diff --git a/src/slic3r/GUI/RammingChart.cpp b/src/slic3r/GUI/RammingChart.cpp index 41e5cdfe74..6f71e8616a 100644 --- a/src/slic3r/GUI/RammingChart.cpp +++ b/src/slic3r/GUI/RammingChart.cpp @@ -141,6 +141,9 @@ void Chart::mouse_double_clicked(wxMouseEvent& event) { void Chart::recalculate_line() { + m_line_to_draw.clear(); + m_total_volume = 0.f; + std::vector points; for (auto& but : m_buttons) { points.push_back(wxPoint(math_to_screen(but.get_pos()))); @@ -150,92 +153,88 @@ void Chart::recalculate_line() { break; } } - std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; }); - - m_line_to_draw.clear(); - m_total_volume = 0.f; - - - // Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods - const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point - // false - second ---- || ------- - const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points - std::vector diag(N+1); - std::vector mu(N+1); - std::vector lambda(N+1); - std::vector h(N+1); - std::vector rhs(N+1); - - // let's fill in inner equations - for (int i=1;i<=N;++i) h[i] = points[i].x-points[i-1].x; - std::fill(diag.begin(),diag.end(),2.f); - for (int i=1;i<=N-1;++i) { - mu[i] = h[i]/(h[i]+h[i+1]); - lambda[i] = 1.f - mu[i]; - rhs[i] = 6 * ( float(points[i+1].y-points[i].y )/(h[i+1]*(points[i+1].x-points[i-1].x)) - - float(points[i].y -points[i-1].y)/(h[i] *(points[i+1].x-points[i-1].x)) ); - } - - // now fill in the first and last equations, according to boundary conditions: - if (boundary_first_derivative) { - const float endpoints_derivative = 0; - lambda[0] = 1; - mu[N] = 1; - rhs[0] = (6.f/h[1]) * (float(points[0].y-points[1].y)/(points[0].x-points[1].x) - endpoints_derivative); - rhs[N] = (6.f/h[N]) * (endpoints_derivative - float(points[N-1].y-points[N].y)/(points[N-1].x-points[N].x)); - } - else { - lambda[0] = 0; - mu[N] = 0; - rhs[0] = 0; - rhs[N] = 0; - } + + // The calculation wouldn't work in case the ramming is to be turned off completely. + if (points.size()>1) { + std::sort(points.begin(),points.end(),[](wxPoint& a,wxPoint& b) { return a.x < b.x; }); + + // Cubic spline interpolation: see https://en.wikiversity.org/wiki/Cubic_Spline_Interpolation#Methods + const bool boundary_first_derivative = true; // true - first derivative is 0 at the leftmost and rightmost point + // false - second ---- || ------- + const int N = points.size()-1; // last point can be accessed as N, we have N+1 total points + std::vector diag(N+1); + std::vector mu(N+1); + std::vector lambda(N+1); + std::vector h(N+1); + std::vector rhs(N+1); - // the trilinear system is ready to be solved: - for (int i=1;i<=N;++i) { - float multiple = mu[i]/diag[i-1]; // let's subtract proper multiple of above equation - diag[i]-= multiple * lambda[i-1]; - rhs[i] -= multiple * rhs[i-1]; - } - // now the back substitution (vector mu contains invalid values from now on): - rhs[N] = rhs[N]/diag[N]; - for (int i=N-1;i>=0;--i) - rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i]; - - - - - unsigned int i=1; - float y=0.f; - for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) { - if (splines) { - if (i=0;--i) + rhs[i] = (rhs[i]-lambda[i]*rhs[i+1])/diag[i]; + + unsigned int i=1; + float y=0.f; + for (int x=m_rect.GetLeft(); x<=m_rect.GetRight() ; ++x) { + if (splines) { + if (i x) + y = points[0].y; + else + if (points[N].x < x) + y = points[N].y; + else + y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) + + (points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] + + (points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i]; + m_line_to_draw.push_back(y); } - if (points[0].x > x) - y = points[0].y; - else - if (points[N].x < x) - y = points[N].y; - else - y = (rhs[i-1]*pow(points[i].x-x,3)+rhs[i]*pow(x-points[i-1].x,3)) / (6*h[i]) + - (points[i-1].y-rhs[i-1]*h[i]*h[i]/6.f) * (points[i].x-x)/h[i] + - (points[i].y -rhs[i] *h[i]*h[i]/6.f) * (x-points[i-1].x)/h[i]; - m_line_to_draw.push_back(y); + else { + float x_math = screen_to_math(wxPoint(x,0)).m_x; + if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math) + ++i; + m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y); + } + + m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1); + m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1); + m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight()); } - else { - float x_math = screen_to_math(wxPoint(x,0)).m_x; - if (i+2<=points.size() && m_buttons[i+1].get_pos().m_x-0.125 < x_math) - ++i; - m_line_to_draw.push_back(math_to_screen(wxPoint2DDouble(x_math,m_buttons[i].get_pos().m_y)).y); - } - - - m_line_to_draw.back() = std::max(m_line_to_draw.back(), m_rect.GetTop()-1); - m_line_to_draw.back() = std::min(m_line_to_draw.back(), m_rect.GetBottom()-1); - m_total_volume += (m_rect.GetBottom() - m_line_to_draw.back()) * (visible_area.m_width / m_rect.GetWidth()) * (visible_area.m_height / m_rect.GetHeight()); } - + wxPostEvent(this->GetParent(), wxCommandEvent(EVT_WIPE_TOWER_CHART_CHANGED)); Refresh(); }