bin;
|
||||
|
||||
if(hasbin) {
|
||||
// Scale up the bounding box to clipper scale.
|
||||
BoundingBoxf bbb = *bb;
|
||||
bbb.scale(1.0/SCALING_FACTOR);
|
||||
|
||||
bin = Box({
|
||||
static_cast<libnest2d::Coord>(bbb.min.x),
|
||||
static_cast<libnest2d::Coord>(bbb.min.y)
|
||||
},
|
||||
{
|
||||
static_cast<libnest2d::Coord>(bbb.max.x),
|
||||
static_cast<libnest2d::Coord>(bbb.max.y)
|
||||
});
|
||||
} else {
|
||||
// Just take the biggest item as bin... ?
|
||||
bin = ShapeLike::boundingBox(biggest->transformedShape());
|
||||
}
|
||||
return true;
|
||||
|
||||
// Will use the DJD selection heuristic with the BottomLeft placement
|
||||
// strategy
|
||||
using Arranger = Arranger<NfpPlacer, FirstFitSelection>;
|
||||
using PConf = Arranger::PlacementConfig;
|
||||
using SConf = Arranger::SelectionConfig;
|
||||
|
||||
PConf pcfg; // Placement configuration
|
||||
SConf scfg; // Selection configuration
|
||||
|
||||
// Align the arranged pile into the center of the bin
|
||||
pcfg.alignment = PConf::Alignment::CENTER;
|
||||
|
||||
// TODO cannot use rotations until multiple objects of same geometry can
|
||||
// handle different rotations
|
||||
// arranger.useMinimumBoundigBoxRotation();
|
||||
pcfg.rotations = { 0.0 };
|
||||
|
||||
// Magic: we will specify what is the goal of arrangement...
|
||||
// In this case we override the default object function because we
|
||||
// (apparently) don't care about pack efficiency and all we care is that the
|
||||
// larger items go into the center of the pile and smaller items orbit it
|
||||
// so the resulting pile has a circle-like shape.
|
||||
// This is good for the print bed's heat profile.
|
||||
// As a side effect, the arrange procedure is a lot faster (we do not need
|
||||
// to calculate the convex hulls)
|
||||
pcfg.object_function = [&bin](
|
||||
NfpPlacer::Pile pile, // The currently arranged pile
|
||||
double /*area*/, // Sum area of items (not needed)
|
||||
double norm, // A norming factor for physical dimensions
|
||||
double penality) // Min penality in case of bad arrangement
|
||||
{
|
||||
auto bb = ShapeLike::boundingBox(pile);
|
||||
|
||||
// We will optimize to the diameter of the circle around the bounding
|
||||
// box and use the norming factor to get rid of the physical dimensions
|
||||
double score = PointLike::distance(bb.minCorner(),
|
||||
bb.maxCorner()) / norm;
|
||||
|
||||
// If it does not fit into the print bed we will beat it
|
||||
// with a large penality
|
||||
if(!NfpPlacer::wouldFit(bb, bin)) score = 2*penality - score;
|
||||
|
||||
return score;
|
||||
};
|
||||
|
||||
// Create the arranger object
|
||||
Arranger arranger(bin, min_obj_distance, pcfg, scfg);
|
||||
|
||||
// Set the progress indicator for the arranger.
|
||||
arranger.progressIndicator(progressind);
|
||||
|
||||
// std::cout << "Arranging model..." << std::endl;
|
||||
// bench.start();
|
||||
|
||||
// Arrange and return the items with their respective indices within the
|
||||
// input sequence.
|
||||
auto result = arranger.arrangeIndexed(shapes.begin(), shapes.end());
|
||||
|
||||
// bench.stop();
|
||||
// std::cout << "Model arranged in " << bench.getElapsedSec()
|
||||
// << " seconds." << std::endl;
|
||||
|
||||
|
||||
auto applyResult = [&shapemap](ArrangeResult::value_type& group,
|
||||
Coord batch_offset)
|
||||
{
|
||||
for(auto& r : group) {
|
||||
auto idx = r.first; // get the original item index
|
||||
Item& item = r.second; // get the item itself
|
||||
|
||||
// Get the model instance from the shapemap using the index
|
||||
ModelInstance *inst_ptr = shapemap[idx].first;
|
||||
|
||||
// Get the tranformation data from the item object and scale it
|
||||
// appropriately
|
||||
auto off = item.translation();
|
||||
Radians rot = item.rotation();
|
||||
Pointf foff(off.X*SCALING_FACTOR + batch_offset,
|
||||
off.Y*SCALING_FACTOR);
|
||||
|
||||
// write the tranformation data into the model instance
|
||||
inst_ptr->rotation = rot;
|
||||
inst_ptr->offset = foff;
|
||||
}
|
||||
};
|
||||
|
||||
// std::cout << "Applying result..." << std::endl;
|
||||
// bench.start();
|
||||
if(first_bin_only) {
|
||||
applyResult(result.front(), 0);
|
||||
} else {
|
||||
|
||||
const auto STRIDE_PADDING = 1.2;
|
||||
|
||||
Coord stride = static_cast<Coord>(STRIDE_PADDING*
|
||||
bin.width()*SCALING_FACTOR);
|
||||
Coord batch_offset = 0;
|
||||
|
||||
for(auto& group : result) {
|
||||
applyResult(group, batch_offset);
|
||||
|
||||
// Only the first pack group can be placed onto the print bed. The
|
||||
// other objects which could not fit will be placed next to the
|
||||
// print bed
|
||||
batch_offset += stride;
|
||||
}
|
||||
}
|
||||
// bench.stop();
|
||||
// std::cout << "Result applied in " << bench.getElapsedSec()
|
||||
// << " seconds." << std::endl;
|
||||
|
||||
for(auto objptr : model.objects) objptr->invalidate_bounding_box();
|
||||
|
||||
return ret && result.size() == 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* arrange objects preserving their instance count
|
||||
but altering their instance positions */
|
||||
bool Model::arrange_objects(coordf_t dist, const BoundingBoxf* bb,
|
||||
std::function<void(unsigned)> progressind)
|
||||
{
|
||||
bool ret = false;
|
||||
if(bb != nullptr && bb->defined) {
|
||||
ret = arr::arrange(*this, dist, bb, false, progressind);
|
||||
// std::fstream out("out.cpp", std::fstream::out);
|
||||
// if(out.good()) {
|
||||
// out << "const TestData OBJECTS = \n";
|
||||
// out << arr::toString(*this);
|
||||
// }
|
||||
// out.close();
|
||||
// SVG svg("out.svg");
|
||||
// arr::toSVG(svg, *this);
|
||||
// svg.Close();
|
||||
} else {
|
||||
// get the (transformed) size of each instance so that we take
|
||||
// into account their different transformations when packing
|
||||
Pointfs instance_sizes;
|
||||
Pointfs instance_centers;
|
||||
for (const ModelObject *o : this->objects)
|
||||
for (size_t i = 0; i < o->instances.size(); ++ i) {
|
||||
// an accurate snug bounding box around the transformed mesh.
|
||||
BoundingBoxf3 bbox(o->instance_bounding_box(i, true));
|
||||
instance_sizes.push_back(bbox.size());
|
||||
instance_centers.push_back(bbox.center());
|
||||
}
|
||||
|
||||
Pointfs positions;
|
||||
if (! _arrange(instance_sizes, dist, bb, positions))
|
||||
return false;
|
||||
|
||||
size_t idx = 0;
|
||||
for (ModelObject *o : this->objects) {
|
||||
for (ModelInstance *i : o->instances) {
|
||||
i->offset = positions[idx] - instance_centers[idx];
|
||||
++ idx;
|
||||
}
|
||||
o->invalidate_bounding_box();
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
// Duplicate the entire model preserving instance relative positions.
|
||||
|
@ -603,10 +991,7 @@ void ModelObject::clear_instances()
|
|||
|
||||
// Returns the bounding box of the transformed instances.
|
||||
// This bounding box is approximate and not snug.
|
||||
//========================================================================================================
|
||||
const BoundingBoxf3& ModelObject::bounding_box() const
|
||||
//const BoundingBoxf3& ModelObject::bounding_box()
|
||||
//========================================================================================================
|
||||
{
|
||||
if (! m_bounding_box_valid) {
|
||||
BoundingBoxf3 raw_bbox;
|
||||
|
@ -1048,32 +1433,16 @@ BoundingBoxf3 ModelInstance::transform_mesh_bounding_box(const TriangleMesh* mes
|
|||
|
||||
BoundingBoxf3 ModelInstance::transform_bounding_box(const BoundingBoxf3 &bbox, bool dont_translate) const
|
||||
{
|
||||
// rotate around mesh origin
|
||||
double c = cos(this->rotation);
|
||||
double s = sin(this->rotation);
|
||||
Pointf3 pts[4] = {
|
||||
bbox.min,
|
||||
bbox.max,
|
||||
Pointf3(bbox.min.x, bbox.max.y, bbox.min.z),
|
||||
Pointf3(bbox.max.x, bbox.min.y, bbox.max.z)
|
||||
};
|
||||
BoundingBoxf3 out;
|
||||
for (int i = 0; i < 4; ++ i) {
|
||||
Pointf3 &v = pts[i];
|
||||
double xold = v.x;
|
||||
double yold = v.y;
|
||||
v.x = float(c * xold - s * yold);
|
||||
v.y = float(s * xold + c * yold);
|
||||
v.x *= this->scaling_factor;
|
||||
v.y *= this->scaling_factor;
|
||||
v.z *= this->scaling_factor;
|
||||
if (! dont_translate) {
|
||||
v.x += this->offset.x;
|
||||
v.y += this->offset.y;
|
||||
}
|
||||
out.merge(v);
|
||||
}
|
||||
return out;
|
||||
Eigen::Transform<float, 3, Eigen::Affine> matrix = Eigen::Transform<float, 3, Eigen::Affine>::Identity();
|
||||
if (!dont_translate)
|
||||
matrix.translate(Eigen::Vector3f((float)offset.x, (float)offset.y, 0.0f));
|
||||
|
||||
matrix.rotate(Eigen::AngleAxisf(rotation, Eigen::Vector3f::UnitZ()));
|
||||
matrix.scale(scaling_factor);
|
||||
|
||||
std::vector<float> m(16, 0.0f);
|
||||
::memcpy((void*)m.data(), (const void*)matrix.data(), 16 * sizeof(float));
|
||||
return bbox.transformed(m);
|
||||
}
|
||||
|
||||
void ModelInstance::transform_polygon(Polygon* polygon) const
|
||||
|
|
|
@ -103,10 +103,7 @@ public:
|
|||
// Returns the bounding box of the transformed instances.
|
||||
// This bounding box is approximate and not snug.
|
||||
// This bounding box is being cached.
|
||||
//========================================================================================================
|
||||
const BoundingBoxf3& bounding_box() const;
|
||||
// const BoundingBoxf3& bounding_box();
|
||||
//========================================================================================================
|
||||
void invalidate_bounding_box() { m_bounding_box_valid = false; }
|
||||
// Returns a snug bounding box of the transformed instances.
|
||||
// This bounding box is not being cached.
|
||||
|
@ -148,10 +145,9 @@ private:
|
|||
// Parent object, owning this ModelObject.
|
||||
Model *m_model;
|
||||
// Bounding box, cached.
|
||||
//========================================================================================================
|
||||
|
||||
mutable BoundingBoxf3 m_bounding_box;
|
||||
mutable bool m_bounding_box_valid;
|
||||
//========================================================================================================
|
||||
};
|
||||
|
||||
// An object STL, or a modifier volume, over which a different set of parameters shall be applied.
|
||||
|
@ -207,7 +203,7 @@ public:
|
|||
double scaling_factor;
|
||||
Pointf offset; // in unscaled coordinates
|
||||
|
||||
ModelObject* get_object() const { return this->object; };
|
||||
ModelObject* get_object() const { return this->object; }
|
||||
|
||||
// To be called on an external mesh
|
||||
void transform_mesh(TriangleMesh* mesh, bool dont_translate = false) const;
|
||||
|
@ -278,7 +274,8 @@ public:
|
|||
void center_instances_around_point(const Pointf &point);
|
||||
void translate(coordf_t x, coordf_t y, coordf_t z) { for (ModelObject *o : this->objects) o->translate(x, y, z); }
|
||||
TriangleMesh mesh() const;
|
||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
bool arrange_objects(coordf_t dist, const BoundingBoxf* bb = NULL,
|
||||
std::function<void(unsigned)> progressind = [](unsigned){});
|
||||
// Croaks if the duplicated objects do not fit the print bed.
|
||||
void duplicate(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
void duplicate_objects(size_t copies_num, coordf_t dist, const BoundingBoxf* bb = NULL);
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
#include "Point.hpp"
|
||||
#include "Line.hpp"
|
||||
#include "MultiPoint.hpp"
|
||||
#include "Int128.hpp"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
|
||||
|
@ -375,4 +376,20 @@ Pointf3::vector_to(const Pointf3 &point) const
|
|||
return Vectorf3(point.x - this->x, point.y - this->y, point.z - this->z);
|
||||
}
|
||||
|
||||
namespace int128 {
|
||||
|
||||
int orient(const Point &p1, const Point &p2, const Point &p3)
|
||||
{
|
||||
Slic3r::Vector v1(p2 - p1);
|
||||
Slic3r::Vector v2(p3 - p1);
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
|
||||
}
|
||||
|
||||
int cross(const Point &v1, const Point &v2)
|
||||
{
|
||||
return Int128::sign_determinant_2x2_filtered(v1.x, v1.y, v2.x, v2.y);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
|
|
@ -81,6 +81,17 @@ inline Point operator*(double scalar, const Point& point2) { return Point(scalar
|
|||
inline int64_t cross(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.y) - int64_t(v1.y) * int64_t(v2.x); }
|
||||
inline int64_t dot(const Point &v1, const Point &v2) { return int64_t(v1.x) * int64_t(v2.x) + int64_t(v1.y) * int64_t(v2.y); }
|
||||
|
||||
namespace int128 {
|
||||
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
int orient(const Point &p1, const Point &p2, const Point &p3);
|
||||
|
||||
// Exact orientation predicate,
|
||||
// returns +1: CCW, 0: collinear, -1: CW.
|
||||
int cross(const Point &v1, const Slic3r::Point &v2);
|
||||
}
|
||||
|
||||
// To be used by std::unordered_map, std::unordered_multimap and friends.
|
||||
struct PointHash {
|
||||
size_t operator()(const Point &pt) const {
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
#include "Extruder.hpp"
|
||||
#include "Flow.hpp"
|
||||
#include "Geometry.hpp"
|
||||
#include "I18N.hpp"
|
||||
#include "SupportMaterial.hpp"
|
||||
#include "GCode/WipeTowerPrusaMM.hpp"
|
||||
#include <algorithm>
|
||||
|
@ -15,6 +16,10 @@
|
|||
#include "slic3r/IProgressIndicator.hpp"
|
||||
#include "PrintExport.hpp"
|
||||
|
||||
//! macro used to mark string used at localization,
|
||||
//! return same string
|
||||
#define L(s) Slic3r::I18N::translate(s)
|
||||
|
||||
namespace Slic3r {
|
||||
|
||||
template class PrintState<PrintStep, psCount>;
|
||||
|
@ -164,6 +169,11 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|
|||
std::vector<PrintStep> steps;
|
||||
std::vector<PrintObjectStep> osteps;
|
||||
bool invalidated = false;
|
||||
|
||||
// Always invalidate the wipe tower. This is probably necessary because of the wipe_into_infill / wipe_into_objects
|
||||
// features - nearly anything can influence what should (and could) be wiped into.
|
||||
steps.emplace_back(psWipeTower);
|
||||
|
||||
for (const t_config_option_key &opt_key : opt_keys) {
|
||||
if (steps_ignore.find(opt_key) != steps_ignore.end()) {
|
||||
// These options only affect G-code export or they are just notes without influence on the generated G-code,
|
||||
|
@ -190,6 +200,9 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|
|||
|| opt_key == "filament_loading_speed"
|
||||
|| opt_key == "filament_unloading_speed"
|
||||
|| opt_key == "filament_toolchange_delay"
|
||||
|| opt_key == "filament_cooling_moves"
|
||||
|| opt_key == "filament_cooling_initial_speed"
|
||||
|| opt_key == "filament_cooling_final_speed"
|
||||
|| opt_key == "filament_ramming_parameters"
|
||||
|| opt_key == "gcode_flavor"
|
||||
|| opt_key == "single_extruder_multi_material"
|
||||
|
@ -205,6 +218,7 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|
|||
|| opt_key == "parking_pos_retraction"
|
||||
|| opt_key == "cooling_tube_retraction"
|
||||
|| opt_key == "cooling_tube_length"
|
||||
|| opt_key == "extra_loading_move"
|
||||
|| opt_key == "z_offset") {
|
||||
steps.emplace_back(psWipeTower);
|
||||
} else if (
|
||||
|
@ -216,7 +230,6 @@ bool Print::invalidate_state_by_config_options(const std::vector<t_config_option
|
|||
osteps.emplace_back(posSupportMaterial);
|
||||
steps.emplace_back(psSkirt);
|
||||
steps.emplace_back(psBrim);
|
||||
steps.emplace_back(psWipeTower);
|
||||
} else {
|
||||
// for legacy, if we can't handle this option let's invalidate all steps
|
||||
//FIXME invalidate all steps of all objects as well?
|
||||
|
@ -527,7 +540,7 @@ std::string Print::validate() const
|
|||
print_volume.min.z = -1e10;
|
||||
for (PrintObject *po : this->objects) {
|
||||
if (!print_volume.contains(po->model_object()->tight_bounding_box(false)))
|
||||
return "Some objects are outside of the print volume.";
|
||||
return L("Some objects are outside of the print volume.");
|
||||
}
|
||||
|
||||
if (this->config.complete_objects) {
|
||||
|
@ -554,7 +567,7 @@ std::string Print::validate() const
|
|||
Polygon p = convex_hull;
|
||||
p.translate(copy);
|
||||
if (! intersection(convex_hulls_other, p).empty())
|
||||
return "Some objects are too close; your extruder will collide with them.";
|
||||
return L("Some objects are too close; your extruder will collide with them.");
|
||||
polygons_append(convex_hulls_other, p);
|
||||
}
|
||||
}
|
||||
|
@ -569,7 +582,7 @@ std::string Print::validate() const
|
|||
// it will be printed as last one so its height doesn't matter.
|
||||
object_height.pop_back();
|
||||
if (! object_height.empty() && object_height.back() > scale_(this->config.extruder_clearance_height.value))
|
||||
return "Some objects are too tall and cannot be printed without extruder collisions.";
|
||||
return L("Some objects are too tall and cannot be printed without extruder collisions.");
|
||||
}
|
||||
} // end if (this->config.complete_objects)
|
||||
|
||||
|
@ -579,27 +592,22 @@ std::string Print::validate() const
|
|||
total_copies_count += object->copies().size();
|
||||
// #4043
|
||||
if (total_copies_count > 1 && ! this->config.complete_objects.value)
|
||||
return "The Spiral Vase option can only be used when printing a single object.";
|
||||
return L("The Spiral Vase option can only be used when printing a single object.");
|
||||
if (this->regions.size() > 1)
|
||||
return "The Spiral Vase option can only be used when printing single material objects.";
|
||||
return L("The Spiral Vase option can only be used when printing single material objects.");
|
||||
}
|
||||
|
||||
if (this->config.single_extruder_multi_material) {
|
||||
for (size_t i=1; i<this->config.nozzle_diameter.values.size(); ++i)
|
||||
if (this->config.nozzle_diameter.values[i] != this->config.nozzle_diameter.values[i-1])
|
||||
return "All extruders must have the same diameter for single extruder multimaterial printer.";
|
||||
return L("All extruders must have the same diameter for single extruder multimaterial printer.");
|
||||
}
|
||||
|
||||
if (this->has_wipe_tower() && ! this->objects.empty()) {
|
||||
#if 0
|
||||
for (auto dmr : this->config.nozzle_diameter.values)
|
||||
if (std::abs(dmr - 0.4) > EPSILON)
|
||||
return "The Wipe Tower is currently only supported for the 0.4mm nozzle diameter.";
|
||||
#endif
|
||||
if (this->config.gcode_flavor != gcfRepRap && this->config.gcode_flavor != gcfMarlin)
|
||||
return "The Wipe Tower is currently only supported for the Marlin and RepRap/Sprinter G-code flavors.";
|
||||
return L("The Wipe Tower is currently only supported for the Marlin and RepRap/Sprinter G-code flavors.");
|
||||
if (! this->config.use_relative_e_distances)
|
||||
return "The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).";
|
||||
return L("The Wipe Tower is currently only supported with the relative extruder addressing (use_relative_e_distances=1).");
|
||||
SlicingParameters slicing_params0 = this->objects.front()->slicing_parameters();
|
||||
|
||||
const PrintObject* tallest_object = this->objects.front(); // let's find the tallest object
|
||||
|
@ -611,13 +619,13 @@ std::string Print::validate() const
|
|||
SlicingParameters slicing_params = object->slicing_parameters();
|
||||
if (std::abs(slicing_params.first_print_layer_height - slicing_params0.first_print_layer_height) > EPSILON ||
|
||||
std::abs(slicing_params.layer_height - slicing_params0.layer_height ) > EPSILON)
|
||||
return "The Wipe Tower is only supported for multiple objects if they have equal layer heigths";
|
||||
return L("The Wipe Tower is only supported for multiple objects if they have equal layer heigths");
|
||||
if (slicing_params.raft_layers() != slicing_params0.raft_layers())
|
||||
return "The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers";
|
||||
return L("The Wipe Tower is only supported for multiple objects if they are printed over an equal number of raft layers");
|
||||
if (object->config.support_material_contact_distance != this->objects.front()->config.support_material_contact_distance)
|
||||
return "The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance";
|
||||
return L("The Wipe Tower is only supported for multiple objects if they are printed with the same support_material_contact_distance");
|
||||
if (! equal_layering(slicing_params, slicing_params0))
|
||||
return "The Wipe Tower is only supported for multiple objects if they are sliced equally.";
|
||||
return L("The Wipe Tower is only supported for multiple objects if they are sliced equally.");
|
||||
bool was_layer_height_profile_valid = object->layer_height_profile_valid;
|
||||
object->update_layer_height_profile();
|
||||
object->layer_height_profile_valid = was_layer_height_profile_valid;
|
||||
|
@ -641,13 +649,8 @@ std::string Print::validate() const
|
|||
failed = true;
|
||||
|
||||
if (failed)
|
||||
return "The Wipe tower is only supported if all objects have the same layer height profile";
|
||||
return L("The Wipe tower is only supported if all objects have the same layer height profile");
|
||||
}
|
||||
|
||||
/*for (size_t i = 5; i < object->layer_height_profile.size(); i += 2)
|
||||
if (object->layer_height_profile[i-1] > slicing_params.object_print_z_min + EPSILON &&
|
||||
std::abs(object->layer_height_profile[i] - object->config.layer_height) > EPSILON)
|
||||
return "The Wipe Tower is currently only supported with constant Z layer spacing. Layer editing is not allowed.";*/
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -655,7 +658,7 @@ std::string Print::validate() const
|
|||
// find the smallest nozzle diameter
|
||||
std::vector<unsigned int> extruders = this->extruders();
|
||||
if (extruders.empty())
|
||||
return "The supplied settings will cause an empty print.";
|
||||
return L("The supplied settings will cause an empty print.");
|
||||
|
||||
std::vector<double> nozzle_diameters;
|
||||
for (unsigned int extruder_id : extruders)
|
||||
|
@ -665,7 +668,7 @@ std::string Print::validate() const
|
|||
unsigned int total_extruders_count = this->config.nozzle_diameter.size();
|
||||
for (const auto& extruder_idx : extruders)
|
||||
if ( extruder_idx >= total_extruders_count )
|
||||
return "One or more object were assigned an extruder that the printer does not have.";
|
||||
return L("One or more object were assigned an extruder that the printer does not have.");
|
||||
|
||||
for (PrintObject *object : this->objects) {
|
||||
if ((object->config.support_material_extruder == -1 || object->config.support_material_interface_extruder == -1) &&
|
||||
|
@ -674,13 +677,13 @@ std::string Print::validate() const
|
|||
// will be printed with the current tool without a forced tool change. Play safe, assert that all object nozzles
|
||||
// are of the same diameter.
|
||||
if (nozzle_diameters.size() > 1)
|
||||
return "Printing with multiple extruders of differing nozzle diameters. "
|
||||
return L("Printing with multiple extruders of differing nozzle diameters. "
|
||||
"If support is to be printed with the current extruder (support_material_extruder == 0 or support_material_interface_extruder == 0), "
|
||||
"all nozzles have to be of the same diameter.";
|
||||
"all nozzles have to be of the same diameter.");
|
||||
}
|
||||
|
||||
// validate first_layer_height
|
||||
double first_layer_height = object->config.get_abs_value("first_layer_height");
|
||||
double first_layer_height = object->config.get_abs_value(L("first_layer_height"));
|
||||
double first_layer_min_nozzle_diameter;
|
||||
if (object->config.raft_layers > 0) {
|
||||
// if we have raft layers, only support material extruder is used on first layer
|
||||
|
@ -695,11 +698,11 @@ std::string Print::validate() const
|
|||
first_layer_min_nozzle_diameter = min_nozzle_diameter;
|
||||
}
|
||||
if (first_layer_height > first_layer_min_nozzle_diameter)
|
||||
return "First layer height can't be greater than nozzle diameter";
|
||||
return L("First layer height can't be greater than nozzle diameter");
|
||||
|
||||
// validate layer_height
|
||||
if (object->config.layer_height.value > min_nozzle_diameter)
|
||||
return "Layer height can't be greater than nozzle diameter";
|
||||
return L("Layer height can't be greater than nozzle diameter");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1037,6 +1040,14 @@ void Print::_make_wipe_tower()
|
|||
if (! this->has_wipe_tower())
|
||||
return;
|
||||
|
||||
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
|
||||
std::vector<float> wiping_matrix((this->config.wiping_volumes_matrix.values).begin(),(this->config.wiping_volumes_matrix.values).end());
|
||||
// Extract purging volumes for each extruder pair:
|
||||
std::vector<std::vector<float>> wipe_volumes;
|
||||
const unsigned int number_of_extruders = (unsigned int)(sqrt(wiping_matrix.size())+EPSILON);
|
||||
for (unsigned int i = 0; i<number_of_extruders; ++i)
|
||||
wipe_volumes.push_back(std::vector<float>(wiping_matrix.begin()+i*number_of_extruders, wiping_matrix.begin()+(i+1)*number_of_extruders));
|
||||
|
||||
// Let the ToolOrdering class know there will be initial priming extrusions at the start of the print.
|
||||
m_tool_ordering = ToolOrdering(*this, (unsigned int)-1, true);
|
||||
if (! m_tool_ordering.has_wipe_tower())
|
||||
|
@ -1052,7 +1063,7 @@ void Print::_make_wipe_tower()
|
|||
size_t idx_end = m_tool_ordering.layer_tools().size();
|
||||
// Find the first wipe tower layer, which does not have a counterpart in an object or a support layer.
|
||||
for (size_t i = 0; i < idx_end; ++ i) {
|
||||
const ToolOrdering::LayerTools < = m_tool_ordering.layer_tools()[i];
|
||||
const LayerTools < = m_tool_ordering.layer_tools()[i];
|
||||
if (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support) {
|
||||
idx_begin = i;
|
||||
break;
|
||||
|
@ -1066,7 +1077,7 @@ void Print::_make_wipe_tower()
|
|||
for (; it_layer != it_end && (*it_layer)->print_z - EPSILON < wipe_tower_new_layer_print_z_first; ++ it_layer);
|
||||
// Find the stopper of the sequence of wipe tower layers, which do not have a counterpart in an object or a support layer.
|
||||
for (size_t i = idx_begin; i < idx_end; ++ i) {
|
||||
ToolOrdering::LayerTools < = const_cast<ToolOrdering::LayerTools&>(m_tool_ordering.layer_tools()[i]);
|
||||
LayerTools < = const_cast<LayerTools&>(m_tool_ordering.layer_tools()[i]);
|
||||
if (! (lt.has_wipe_tower && ! lt.has_object && ! lt.has_support))
|
||||
break;
|
||||
lt.has_support = true;
|
||||
|
@ -1081,22 +1092,20 @@ void Print::_make_wipe_tower()
|
|||
}
|
||||
}
|
||||
|
||||
// Get wiping matrix to get number of extruders and convert vector<double> to vector<float>:
|
||||
std::vector<float> wiping_volumes((this->config.wiping_volumes_matrix.values).begin(),(this->config.wiping_volumes_matrix.values).end());
|
||||
|
||||
// Initialize the wipe tower.
|
||||
WipeTowerPrusaMM wipe_tower(
|
||||
float(this->config.wipe_tower_x.value), float(this->config.wipe_tower_y.value),
|
||||
float(this->config.wipe_tower_width.value),
|
||||
float(this->config.wipe_tower_rotation_angle.value), float(this->config.cooling_tube_retraction.value),
|
||||
float(this->config.cooling_tube_length.value), float(this->config.parking_pos_retraction.value),
|
||||
float(this->config.wipe_tower_bridging), wiping_volumes, m_tool_ordering.first_extruder());
|
||||
float(this->config.extra_loading_move.value), float(this->config.wipe_tower_bridging), wipe_volumes,
|
||||
m_tool_ordering.first_extruder());
|
||||
|
||||
//wipe_tower.set_retract();
|
||||
//wipe_tower.set_zhop();
|
||||
|
||||
// Set the extruder & material properties at the wipe tower object.
|
||||
for (size_t i = 0; i < (int)(sqrt(wiping_volumes.size())+EPSILON); ++ i)
|
||||
for (size_t i = 0; i < number_of_extruders; ++ i)
|
||||
wipe_tower.set_extruder(
|
||||
i,
|
||||
WipeTowerPrusaMM::parse_material(this->config.filament_type.get_at(i).c_str()),
|
||||
|
@ -1105,91 +1114,44 @@ void Print::_make_wipe_tower()
|
|||
this->config.filament_loading_speed.get_at(i),
|
||||
this->config.filament_unloading_speed.get_at(i),
|
||||
this->config.filament_toolchange_delay.get_at(i),
|
||||
this->config.filament_cooling_moves.get_at(i),
|
||||
this->config.filament_cooling_initial_speed.get_at(i),
|
||||
this->config.filament_cooling_final_speed.get_at(i),
|
||||
this->config.filament_ramming_parameters.get_at(i),
|
||||
this->config.nozzle_diameter.get_at(i));
|
||||
|
||||
// When printing the first layer's wipe tower, the first extruder is expected to be active and primed.
|
||||
// Therefore the number of wipe sections at the wipe tower will be (m_tool_ordering.front().extruders-1) at the 1st layer.
|
||||
// The following variable is true if the last priming section cannot be squeezed inside the wipe tower.
|
||||
bool last_priming_wipe_full = m_tool_ordering.front().extruders.size() > m_tool_ordering.front().wipe_tower_partitions;
|
||||
|
||||
m_wipe_tower_priming = Slic3r::make_unique<WipeTower::ToolChangeResult>(
|
||||
wipe_tower.prime(this->skirt_first_layer_height(), m_tool_ordering.all_extruders(), ! last_priming_wipe_full));
|
||||
|
||||
wipe_tower.prime(this->skirt_first_layer_height(), m_tool_ordering.all_extruders(), false));
|
||||
|
||||
// Lets go through the wipe tower layers and determine pairs of extruder changes for each
|
||||
// to pass to wipe_tower (so that it can use it for planning the layout of the tower)
|
||||
{
|
||||
unsigned int current_extruder_id = m_tool_ordering.all_extruders().back();
|
||||
for (const auto &layer_tools : m_tool_ordering.layer_tools()) { // for all layers
|
||||
for (auto &layer_tools : m_tool_ordering.layer_tools()) { // for all layers
|
||||
if (!layer_tools.has_wipe_tower) continue;
|
||||
bool first_layer = &layer_tools == &m_tool_ordering.front();
|
||||
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, current_extruder_id,false);
|
||||
for (const auto extruder_id : layer_tools.extruders) {
|
||||
if ((first_layer && extruder_id == m_tool_ordering.all_extruders().back()) || extruder_id != current_extruder_id) {
|
||||
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id, first_layer && extruder_id == m_tool_ordering.all_extruders().back());
|
||||
float volume_to_wipe = wipe_volumes[current_extruder_id][extruder_id]; // total volume to wipe after this toolchange
|
||||
|
||||
// try to assign some infills/objects for the wiping:
|
||||
volume_to_wipe = layer_tools.wiping_extrusions().mark_wiping_extrusions(*this, extruder_id, wipe_volumes[current_extruder_id][extruder_id]);
|
||||
|
||||
wipe_tower.plan_toolchange(layer_tools.print_z, layer_tools.wipe_tower_layer_height, current_extruder_id, extruder_id, first_layer && extruder_id == m_tool_ordering.all_extruders().back(), volume_to_wipe);
|
||||
current_extruder_id = extruder_id;
|
||||
}
|
||||
}
|
||||
layer_tools.wiping_extrusions().ensure_perimeters_infills_order(*this);
|
||||
if (&layer_tools == &m_tool_ordering.back() || (&layer_tools + 1)->wipe_tower_partitions == 0)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// Generate the wipe tower layers.
|
||||
m_wipe_tower_tool_changes.reserve(m_tool_ordering.layer_tools().size());
|
||||
wipe_tower.generate(m_wipe_tower_tool_changes);
|
||||
|
||||
// Set current_extruder_id to the last extruder primed.
|
||||
/*unsigned int current_extruder_id = m_tool_ordering.all_extruders().back();
|
||||
|
||||
for (const ToolOrdering::LayerTools &layer_tools : m_tool_ordering.layer_tools()) {
|
||||
if (! layer_tools.has_wipe_tower)
|
||||
// This is a support only layer, or the wipe tower does not reach to this height.
|
||||
continue;
|
||||
bool first_layer = &layer_tools == &m_tool_ordering.front();
|
||||
bool last_layer = &layer_tools == &m_tool_ordering.back() || (&layer_tools + 1)->wipe_tower_partitions == 0;
|
||||
wipe_tower.set_layer(
|
||||
float(layer_tools.print_z),
|
||||
float(layer_tools.wipe_tower_layer_height),
|
||||
layer_tools.wipe_tower_partitions,
|
||||
first_layer,
|
||||
last_layer);
|
||||
std::vector<WipeTower::ToolChangeResult> tool_changes;
|
||||
for (unsigned int extruder_id : layer_tools.extruders)
|
||||
// Call the wipe_tower.tool_change() at the first layer for the initial extruder
|
||||
// to extrude the wipe tower brim,
|
||||
if ((first_layer && extruder_id == m_tool_ordering.all_extruders().back()) ||
|
||||
// or when an extruder shall be switched.
|
||||
extruder_id != current_extruder_id) {
|
||||
tool_changes.emplace_back(wipe_tower.tool_change(extruder_id, extruder_id == layer_tools.extruders.back(), WipeTower::PURPOSE_EXTRUDE));
|
||||
current_extruder_id = extruder_id;
|
||||
}
|
||||
if (! wipe_tower.layer_finished()) {
|
||||
tool_changes.emplace_back(wipe_tower.finish_layer(WipeTower::PURPOSE_EXTRUDE));
|
||||
if (tool_changes.size() > 1) {
|
||||
// Merge the two last tool changes into one.
|
||||
WipeTower::ToolChangeResult &tc1 = tool_changes[tool_changes.size() - 2];
|
||||
WipeTower::ToolChangeResult &tc2 = tool_changes.back();
|
||||
if (tc1.end_pos != tc2.start_pos) {
|
||||
// Add a travel move from tc1.end_pos to tc2.start_pos.
|
||||
char buf[2048];
|
||||
sprintf(buf, "G1 X%.3f Y%.3f F7200\n", tc2.start_pos.x, tc2.start_pos.y);
|
||||
tc1.gcode += buf;
|
||||
}
|
||||
tc1.gcode += tc2.gcode;
|
||||
append(tc1.extrusions, tc2.extrusions);
|
||||
tc1.end_pos = tc2.end_pos;
|
||||
tool_changes.pop_back();
|
||||
}
|
||||
}
|
||||
m_wipe_tower_tool_changes.emplace_back(std::move(tool_changes));
|
||||
if (last_layer)
|
||||
break;
|
||||
}*/
|
||||
|
||||
// Unload the current filament over the purge tower.
|
||||
coordf_t layer_height = this->objects.front()->config.layer_height.value;
|
||||
if (m_tool_ordering.back().wipe_tower_partitions > 0) {
|
||||
|
@ -1210,13 +1172,17 @@ void Print::_make_wipe_tower()
|
|||
wipe_tower.tool_change((unsigned int)-1, false));
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
std::string Print::output_filename()
|
||||
{
|
||||
this->placeholder_parser.update_timestamp();
|
||||
try {
|
||||
return this->placeholder_parser.process(this->config.output_filename_format.value, 0);
|
||||
} catch (std::runtime_error &err) {
|
||||
throw std::runtime_error(std::string("Failed processing of the output_filename_format template.\n") + err.what());
|
||||
throw std::runtime_error(L("Failed processing of the output_filename_format template.") + "\n" + err.what());
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1263,4 +1229,13 @@ void Print::print_to_png(std::string dirpath) {
|
|||
float(this->config.exp_time_first.value));
|
||||
}
|
||||
|
||||
|
||||
// Returns extruder this eec should be printed with, according to PrintRegion config
|
||||
int Print::get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion ®ion)
|
||||
{
|
||||
return is_infill(fill.role()) ? std::max<int>(0, (is_solid_infill(fill.entities.front()->role()) ? region.config.solid_infill_extruder : region.config.infill_extruder) - 1) :
|
||||
std::max<int>(region.config.perimeter_extruder.value - 1, 0);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -24,6 +24,7 @@ class Print;
|
|||
class PrintObject;
|
||||
class ModelObject;
|
||||
|
||||
|
||||
// Print step IDs for keeping track of the print state.
|
||||
enum PrintStep {
|
||||
psSkirt, psBrim, psWipeTower, psCount,
|
||||
|
@ -241,7 +242,8 @@ public:
|
|||
// TODO: status_cb
|
||||
ProgressIndicatorPtr progressindicator;
|
||||
|
||||
std::string estimated_print_time;
|
||||
std::string estimated_normal_print_time;
|
||||
std::string estimated_silent_print_time;
|
||||
double total_used_filament, total_extruded_volume, total_cost, total_weight;
|
||||
std::map<size_t, float> filament_stats;
|
||||
PrintState<PrintStep, psCount> state;
|
||||
|
@ -291,6 +293,9 @@ public:
|
|||
bool has_support_material() const;
|
||||
void auto_assign_extruders(ModelObject* model_object) const;
|
||||
|
||||
// Returns extruder this eec should be printed with, according to PrintRegion config:
|
||||
static int get_extruder(const ExtrusionEntityCollection& fill, const PrintRegion ®ion);
|
||||
|
||||
void _make_skirt();
|
||||
void _make_brim();
|
||||
|
||||
|
@ -329,6 +334,7 @@ private:
|
|||
tbb::atomic<bool> m_canceled;
|
||||
};
|
||||
|
||||
|
||||
#define FOREACH_BASE(type, container, iterator) for (type::const_iterator iterator = (container).begin(); iterator != (container).end(); ++iterator)
|
||||
#define FOREACH_REGION(print, region) FOREACH_BASE(PrintRegionPtrs, (print)->regions, region)
|
||||
#define FOREACH_OBJECT(print, object) FOREACH_BASE(PrintObjectPtrs, (print)->objects, object)
|
||||
|
|
|
@ -1,7 +1,10 @@
|
|||
#include "PrintConfig.hpp"
|
||||
#include "I18N.hpp"
|
||||
|
||||
#include <set>
|
||||
#include <boost/algorithm/string/replace.hpp>
|
||||
#include <boost/algorithm/string/case_conv.hpp>
|
||||
#include <boost/format.hpp>
|
||||
#include <boost/lexical_cast.hpp>
|
||||
#include <boost/thread.hpp>
|
||||
|
||||
|
@ -11,7 +14,7 @@ namespace Slic3r {
|
|||
|
||||
//! macro used to mark string used at localization,
|
||||
//! return same string
|
||||
#define L(s) s
|
||||
#define L(s) Slic3r::I18N::translate(s)
|
||||
|
||||
PrintConfigDef::PrintConfigDef()
|
||||
{
|
||||
|
@ -151,6 +154,11 @@ PrintConfigDef::PrintConfigDef()
|
|||
"with the active printer profile.");
|
||||
def->default_value = new ConfigOptionString();
|
||||
|
||||
// The following value is to be stored into the project file (AMF, 3MF, Config ...)
|
||||
// and it contains a sum of "compatible_printers_condition" values over the print and filament profiles.
|
||||
def = this->add("compatible_printers_condition_cummulative", coStrings);
|
||||
def->default_value = new ConfigOptionStrings();
|
||||
|
||||
def = this->add("complete_objects", coBool);
|
||||
def->label = L("Complete individual objects");
|
||||
def->tooltip = L("When printing multiple objects or copies, this feature will complete "
|
||||
|
@ -283,11 +291,11 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_values.push_back("hilbertcurve");
|
||||
def->enum_values.push_back("archimedeanchords");
|
||||
def->enum_values.push_back("octagramspiral");
|
||||
def->enum_labels.push_back("Rectilinear");
|
||||
def->enum_labels.push_back("Concentric");
|
||||
def->enum_labels.push_back("Hilbert Curve");
|
||||
def->enum_labels.push_back("Archimedean Chords");
|
||||
def->enum_labels.push_back("Octagram Spiral");
|
||||
def->enum_labels.push_back(L("Rectilinear"));
|
||||
def->enum_labels.push_back(L("Concentric"));
|
||||
def->enum_labels.push_back(L("Hilbert Curve"));
|
||||
def->enum_labels.push_back(L("Archimedean Chords"));
|
||||
def->enum_labels.push_back(L("Octagram Spiral"));
|
||||
// solid_fill_pattern is an obsolete equivalent to external_fill_pattern.
|
||||
def->aliases.push_back("solid_fill_pattern");
|
||||
def->default_value = new ConfigOptionEnum<InfillPattern>(ipRectilinear);
|
||||
|
@ -344,6 +352,7 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_labels.push_back("2");
|
||||
def->enum_labels.push_back("3");
|
||||
def->enum_labels.push_back("4");
|
||||
def->enum_labels.push_back("5");
|
||||
|
||||
def = this->add("extruder_clearance_height", coFloat);
|
||||
def->label = L("Height");
|
||||
|
@ -483,6 +492,31 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats { 0. };
|
||||
|
||||
def = this->add("filament_cooling_moves", coInts);
|
||||
def->label = L("Number of cooling moves");
|
||||
def->tooltip = L("Filament is cooled by being moved back and forth in the "
|
||||
"cooling tubes. Specify desired number of these moves ");
|
||||
def->cli = "filament-cooling-moves=i@";
|
||||
def->max = 0;
|
||||
def->max = 20;
|
||||
def->default_value = new ConfigOptionInts { 4 };
|
||||
|
||||
def = this->add("filament_cooling_initial_speed", coFloats);
|
||||
def->label = L("Speed of the first cooling move");
|
||||
def->tooltip = L("Cooling moves are gradually accelerating beginning at this speed. ");
|
||||
def->cli = "filament-cooling-initial-speed=i@";
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats { 2.2f };
|
||||
|
||||
def = this->add("filament_cooling_final_speed", coFloats);
|
||||
def->label = L("Speed of the last cooling move");
|
||||
def->tooltip = L("Cooling moves are gradually accelerating towards this speed. ");
|
||||
def->cli = "filament-cooling-final-speed=i@";
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloats { 3.4f };
|
||||
|
||||
def = this->add("filament_ramming_parameters", coStrings);
|
||||
def->label = L("Ramming parameters");
|
||||
def->tooltip = L("This string is edited by RammingDialog and contains ramming specific parameters ");
|
||||
|
@ -617,19 +651,19 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_values.push_back("hilbertcurve");
|
||||
def->enum_values.push_back("archimedeanchords");
|
||||
def->enum_values.push_back("octagramspiral");
|
||||
def->enum_labels.push_back("Rectilinear");
|
||||
def->enum_labels.push_back("Grid");
|
||||
def->enum_labels.push_back("Triangles");
|
||||
def->enum_labels.push_back("Stars");
|
||||
def->enum_labels.push_back("Cubic");
|
||||
def->enum_labels.push_back("Line");
|
||||
def->enum_labels.push_back("Concentric");
|
||||
def->enum_labels.push_back("Honeycomb");
|
||||
def->enum_labels.push_back("3D Honeycomb");
|
||||
def->enum_labels.push_back("Gyroid");
|
||||
def->enum_labels.push_back("Hilbert Curve");
|
||||
def->enum_labels.push_back("Archimedean Chords");
|
||||
def->enum_labels.push_back("Octagram Spiral");
|
||||
def->enum_labels.push_back(L("Rectilinear"));
|
||||
def->enum_labels.push_back(L("Grid"));
|
||||
def->enum_labels.push_back(L("Triangles"));
|
||||
def->enum_labels.push_back(L("Stars"));
|
||||
def->enum_labels.push_back(L("Cubic"));
|
||||
def->enum_labels.push_back(L("Line"));
|
||||
def->enum_labels.push_back(L("Concentric"));
|
||||
def->enum_labels.push_back(L("Honeycomb"));
|
||||
def->enum_labels.push_back(L("3D Honeycomb"));
|
||||
def->enum_labels.push_back(L("Gyroid"));
|
||||
def->enum_labels.push_back(L("Hilbert Curve"));
|
||||
def->enum_labels.push_back(L("Archimedean Chords"));
|
||||
def->enum_labels.push_back(L("Octagram Spiral"));
|
||||
def->default_value = new ConfigOptionEnum<InfillPattern>(ipStars);
|
||||
|
||||
def = this->add("first_layer_acceleration", coFloat);
|
||||
|
@ -737,7 +771,7 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_labels.push_back("Mach3/LinuxCNC");
|
||||
def->enum_labels.push_back("Machinekit");
|
||||
def->enum_labels.push_back("Smoothie");
|
||||
def->enum_labels.push_back("No extrusion");
|
||||
def->enum_labels.push_back(L("No extrusion"));
|
||||
def->default_value = new ConfigOptionEnum<GCodeFlavor>(gcfMarlin);
|
||||
|
||||
def = this->add("infill_acceleration", coFloat);
|
||||
|
@ -821,7 +855,12 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->tooltip = L("Name of the profile, from which this profile inherits.");
|
||||
def->full_width = true;
|
||||
def->height = 50;
|
||||
def->default_value = new ConfigOptionString("");
|
||||
def->default_value = new ConfigOptionString();
|
||||
|
||||
// The following value is to be stored into the project file (AMF, 3MF, Config ...)
|
||||
// and it contains a sum of "inherits" values over the print and filament profiles.
|
||||
def = this->add("inherits_cummulative", coStrings);
|
||||
def->default_value = new ConfigOptionStrings();
|
||||
|
||||
def = this->add("interface_shells", coBool);
|
||||
def->label = L("Interface shells");
|
||||
|
@ -853,6 +892,98 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(0.3);
|
||||
|
||||
def = this->add("silent_mode", coBool);
|
||||
def->label = L("Support silent mode");
|
||||
def->tooltip = L("Set silent mode for the G-code flavor");
|
||||
def->default_value = new ConfigOptionBool(true);
|
||||
|
||||
const int machine_limits_opt_width = 70;
|
||||
{
|
||||
struct AxisDefault {
|
||||
std::string name;
|
||||
std::vector<double> max_feedrate;
|
||||
std::vector<double> max_acceleration;
|
||||
std::vector<double> max_jerk;
|
||||
};
|
||||
std::vector<AxisDefault> axes {
|
||||
// name, max_feedrate, max_acceleration, max_jerk
|
||||
{ "x", { 500., 200. }, { 9000., 1000. }, { 10., 10. } },
|
||||
{ "y", { 500., 200. }, { 9000., 1000. }, { 10., 10. } },
|
||||
{ "z", { 12., 12. }, { 500., 200. }, { 0.2, 0.4 } },
|
||||
{ "e", { 120., 120. }, { 10000., 5000. }, { 2.5, 2.5 } }
|
||||
};
|
||||
for (const AxisDefault &axis : axes) {
|
||||
std::string axis_upper = boost::to_upper_copy<std::string>(axis.name);
|
||||
// Add the machine feedrate limits for XYZE axes. (M203)
|
||||
def = this->add("machine_max_feedrate_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format(L("Maximum feedrate %1%")) % axis_upper).str();
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format(L("Maximum feedrate of the %1% axis")) % axis_upper).str();
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats(axis.max_feedrate);
|
||||
// Add the machine acceleration limits for XYZE axes (M201)
|
||||
def = this->add("machine_max_acceleration_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format(L("Maximum acceleration %1%")) % axis_upper).str();
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format(L("Maximum acceleration of the %1% axis")) % axis_upper).str();
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats(axis.max_acceleration);
|
||||
// Add the machine jerk limits for XYZE axes (M205)
|
||||
def = this->add("machine_max_jerk_" + axis.name, coFloats);
|
||||
def->full_label = (boost::format(L("Maximum jerk %1%")) % axis_upper).str();
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = (boost::format(L("Maximum jerk of the %1% axis")) % axis_upper).str();
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats(axis.max_jerk);
|
||||
}
|
||||
}
|
||||
|
||||
// M205 S... [mm/sec]
|
||||
def = this->add("machine_min_extruding_rate", coFloats);
|
||||
def->full_label = L("Minimum feedrate when extruding");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = L("Minimum feedrate when extruding") + " (M205 S)";
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats{ 0., 0. };
|
||||
|
||||
// M205 T... [mm/sec]
|
||||
def = this->add("machine_min_travel_rate", coFloats);
|
||||
def->full_label = L("Minimum travel feedrate");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = L("Minimum travel feedrate") + " (M205 T)";
|
||||
def->sidetext = L("mm/s");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats{ 0., 0. };
|
||||
|
||||
// M204 S... [mm/sec^2]
|
||||
def = this->add("machine_max_acceleration_extruding", coFloats);
|
||||
def->full_label = L("Maximum acceleration when extruding");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = L("Maximum acceleration when extruding") + " (M204 S)";
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats{ 1500., 1250. };
|
||||
|
||||
// M204 T... [mm/sec^2]
|
||||
def = this->add("machine_max_acceleration_retracting", coFloats);
|
||||
def->full_label = L("Maximum acceleration when retracting");
|
||||
def->category = L("Machine limits");
|
||||
def->tooltip = L("Maximum acceleration when retracting") + " (M204 T)";
|
||||
def->sidetext = L("mm/s²");
|
||||
def->min = 0;
|
||||
def->width = machine_limits_opt_width;
|
||||
def->default_value = new ConfigOptionFloats{ 1500., 1250. };
|
||||
|
||||
def = this->add("max_fan_speed", coInts);
|
||||
def->label = L("Max");
|
||||
def->tooltip = L("This setting represents the maximum speed of your fan.");
|
||||
|
@ -1037,6 +1168,15 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->default_value = new ConfigOptionFloat(92.f);
|
||||
|
||||
def = this->add("extra_loading_move", coFloat);
|
||||
def->label = L("Extra loading distance");
|
||||
def->tooltip = L("When set to zero, the distance the filament is moved from parking position during load "
|
||||
"is exactly the same as it was moved back during unload. When positive, it is loaded further, "
|
||||
" if negative, the loading move is shorter than unloading. ");
|
||||
def->sidetext = L("mm");
|
||||
def->cli = "extra_loading_move=f";
|
||||
def->default_value = new ConfigOptionFloat(-2.f);
|
||||
|
||||
def = this->add("perimeter_acceleration", coFloat);
|
||||
def->label = L("Perimeters");
|
||||
def->tooltip = L("This is the acceleration your printer will use for perimeters. "
|
||||
|
@ -1265,10 +1405,10 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_values.push_back("nearest");
|
||||
def->enum_values.push_back("aligned");
|
||||
def->enum_values.push_back("rear");
|
||||
def->enum_labels.push_back("Random");
|
||||
def->enum_labels.push_back("Nearest");
|
||||
def->enum_labels.push_back("Aligned");
|
||||
def->enum_labels.push_back("Rear");
|
||||
def->enum_labels.push_back(L("Random"));
|
||||
def->enum_labels.push_back(L("Nearest"));
|
||||
def->enum_labels.push_back(L("Aligned"));
|
||||
def->enum_labels.push_back(L("Rear"));
|
||||
def->default_value = new ConfigOptionEnum<SeamPosition>(spAligned);
|
||||
|
||||
#if 0
|
||||
|
@ -1481,7 +1621,7 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->label = L("Single Extruder Multi Material");
|
||||
def->tooltip = L("The printer multiplexes filaments into a single hot end.");
|
||||
def->cli = "single-extruder-multi-material!";
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
|
||||
def = this->add("support_material", coBool);
|
||||
def->label = L("Generate support material");
|
||||
|
@ -1531,8 +1671,8 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->min = 0;
|
||||
def->enum_values.push_back("0");
|
||||
def->enum_values.push_back("0.2");
|
||||
def->enum_labels.push_back("0 (soluble)");
|
||||
def->enum_labels.push_back("0.2 (detachable)");
|
||||
def->enum_labels.push_back((boost::format("0 (%1%)") % L("soluble")).str());
|
||||
def->enum_labels.push_back((boost::format("0.2 (%1%)") % L("detachable")).str());
|
||||
def->default_value = new ConfigOptionFloat(0.2);
|
||||
|
||||
def = this->add("support_material_enforce_layers", coInt);
|
||||
|
@ -1621,9 +1761,9 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->enum_values.push_back("rectilinear");
|
||||
def->enum_values.push_back("rectilinear-grid");
|
||||
def->enum_values.push_back("honeycomb");
|
||||
def->enum_labels.push_back("rectilinear");
|
||||
def->enum_labels.push_back("rectilinear grid");
|
||||
def->enum_labels.push_back("honeycomb");
|
||||
def->enum_labels.push_back(L("Rectilinear"));
|
||||
def->enum_labels.push_back(L("Rectilinear grid"));
|
||||
def->enum_labels.push_back(L("Honeycomb"));
|
||||
def->default_value = new ConfigOptionEnum<SupportMaterialPattern>(smpRectilinear);
|
||||
|
||||
def = this->add("support_material_spacing", coFloat);
|
||||
|
@ -1850,7 +1990,25 @@ PrintConfigDef::PrintConfigDef()
|
|||
def->sidetext = L("degrees");
|
||||
def->cli = "wipe-tower-rotation-angle=f";
|
||||
def->default_value = new ConfigOptionFloat(0.);
|
||||
|
||||
|
||||
def = this->add("wipe_into_infill", coBool);
|
||||
def->category = L("Extruders");
|
||||
def->label = L("Purging into infill");
|
||||
def->tooltip = L("Wiping after toolchange will be preferentially done inside infills. "
|
||||
"This lowers the amount of waste but may result in longer print time "
|
||||
" due to additional travel moves.");
|
||||
def->cli = "wipe-into-infill!";
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
|
||||
def = this->add("wipe_into_objects", coBool);
|
||||
def->category = L("Extruders");
|
||||
def->label = L("Purging into objects");
|
||||
def->tooltip = L("Objects will be used to wipe the nozzle after a toolchange to save material "
|
||||
"that would otherwise end up in the wipe tower and decrease print time. "
|
||||
"Colours of the objects will be mixed as a result.");
|
||||
def->cli = "wipe-into-objects!";
|
||||
def->default_value = new ConfigOptionBool(false);
|
||||
|
||||
def = this->add("wipe_tower_bridging", coFloat);
|
||||
def->label = L("Maximal bridging distance");
|
||||
def->tooltip = L("Maximal distance between supports on sparse infill sections. ");
|
||||
|
@ -2244,6 +2402,7 @@ std::string FullPrintConfig::validate()
|
|||
// Declare the static caches for each StaticPrintConfig derived class.
|
||||
StaticPrintConfig::StaticCache<class Slic3r::PrintObjectConfig> PrintObjectConfig::s_cache_PrintObjectConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::PrintRegionConfig> PrintRegionConfig::s_cache_PrintRegionConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::MachineEnvelopeConfig> MachineEnvelopeConfig::s_cache_MachineEnvelopeConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::GCodeConfig> GCodeConfig::s_cache_GCodeConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::PrintConfig> PrintConfig::s_cache_PrintConfig;
|
||||
StaticPrintConfig::StaticCache<class Slic3r::HostConfig> HostConfig::s_cache_HostConfig;
|
||||
|
|
|
@ -336,7 +336,8 @@ public:
|
|||
ConfigOptionBool support_material_with_sheath;
|
||||
ConfigOptionFloatOrPercent support_material_xy_spacing;
|
||||
ConfigOptionFloat xy_size_compensation;
|
||||
|
||||
ConfigOptionBool wipe_into_objects;
|
||||
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
|
@ -372,6 +373,7 @@ protected:
|
|||
OPT_PTR(support_material_threshold);
|
||||
OPT_PTR(support_material_with_sheath);
|
||||
OPT_PTR(xy_size_compensation);
|
||||
OPT_PTR(wipe_into_objects);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -414,7 +416,8 @@ public:
|
|||
ConfigOptionFloatOrPercent top_infill_extrusion_width;
|
||||
ConfigOptionInt top_solid_layers;
|
||||
ConfigOptionFloatOrPercent top_solid_infill_speed;
|
||||
|
||||
ConfigOptionBool wipe_into_infill;
|
||||
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
|
@ -452,6 +455,57 @@ protected:
|
|||
OPT_PTR(top_infill_extrusion_width);
|
||||
OPT_PTR(top_solid_infill_speed);
|
||||
OPT_PTR(top_solid_layers);
|
||||
OPT_PTR(wipe_into_infill);
|
||||
}
|
||||
};
|
||||
|
||||
class MachineEnvelopeConfig : public StaticPrintConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE(MachineEnvelopeConfig)
|
||||
public:
|
||||
// M201 X... Y... Z... E... [mm/sec^2]
|
||||
ConfigOptionFloats machine_max_acceleration_x;
|
||||
ConfigOptionFloats machine_max_acceleration_y;
|
||||
ConfigOptionFloats machine_max_acceleration_z;
|
||||
ConfigOptionFloats machine_max_acceleration_e;
|
||||
// M203 X... Y... Z... E... [mm/sec]
|
||||
ConfigOptionFloats machine_max_feedrate_x;
|
||||
ConfigOptionFloats machine_max_feedrate_y;
|
||||
ConfigOptionFloats machine_max_feedrate_z;
|
||||
ConfigOptionFloats machine_max_feedrate_e;
|
||||
// M204 S... [mm/sec^2]
|
||||
ConfigOptionFloats machine_max_acceleration_extruding;
|
||||
// M204 T... [mm/sec^2]
|
||||
ConfigOptionFloats machine_max_acceleration_retracting;
|
||||
// M205 X... Y... Z... E... [mm/sec]
|
||||
ConfigOptionFloats machine_max_jerk_x;
|
||||
ConfigOptionFloats machine_max_jerk_y;
|
||||
ConfigOptionFloats machine_max_jerk_z;
|
||||
ConfigOptionFloats machine_max_jerk_e;
|
||||
// M205 T... [mm/sec]
|
||||
ConfigOptionFloats machine_min_travel_rate;
|
||||
// M205 S... [mm/sec]
|
||||
ConfigOptionFloats machine_min_extruding_rate;
|
||||
|
||||
protected:
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
OPT_PTR(machine_max_acceleration_x);
|
||||
OPT_PTR(machine_max_acceleration_y);
|
||||
OPT_PTR(machine_max_acceleration_z);
|
||||
OPT_PTR(machine_max_acceleration_e);
|
||||
OPT_PTR(machine_max_feedrate_x);
|
||||
OPT_PTR(machine_max_feedrate_y);
|
||||
OPT_PTR(machine_max_feedrate_z);
|
||||
OPT_PTR(machine_max_feedrate_e);
|
||||
OPT_PTR(machine_max_acceleration_extruding);
|
||||
OPT_PTR(machine_max_acceleration_retracting);
|
||||
OPT_PTR(machine_max_jerk_x);
|
||||
OPT_PTR(machine_max_jerk_y);
|
||||
OPT_PTR(machine_max_jerk_z);
|
||||
OPT_PTR(machine_max_jerk_e);
|
||||
OPT_PTR(machine_min_travel_rate);
|
||||
OPT_PTR(machine_min_extruding_rate);
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -476,6 +530,9 @@ public:
|
|||
ConfigOptionFloats filament_loading_speed;
|
||||
ConfigOptionFloats filament_unloading_speed;
|
||||
ConfigOptionFloats filament_toolchange_delay;
|
||||
ConfigOptionInts filament_cooling_moves;
|
||||
ConfigOptionFloats filament_cooling_initial_speed;
|
||||
ConfigOptionFloats filament_cooling_final_speed;
|
||||
ConfigOptionStrings filament_ramming_parameters;
|
||||
ConfigOptionBool gcode_comments;
|
||||
ConfigOptionEnum<GCodeFlavor> gcode_flavor;
|
||||
|
@ -505,7 +562,8 @@ public:
|
|||
ConfigOptionFloat cooling_tube_retraction;
|
||||
ConfigOptionFloat cooling_tube_length;
|
||||
ConfigOptionFloat parking_pos_retraction;
|
||||
|
||||
ConfigOptionBool silent_mode;
|
||||
ConfigOptionFloat extra_loading_move;
|
||||
|
||||
std::string get_extrusion_axis() const
|
||||
{
|
||||
|
@ -533,6 +591,9 @@ protected:
|
|||
OPT_PTR(filament_loading_speed);
|
||||
OPT_PTR(filament_unloading_speed);
|
||||
OPT_PTR(filament_toolchange_delay);
|
||||
OPT_PTR(filament_cooling_moves);
|
||||
OPT_PTR(filament_cooling_initial_speed);
|
||||
OPT_PTR(filament_cooling_final_speed);
|
||||
OPT_PTR(filament_ramming_parameters);
|
||||
OPT_PTR(gcode_comments);
|
||||
OPT_PTR(gcode_flavor);
|
||||
|
@ -562,11 +623,13 @@ protected:
|
|||
OPT_PTR(cooling_tube_retraction);
|
||||
OPT_PTR(cooling_tube_length);
|
||||
OPT_PTR(parking_pos_retraction);
|
||||
OPT_PTR(silent_mode);
|
||||
OPT_PTR(extra_loading_move);
|
||||
}
|
||||
};
|
||||
|
||||
// This object is mapped to Perl as Slic3r::Config::Print.
|
||||
class PrintConfig : public GCodeConfig
|
||||
class PrintConfig : public MachineEnvelopeConfig, public GCodeConfig
|
||||
{
|
||||
STATIC_PRINT_CONFIG_CACHE_DERIVED(PrintConfig)
|
||||
PrintConfig() : GCodeConfig(0) { initialize_cache(); *this = s_cache_PrintConfig.defaults(); }
|
||||
|
@ -614,6 +677,7 @@ public:
|
|||
ConfigOptionString output_filename_format;
|
||||
ConfigOptionFloat perimeter_acceleration;
|
||||
ConfigOptionStrings post_process;
|
||||
ConfigOptionString printer_model;
|
||||
ConfigOptionString printer_notes;
|
||||
ConfigOptionFloat resolution;
|
||||
ConfigOptionFloats retract_before_travel;
|
||||
|
@ -648,6 +712,7 @@ protected:
|
|||
PrintConfig(int) : GCodeConfig(1) {}
|
||||
void initialize(StaticCacheBase &cache, const char *base_ptr)
|
||||
{
|
||||
this->MachineEnvelopeConfig::initialize(cache, base_ptr);
|
||||
this->GCodeConfig::initialize(cache, base_ptr);
|
||||
OPT_PTR(avoid_crossing_perimeters);
|
||||
OPT_PTR(bed_shape);
|
||||
|
@ -689,6 +754,7 @@ protected:
|
|||
OPT_PTR(output_filename_format);
|
||||
OPT_PTR(perimeter_acceleration);
|
||||
OPT_PTR(post_process);
|
||||
OPT_PTR(printer_model);
|
||||
OPT_PTR(printer_notes);
|
||||
OPT_PTR(resolution);
|
||||
OPT_PTR(retract_before_travel);
|
||||
|
|
|
@ -93,6 +93,7 @@ bool PrintObject::set_copies(const Points &points)
|
|||
|
||||
bool invalidated = this->_print->invalidate_step(psSkirt);
|
||||
invalidated |= this->_print->invalidate_step(psBrim);
|
||||
invalidated |= this->_print->invalidate_step(psWipeTower);
|
||||
return invalidated;
|
||||
}
|
||||
|
||||
|
@ -232,7 +233,10 @@ bool PrintObject::invalidate_state_by_config_options(const std::vector<t_config_
|
|||
|| opt_key == "perimeter_speed"
|
||||
|| opt_key == "small_perimeter_speed"
|
||||
|| opt_key == "solid_infill_speed"
|
||||
|| opt_key == "top_solid_infill_speed") {
|
||||
|| opt_key == "top_solid_infill_speed"
|
||||
|| opt_key == "wipe_into_infill" // when these these two are changed, we only need to invalidate the wipe tower,
|
||||
|| opt_key == "wipe_into_objects" // which we already did at the very beginning - nothing more to be done
|
||||
) {
|
||||
// these options only affect G-code export, so nothing to invalidate
|
||||
} else {
|
||||
// for legacy, if we can't handle this option let's invalidate all steps
|
||||
|
@ -272,6 +276,8 @@ bool PrintObject::invalidate_step(PrintObjectStep step)
|
|||
}
|
||||
|
||||
// Wipe tower depends on the ordering of extruders, which in turn depends on everything.
|
||||
// It also decides about what the wipe_into_infill / wipe_into_object features will do,
|
||||
// and that too depends on many of the settings.
|
||||
invalidated |= this->_print->invalidate_step(psWipeTower);
|
||||
return invalidated;
|
||||
}
|
||||
|
|
|
@ -96,7 +96,8 @@ public:
|
|||
void call(int i, int j) const;
|
||||
void call(const std::vector<int>& ints) const;
|
||||
void call(double d) const;
|
||||
void call(double x, double y) const;
|
||||
void call(double a, double b) const;
|
||||
void call(double a, double b, double c, double d) const;
|
||||
void call(bool b) const;
|
||||
private:
|
||||
void *m_callback;
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
#include <boost/thread.hpp>
|
||||
|
||||
#define SLIC3R_FORK_NAME "Slic3r Prusa Edition"
|
||||
#define SLIC3R_VERSION "1.40.1-rc2"
|
||||
#define SLIC3R_VERSION "1.40.1"
|
||||
#define SLIC3R_BUILD "UNKNOWN"
|
||||
|
||||
typedef int32_t coord_t;
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
#include "Utils.hpp"
|
||||
#include "I18N.hpp"
|
||||
|
||||
#include <locale>
|
||||
#include <ctime>
|
||||
|
@ -123,6 +124,9 @@ const std::string& localization_dir()
|
|||
return g_local_dir;
|
||||
}
|
||||
|
||||
// Translate function callback, to call wxWidgets translate function to convert non-localized UTF8 string to a localized one.
|
||||
Slic3r::I18N::translate_fn_type Slic3r::I18N::translate_fn = nullptr;
|
||||
|
||||
static std::string g_data_dir;
|
||||
|
||||
void set_data_dir(const std::string &dir)
|
||||
|
@ -262,7 +266,7 @@ void PerlCallback::call(double d) const
|
|||
LEAVE;
|
||||
}
|
||||
|
||||
void PerlCallback::call(double x, double y) const
|
||||
void PerlCallback::call(double a, double b) const
|
||||
{
|
||||
if (!m_callback)
|
||||
return;
|
||||
|
@ -270,8 +274,26 @@ void PerlCallback::call(double x, double y) const
|
|||
ENTER;
|
||||
SAVETMPS;
|
||||
PUSHMARK(SP);
|
||||
XPUSHs(sv_2mortal(newSVnv(x)));
|
||||
XPUSHs(sv_2mortal(newSVnv(y)));
|
||||
XPUSHs(sv_2mortal(newSVnv(a)));
|
||||
XPUSHs(sv_2mortal(newSVnv(b)));
|
||||
PUTBACK;
|
||||
perl_call_sv(SvRV((SV*)m_callback), G_DISCARD);
|
||||
FREETMPS;
|
||||
LEAVE;
|
||||
}
|
||||
|
||||
void PerlCallback::call(double a, double b, double c, double d) const
|
||||
{
|
||||
if (!m_callback)
|
||||
return;
|
||||
dSP;
|
||||
ENTER;
|
||||
SAVETMPS;
|
||||
PUSHMARK(SP);
|
||||
XPUSHs(sv_2mortal(newSVnv(a)));
|
||||
XPUSHs(sv_2mortal(newSVnv(b)));
|
||||
XPUSHs(sv_2mortal(newSVnv(c)));
|
||||
XPUSHs(sv_2mortal(newSVnv(d)));
|
||||
PUTBACK;
|
||||
perl_call_sv(SvRV((SV*)m_callback), G_DISCARD);
|
||||
FREETMPS;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue