mirror of
https://github.com/SoftFever/OrcaSlicer.git
synced 2025-07-08 23:46:24 -06:00
Fixed out-of-bouds access in RammingChart.cpp in case the ramming was turned off
This commit is contained in:
parent
e9d629f248
commit
7185125f9c
1 changed files with 81 additions and 82 deletions
|
@ -141,6 +141,9 @@ void Chart::mouse_double_clicked(wxMouseEvent& event) {
|
|||
|
||||
|
||||
void Chart::recalculate_line() {
|
||||
m_line_to_draw.clear();
|
||||
m_total_volume = 0.f;
|
||||
|
||||
std::vector<wxPoint> points;
|
||||
for (auto& but : m_buttons) {
|
||||
points.push_back(wxPoint(math_to_screen(but.get_pos())));
|
||||
|
@ -150,92 +153,88 @@ void Chart::recalculate_line() {
|
|||
break;
|
||||
}
|
||||
}
|
||||
std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; });
|
||||
|
||||
m_line_to_draw.clear();
|
||||
m_total_volume = 0.f;
|
||||
|
||||
|
||||
// Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods
|
||||
const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point
|
||||
// false - second ---- || -------
|
||||
const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points
|
||||
std::vector<float> diag(N+1);
|
||||
std::vector<float> mu(N+1);
|
||||
std::vector<float> lambda(N+1);
|
||||
std::vector<float> h(N+1);
|
||||
std::vector<float> rhs(N+1);
|
||||
|
||||
// let's fill in inner equations
|
||||
for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x;
|
||||
std::fill(diag.begin(),diag.end(),2.f);
|
||||
for (int i=1;i<=N-1;++i) {
|
||||
mu[i] = h[i]/(h[i]+h[i+1]);
|
||||
lambda[i] = 1.f - mu[i];
|
||||
rhs[i] = 6 * ( float(points[i+1].y-points[i].y )/(h[i+1]*(points[i+1].x-points[i-1].x)) -
|
||||
float(points[i].y -points[i-1].y)/(h[i] *(points[i+1].x-points[i-1].x)) );
|
||||
}
|
||||
|
||||
// now fill in the first and last equations, according to boundary conditions:
|
||||
if (boundary_first_derivative) {
|
||||
const float endpoints_derivative = 0;
|
||||
lambda[0] = 1;
|
||||
mu[N] = 1;
|
||||
rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative);
|
||||
rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x));
|
||||
}
|
||||
else {
|
||||
lambda[0] = 0;
|
||||
mu[N] = 0;
|
||||
rhs[0] = 0;
|
||||
rhs[N] = 0;
|
||||
}
|
||||
|
||||
// The calculation wouldn't work in case the ramming is to be turned off completely.
|
||||
if (points.size()>1) {
|
||||
std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; });
|
||||
|
||||
// Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods
|
||||
const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point
|
||||
// false - second ---- || -------
|
||||
const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points
|
||||
std::vector<float> diag(N+1);
|
||||
std::vector<float> mu(N+1);
|
||||
std::vector<float> lambda(N+1);
|
||||
std::vector<float> h(N+1);
|
||||
std::vector<float> rhs(N+1);
|
||||
|
||||
// the trilinear system is ready to be solved:
|
||||
for (int i=1;i<=N;++i) {
|
||||
float multiple = mu[i]/diag[i-1]; // let's subtract proper multiple of above equation
|
||||
diag[i]-= multiple * lambda[i-1];
|
||||
rhs[i] -= multiple * rhs[i-1];
|
||||
}
|
||||
// now the back substitution (vector mu contains invalid values from now on):
|
||||
rhs[N] = rhs[N]/diag[N];
|
||||
for (int i=N-1;i>=0;--i)
|
||||
rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i];
|
||||
|
||||
|
||||
|
||||
|
||||
unsigned int i=1;
|
||||
float y=0.f;
|
||||
for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) {
|
||||
if (splines) {
|
||||
if (i<points.size()-1 && points[i].x < x ) {
|
||||
++i;
|
||||
// let's fill in inner equations
|
||||
for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x;
|
||||
std::fill(diag.begin(),diag.end(),2.f);
|
||||
for (int i=1;i<=N-1;++i) {
|
||||
mu[i] = h[i]/(h[i]+h[i+1]);
|
||||
lambda[i] = 1.f - mu[i];
|
||||
rhs[i] = 6 * ( float(points[i+1].y-points[i].y )/(h[i+1]*(points[i+1].x-points[i-1].x)) -
|
||||
float(points[i].y -points[i-1].y)/(h[i] *(points[i+1].x-points[i-1].x)) );
|
||||
}
|
||||
|
||||
// now fill in the first and last equations, according to boundary conditions:
|
||||
if (boundary_first_derivative) {
|
||||
const float endpoints_derivative = 0;
|
||||
lambda[0] = 1;
|
||||
mu[N] = 1;
|
||||
rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative);
|
||||
rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x));
|
||||
}
|
||||
else {
|
||||
lambda[0] = 0;
|
||||
mu[N] = 0;
|
||||
rhs[0] = 0;
|
||||
rhs[N] = 0;
|
||||
}
|
||||
|
||||
// the trilinear system is ready to be solved:
|
||||
for (int i=1;i<=N;++i) {
|
||||
float multiple = mu[i]/diag[i-1]; // let's subtract proper multiple of above equation
|
||||
diag[i]-= multiple * lambda[i-1];
|
||||
rhs[i] -= multiple * rhs[i-1];
|
||||
}
|
||||
// now the back substitution (vector mu contains invalid values from now on):
|
||||
rhs[N] = rhs[N]/diag[N];
|
||||
for (int i=N-1;i>=0;--i)
|
||||
rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i];
|
||||
|
||||
unsigned int i=1;
|
||||
float y=0.f;
|
||||
for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) {
|
||||
if (splines) {
|
||||
if (i<points.size()-1 && points[i].x < x ) {
|
||||
++i;
|
||||
}
|
||||
if (points[0].x > x)
|
||||
y = points[0].y;
|
||||
else
|
||||
if (points[N].x < x)
|
||||
y = points[N].y;
|
||||
else
|
||||
y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) +
|
||||
(points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] +
|
||||
(points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i];
|
||||
m_line_to_draw.push_back(y);
|
||||
}
|
||||
if (points[0].x > x)
|
||||
y = points[0].y;
|
||||
else
|
||||
if (points[N].x < x)
|
||||
y = points[N].y;
|
||||
else
|
||||
y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) +
|
||||
(points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] +
|
||||
(points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i];
|
||||
m_line_to_draw.push_back(y);
|
||||
else {
|
||||
float x_math = screen_to_math(wxPoint(x,0)).m_x;
|
||||
if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math)
|
||||
++i;
|
||||
m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y);
|
||||
}
|
||||
|
||||
m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1);
|
||||
m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1);
|
||||
m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight());
|
||||
}
|
||||
else {
|
||||
float x_math = screen_to_math(wxPoint(x,0)).m_x;
|
||||
if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math)
|
||||
++i;
|
||||
m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y);
|
||||
}
|
||||
|
||||
|
||||
m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1);
|
||||
m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1);
|
||||
m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight());
|
||||
}
|
||||
|
||||
|
||||
wxPostEvent(this->GetParent(), wxCommandEvent(EVT_WIPE_TOWER_CHART_CHANGED));
|
||||
Refresh();
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue