mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-04 00:03:54 -06:00

In the initial commit,cdfac37be0
, the sense of the test is incorrect, as the -1/0 return was confusing. Inbef6f008b9
, we mechanically invert all callers while changing to false/true return, preserving the incorrectness of the test. Now that the return sense is sane, it's easy to see that if !write, then the page is not modifiable (i.e. most likely read-only, with PROT_NONE handled via SIGSEGV). Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
1105 lines
27 KiB
C++
1105 lines
27 KiB
C++
/*
|
|
* Routines common to user and system emulation of load/store.
|
|
*
|
|
* Copyright (c) 2022 Linaro, Ltd.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "host/load-extract-al16-al8.h"
|
|
#include "host/store-insert-al16.h"
|
|
|
|
#ifdef CONFIG_ATOMIC64
|
|
# define HAVE_al8 true
|
|
#else
|
|
# define HAVE_al8 false
|
|
#endif
|
|
#define HAVE_al8_fast (ATOMIC_REG_SIZE >= 8)
|
|
|
|
/**
|
|
* required_atomicity:
|
|
*
|
|
* Return the lg2 bytes of atomicity required by @memop for @p.
|
|
* If the operation must be split into two operations to be
|
|
* examined separately for atomicity, return -lg2.
|
|
*/
|
|
static int required_atomicity(CPUArchState *env, uintptr_t p, MemOp memop)
|
|
{
|
|
MemOp atom = memop & MO_ATOM_MASK;
|
|
MemOp size = memop & MO_SIZE;
|
|
MemOp half = size ? size - 1 : 0;
|
|
unsigned tmp;
|
|
int atmax;
|
|
|
|
switch (atom) {
|
|
case MO_ATOM_NONE:
|
|
atmax = MO_8;
|
|
break;
|
|
|
|
case MO_ATOM_IFALIGN_PAIR:
|
|
size = half;
|
|
/* fall through */
|
|
|
|
case MO_ATOM_IFALIGN:
|
|
tmp = (1 << size) - 1;
|
|
atmax = p & tmp ? MO_8 : size;
|
|
break;
|
|
|
|
case MO_ATOM_WITHIN16:
|
|
tmp = p & 15;
|
|
atmax = (tmp + (1 << size) <= 16 ? size : MO_8);
|
|
break;
|
|
|
|
case MO_ATOM_WITHIN16_PAIR:
|
|
tmp = p & 15;
|
|
if (tmp + (1 << size) <= 16) {
|
|
atmax = size;
|
|
} else if (tmp + (1 << half) == 16) {
|
|
/*
|
|
* The pair exactly straddles the boundary.
|
|
* Both halves are naturally aligned and atomic.
|
|
*/
|
|
atmax = half;
|
|
} else {
|
|
/*
|
|
* One of the pair crosses the boundary, and is non-atomic.
|
|
* The other of the pair does not cross, and is atomic.
|
|
*/
|
|
atmax = -half;
|
|
}
|
|
break;
|
|
|
|
case MO_ATOM_SUBALIGN:
|
|
/*
|
|
* Examine the alignment of p to determine if there are subobjects
|
|
* that must be aligned. Note that we only really need ctz4() --
|
|
* any more sigificant bits are discarded by the immediately
|
|
* following comparison.
|
|
*/
|
|
tmp = ctz32(p);
|
|
atmax = MIN(size, tmp);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* Here we have the architectural atomicity of the operation.
|
|
* However, when executing in a serial context, we need no extra
|
|
* host atomicity in order to avoid racing. This reduction
|
|
* avoids looping with cpu_loop_exit_atomic.
|
|
*/
|
|
if (cpu_in_serial_context(env_cpu(env))) {
|
|
return MO_8;
|
|
}
|
|
return atmax;
|
|
}
|
|
|
|
/**
|
|
* load_atomic2:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 2 aligned bytes from @pv.
|
|
*/
|
|
static inline uint16_t load_atomic2(void *pv)
|
|
{
|
|
uint16_t *p = __builtin_assume_aligned(pv, 2);
|
|
return qatomic_read(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic4:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 4 aligned bytes from @pv.
|
|
*/
|
|
static inline uint32_t load_atomic4(void *pv)
|
|
{
|
|
uint32_t *p = __builtin_assume_aligned(pv, 4);
|
|
return qatomic_read(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic8:
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 8 aligned bytes from @pv.
|
|
*/
|
|
static inline uint64_t load_atomic8(void *pv)
|
|
{
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
return qatomic_read__nocheck(p);
|
|
}
|
|
|
|
/**
|
|
* load_atomic8_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 8 aligned bytes from @pv.
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static uint64_t load_atomic8_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
|
|
{
|
|
if (HAVE_al8) {
|
|
return load_atomic8(pv);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* If the page is not writable, then assume the value is immutable
|
|
* and requires no locking. This ignores the case of MAP_SHARED with
|
|
* another process, because the fallback start_exclusive solution
|
|
* provides no protection across processes.
|
|
*/
|
|
if (!page_check_range(h2g(pv), 8, PAGE_WRITE_ORG)) {
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
return *p;
|
|
}
|
|
#endif
|
|
|
|
/* Ultimate fallback: re-execute in serial context. */
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* load_atomic16_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
*
|
|
* Atomically load 16 aligned bytes from @pv.
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static Int128 load_atomic16_or_exit(CPUArchState *env, uintptr_t ra, void *pv)
|
|
{
|
|
Int128 *p = __builtin_assume_aligned(pv, 16);
|
|
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return atomic16_read_ro(p);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* We can only use cmpxchg to emulate a load if the page is writable.
|
|
* If the page is not writable, then assume the value is immutable
|
|
* and requires no locking. This ignores the case of MAP_SHARED with
|
|
* another process, because the fallback start_exclusive solution
|
|
* provides no protection across processes.
|
|
*/
|
|
if (!page_check_range(h2g(p), 16, PAGE_WRITE_ORG)) {
|
|
return *p;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In system mode all guest pages are writable, and for user-only
|
|
* we have just checked writability. Try cmpxchg.
|
|
*/
|
|
if (HAVE_ATOMIC128_RW) {
|
|
return atomic16_read_rw(p);
|
|
}
|
|
|
|
/* Ultimate fallback: re-execute in serial context. */
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al4x2:
|
|
* @pv: host address
|
|
*
|
|
* Load 4 bytes from @p, from two sequential atomic 4-byte loads.
|
|
*/
|
|
static uint32_t load_atom_extract_al4x2(void *pv)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int sh = (pi & 3) * 8;
|
|
uint32_t a, b;
|
|
|
|
pv = (void *)(pi & ~3);
|
|
a = load_atomic4(pv);
|
|
b = load_atomic4(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << sh) | (b >> (-sh & 31));
|
|
} else {
|
|
return (a >> sh) | (b << (-sh & 31));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al8x2:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @p, from two sequential atomic 8-byte loads.
|
|
*/
|
|
static uint64_t load_atom_extract_al8x2(void *pv)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int sh = (pi & 7) * 8;
|
|
uint64_t a, b;
|
|
|
|
pv = (void *)(pi & ~7);
|
|
a = load_atomic8(pv);
|
|
b = load_atomic8(pv + 8);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << sh) | (b >> (-sh & 63));
|
|
} else {
|
|
return (a >> sh) | (b << (-sh & 63));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al8_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @pv: host address
|
|
* @s: object size in bytes, @s <= 4.
|
|
*
|
|
* Atomically load @s bytes from @p, when p % s != 0, and [p, p+s-1] does
|
|
* not cross an 8-byte boundary. This means that we can perform an atomic
|
|
* 8-byte load and extract.
|
|
* The value is returned in the low bits of a uint32_t.
|
|
*/
|
|
static uint32_t load_atom_extract_al8_or_exit(CPUArchState *env, uintptr_t ra,
|
|
void *pv, int s)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int o = pi & 7;
|
|
int shr = (HOST_BIG_ENDIAN ? 8 - s - o : o) * 8;
|
|
|
|
pv = (void *)(pi & ~7);
|
|
return load_atomic8_or_exit(env, ra, pv) >> shr;
|
|
}
|
|
|
|
/**
|
|
* load_atom_extract_al16_or_exit:
|
|
* @env: cpu context
|
|
* @ra: host unwind address
|
|
* @p: host address
|
|
* @s: object size in bytes, @s <= 8.
|
|
*
|
|
* Atomically load @s bytes from @p, when p % 16 < 8
|
|
* and p % 16 + s > 8. I.e. does not cross a 16-byte
|
|
* boundary, but *does* cross an 8-byte boundary.
|
|
* This is the slow version, so we must have eliminated
|
|
* any faster load_atom_extract_al8_or_exit case.
|
|
*
|
|
* If this is not possible, longjmp out to restart serially.
|
|
*/
|
|
static uint64_t load_atom_extract_al16_or_exit(CPUArchState *env, uintptr_t ra,
|
|
void *pv, int s)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int o = pi & 7;
|
|
int shr = (HOST_BIG_ENDIAN ? 16 - s - o : o) * 8;
|
|
Int128 r;
|
|
|
|
/*
|
|
* Note constraints above: p & 8 must be clear.
|
|
* Provoke SIGBUS if possible otherwise.
|
|
*/
|
|
pv = (void *)(pi & ~7);
|
|
r = load_atomic16_or_exit(env, ra, pv);
|
|
|
|
r = int128_urshift(r, shr);
|
|
return int128_getlo(r);
|
|
}
|
|
|
|
/**
|
|
* load_atom_4_by_2:
|
|
* @pv: host address
|
|
*
|
|
* Load 4 bytes from @pv, with two 2-byte atomic loads.
|
|
*/
|
|
static inline uint32_t load_atom_4_by_2(void *pv)
|
|
{
|
|
uint32_t a = load_atomic2(pv);
|
|
uint32_t b = load_atomic2(pv + 2);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return (a << 16) | b;
|
|
} else {
|
|
return (b << 16) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_2:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @pv, with four 2-byte atomic loads.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_2(void *pv)
|
|
{
|
|
uint32_t a = load_atom_4_by_2(pv);
|
|
uint32_t b = load_atom_4_by_2(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return ((uint64_t)a << 32) | b;
|
|
} else {
|
|
return ((uint64_t)b << 32) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_4:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from @pv, with two 4-byte atomic loads.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_4(void *pv)
|
|
{
|
|
uint32_t a = load_atomic4(pv);
|
|
uint32_t b = load_atomic4(pv + 4);
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
return ((uint64_t)a << 32) | b;
|
|
} else {
|
|
return ((uint64_t)b << 32) | a;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8_by_8_or_4:
|
|
* @pv: host address
|
|
*
|
|
* Load 8 bytes from aligned @pv, with at least 4-byte atomicity.
|
|
*/
|
|
static inline uint64_t load_atom_8_by_8_or_4(void *pv)
|
|
{
|
|
if (HAVE_al8_fast) {
|
|
return load_atomic8(pv);
|
|
} else {
|
|
return load_atom_8_by_4(pv);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_2:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 2 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint16_t load_atom_2(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 1) == 0)) {
|
|
return load_atomic2(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 2);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
return lduw_he_p(pv);
|
|
case MO_16:
|
|
/* The only case remaining is MO_ATOM_WITHIN16. */
|
|
if (!HAVE_al8_fast && (pi & 3) == 1) {
|
|
/* Big or little endian, we want the middle two bytes. */
|
|
return load_atomic4(pv - 1) >> 8;
|
|
}
|
|
if ((pi & 15) != 7) {
|
|
return load_atom_extract_al8_or_exit(env, ra, pv, 2);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 2);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_4:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 4 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint32_t load_atom_4(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 3) == 0)) {
|
|
return load_atomic4(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 4);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
case MO_16:
|
|
case -MO_16:
|
|
/*
|
|
* For MO_ATOM_IFALIGN, this is more atomicity than required,
|
|
* but it's trivially supported on all hosts, better than 4
|
|
* individual byte loads (when the host requires alignment),
|
|
* and overlaps with the MO_ATOM_SUBALIGN case of p % 2 == 0.
|
|
*/
|
|
return load_atom_extract_al4x2(pv);
|
|
case MO_32:
|
|
if (!(pi & 4)) {
|
|
return load_atom_extract_al8_or_exit(env, ra, pv, 4);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 4);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_8:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 8 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static uint64_t load_atom_8(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
/*
|
|
* If the host does not support 8-byte atomics, wait until we have
|
|
* examined the atomicity parameters below.
|
|
*/
|
|
if (HAVE_al8 && likely((pi & 7) == 0)) {
|
|
return load_atomic8(pv);
|
|
}
|
|
if (HAVE_ATOMIC128_RO) {
|
|
return load_atom_extract_al16_or_al8(pv, 8);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
if (atmax == MO_64) {
|
|
if (!HAVE_al8 && (pi & 7) == 0) {
|
|
load_atomic8_or_exit(env, ra, pv);
|
|
}
|
|
return load_atom_extract_al16_or_exit(env, ra, pv, 8);
|
|
}
|
|
if (HAVE_al8_fast) {
|
|
return load_atom_extract_al8x2(pv);
|
|
}
|
|
switch (atmax) {
|
|
case MO_8:
|
|
return ldq_he_p(pv);
|
|
case MO_16:
|
|
return load_atom_8_by_2(pv);
|
|
case MO_32:
|
|
return load_atom_8_by_4(pv);
|
|
case -MO_32:
|
|
if (HAVE_al8) {
|
|
return load_atom_extract_al8x2(pv);
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_atom_16:
|
|
* @p: host address
|
|
* @memop: the full memory op
|
|
*
|
|
* Load 16 bytes from @p, honoring the atomicity of @memop.
|
|
*/
|
|
static Int128 load_atom_16(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
Int128 r;
|
|
uint64_t a, b;
|
|
|
|
/*
|
|
* If the host does not support 16-byte atomics, wait until we have
|
|
* examined the atomicity parameters below.
|
|
*/
|
|
if (HAVE_ATOMIC128_RO && likely((pi & 15) == 0)) {
|
|
return atomic16_read_ro(pv);
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
memcpy(&r, pv, 16);
|
|
return r;
|
|
case MO_16:
|
|
a = load_atom_8_by_2(pv);
|
|
b = load_atom_8_by_2(pv + 8);
|
|
break;
|
|
case MO_32:
|
|
a = load_atom_8_by_4(pv);
|
|
b = load_atom_8_by_4(pv + 8);
|
|
break;
|
|
case MO_64:
|
|
if (!HAVE_al8) {
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
a = load_atomic8(pv);
|
|
b = load_atomic8(pv + 8);
|
|
break;
|
|
case -MO_64:
|
|
if (!HAVE_al8) {
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
a = load_atom_extract_al8x2(pv);
|
|
b = load_atom_extract_al8x2(pv + 8);
|
|
break;
|
|
case MO_128:
|
|
return load_atomic16_or_exit(env, ra, pv);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return int128_make128(HOST_BIG_ENDIAN ? b : a, HOST_BIG_ENDIAN ? a : b);
|
|
}
|
|
|
|
/**
|
|
* store_atomic2:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 2 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic2(void *pv, uint16_t val)
|
|
{
|
|
uint16_t *p = __builtin_assume_aligned(pv, 2);
|
|
qatomic_set(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atomic4:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 4 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic4(void *pv, uint32_t val)
|
|
{
|
|
uint32_t *p = __builtin_assume_aligned(pv, 4);
|
|
qatomic_set(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atomic8:
|
|
* @pv: host address
|
|
* @val: value to store
|
|
*
|
|
* Atomically store 8 aligned bytes to @pv.
|
|
*/
|
|
static inline void store_atomic8(void *pv, uint64_t val)
|
|
{
|
|
uint64_t *p = __builtin_assume_aligned(pv, 8);
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
qatomic_set__nocheck(p, val);
|
|
}
|
|
|
|
/**
|
|
* store_atom_4x2
|
|
*/
|
|
static inline void store_atom_4_by_2(void *pv, uint32_t val)
|
|
{
|
|
store_atomic2(pv, val >> (HOST_BIG_ENDIAN ? 16 : 0));
|
|
store_atomic2(pv + 2, val >> (HOST_BIG_ENDIAN ? 0 : 16));
|
|
}
|
|
|
|
/**
|
|
* store_atom_8_by_2
|
|
*/
|
|
static inline void store_atom_8_by_2(void *pv, uint64_t val)
|
|
{
|
|
store_atom_4_by_2(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0));
|
|
store_atom_4_by_2(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32));
|
|
}
|
|
|
|
/**
|
|
* store_atom_8_by_4
|
|
*/
|
|
static inline void store_atom_8_by_4(void *pv, uint64_t val)
|
|
{
|
|
store_atomic4(pv, val >> (HOST_BIG_ENDIAN ? 32 : 0));
|
|
store_atomic4(pv + 4, val >> (HOST_BIG_ENDIAN ? 0 : 32));
|
|
}
|
|
|
|
/**
|
|
* store_atom_insert_al4:
|
|
* @p: host address
|
|
* @val: shifted value to store
|
|
* @msk: mask for value to store
|
|
*
|
|
* Atomically store @val to @p, masked by @msk.
|
|
*/
|
|
static void store_atom_insert_al4(uint32_t *p, uint32_t val, uint32_t msk)
|
|
{
|
|
uint32_t old, new;
|
|
|
|
p = __builtin_assume_aligned(p, 4);
|
|
old = qatomic_read(p);
|
|
do {
|
|
new = (old & ~msk) | val;
|
|
} while (!__atomic_compare_exchange_n(p, &old, new, true,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED));
|
|
}
|
|
|
|
/**
|
|
* store_atom_insert_al8:
|
|
* @p: host address
|
|
* @val: shifted value to store
|
|
* @msk: mask for value to store
|
|
*
|
|
* Atomically store @val to @p masked by @msk.
|
|
*/
|
|
static void store_atom_insert_al8(uint64_t *p, uint64_t val, uint64_t msk)
|
|
{
|
|
uint64_t old, new;
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
p = __builtin_assume_aligned(p, 8);
|
|
old = qatomic_read__nocheck(p);
|
|
do {
|
|
new = (old & ~msk) | val;
|
|
} while (!__atomic_compare_exchange_n(p, &old, new, true,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED));
|
|
}
|
|
|
|
/**
|
|
* store_bytes_leN:
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* Store @size bytes at @p. The bytes to store are extracted in little-endian order
|
|
* from @val_le; return the bytes of @val_le beyond @size that have not been stored.
|
|
*/
|
|
static uint64_t store_bytes_leN(void *pv, int size, uint64_t val_le)
|
|
{
|
|
uint8_t *p = pv;
|
|
for (int i = 0; i < size; i++, val_le >>= 8) {
|
|
p[i] = val_le;
|
|
}
|
|
return val_le;
|
|
}
|
|
|
|
/**
|
|
* store_parts_leN
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically on each aligned part.
|
|
*/
|
|
G_GNUC_UNUSED
|
|
static uint64_t store_parts_leN(void *pv, int size, uint64_t val_le)
|
|
{
|
|
do {
|
|
int n;
|
|
|
|
/* Find minimum of alignment and size */
|
|
switch (((uintptr_t)pv | size) & 7) {
|
|
case 4:
|
|
store_atomic4(pv, le32_to_cpu(val_le));
|
|
val_le >>= 32;
|
|
n = 4;
|
|
break;
|
|
case 2:
|
|
case 6:
|
|
store_atomic2(pv, le16_to_cpu(val_le));
|
|
val_le >>= 16;
|
|
n = 2;
|
|
break;
|
|
default:
|
|
*(uint8_t *)pv = val_le;
|
|
val_le >>= 8;
|
|
n = 1;
|
|
break;
|
|
case 0:
|
|
g_assert_not_reached();
|
|
}
|
|
pv += n;
|
|
size -= n;
|
|
} while (size != 0);
|
|
|
|
return val_le;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le4
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* Four aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le4(void *pv, int size, uint64_t val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 3;
|
|
int sh = o * 8;
|
|
uint32_t m = MAKE_64BIT_MASK(0, sz);
|
|
uint32_t v;
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = bswap32(val_le) >> sh;
|
|
m = bswap32(m) >> sh;
|
|
} else {
|
|
v = val_le << sh;
|
|
m <<= sh;
|
|
}
|
|
store_atom_insert_al4(pv - o, v, m);
|
|
return val_le >> sz;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le8
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* Eight aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le8(void *pv, int size, uint64_t val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 7;
|
|
int sh = o * 8;
|
|
uint64_t m = MAKE_64BIT_MASK(0, sz);
|
|
uint64_t v;
|
|
|
|
qemu_build_assert(HAVE_al8);
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = bswap64(val_le) >> sh;
|
|
m = bswap64(m) >> sh;
|
|
} else {
|
|
v = val_le << sh;
|
|
m <<= sh;
|
|
}
|
|
store_atom_insert_al8(pv - o, v, m);
|
|
return val_le >> sz;
|
|
}
|
|
|
|
/**
|
|
* store_whole_le16
|
|
* @pv: host address
|
|
* @size: number of bytes to store
|
|
* @val_le: data to store
|
|
*
|
|
* As store_bytes_leN, but atomically as a whole.
|
|
* 16 aligned bytes are guaranteed to cover the store.
|
|
*/
|
|
static uint64_t store_whole_le16(void *pv, int size, Int128 val_le)
|
|
{
|
|
int sz = size * 8;
|
|
int o = (uintptr_t)pv & 15;
|
|
int sh = o * 8;
|
|
Int128 m, v;
|
|
|
|
qemu_build_assert(HAVE_ATOMIC128_RW);
|
|
|
|
/* Like MAKE_64BIT_MASK(0, sz), but larger. */
|
|
if (sz <= 64) {
|
|
m = int128_make64(MAKE_64BIT_MASK(0, sz));
|
|
} else {
|
|
m = int128_make128(-1, MAKE_64BIT_MASK(0, sz - 64));
|
|
}
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
v = int128_urshift(bswap128(val_le), sh);
|
|
m = int128_urshift(bswap128(m), sh);
|
|
} else {
|
|
v = int128_lshift(val_le, sh);
|
|
m = int128_lshift(m, sh);
|
|
}
|
|
store_atom_insert_al16(pv - o, v, m);
|
|
|
|
if (sz <= 64) {
|
|
return 0;
|
|
}
|
|
return int128_gethi(val_le) >> (sz - 64);
|
|
}
|
|
|
|
/**
|
|
* store_atom_2:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 2 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_2(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint16_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 1) == 0)) {
|
|
store_atomic2(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
if (atmax == MO_8) {
|
|
stw_he_p(pv, val);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The only case remaining is MO_ATOM_WITHIN16.
|
|
* Big or little endian, we want the middle two bytes in each test.
|
|
*/
|
|
if ((pi & 3) == 1) {
|
|
store_atom_insert_al4(pv - 1, (uint32_t)val << 8, MAKE_64BIT_MASK(8, 16));
|
|
return;
|
|
} else if ((pi & 7) == 3) {
|
|
if (HAVE_al8) {
|
|
store_atom_insert_al8(pv - 3, (uint64_t)val << 24, MAKE_64BIT_MASK(24, 16));
|
|
return;
|
|
}
|
|
} else if ((pi & 15) == 7) {
|
|
if (HAVE_ATOMIC128_RW) {
|
|
Int128 v = int128_lshift(int128_make64(val), 56);
|
|
Int128 m = int128_lshift(int128_make64(0xffff), 56);
|
|
store_atom_insert_al16(pv - 7, v, m);
|
|
return;
|
|
}
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* store_atom_4:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 4 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_4(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint32_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (likely((pi & 3) == 0)) {
|
|
store_atomic4(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
stl_he_p(pv, val);
|
|
return;
|
|
case MO_16:
|
|
store_atom_4_by_2(pv, val);
|
|
return;
|
|
case -MO_16:
|
|
{
|
|
uint32_t val_le = cpu_to_le32(val);
|
|
int s2 = pi & 3;
|
|
int s1 = 4 - s2;
|
|
|
|
switch (s2) {
|
|
case 1:
|
|
val_le = store_whole_le4(pv, s1, val_le);
|
|
*(uint8_t *)(pv + 3) = val_le;
|
|
break;
|
|
case 3:
|
|
*(uint8_t *)pv = val_le;
|
|
store_whole_le4(pv + 1, s2, val_le >> 8);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 2: /* atmax MO_16 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return;
|
|
case MO_32:
|
|
if ((pi & 7) < 4) {
|
|
if (HAVE_al8) {
|
|
store_whole_le8(pv, 4, cpu_to_le32(val));
|
|
return;
|
|
}
|
|
} else {
|
|
if (HAVE_ATOMIC128_RW) {
|
|
store_whole_le16(pv, 4, int128_make64(cpu_to_le32(val)));
|
|
return;
|
|
}
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* store_atom_8:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 8 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_8(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, uint64_t val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
int atmax;
|
|
|
|
if (HAVE_al8 && likely((pi & 7) == 0)) {
|
|
store_atomic8(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
stq_he_p(pv, val);
|
|
return;
|
|
case MO_16:
|
|
store_atom_8_by_2(pv, val);
|
|
return;
|
|
case MO_32:
|
|
store_atom_8_by_4(pv, val);
|
|
return;
|
|
case -MO_32:
|
|
if (HAVE_al8) {
|
|
uint64_t val_le = cpu_to_le64(val);
|
|
int s2 = pi & 7;
|
|
int s1 = 8 - s2;
|
|
|
|
switch (s2) {
|
|
case 1 ... 3:
|
|
val_le = store_whole_le8(pv, s1, val_le);
|
|
store_bytes_leN(pv + s1, s2, val_le);
|
|
break;
|
|
case 5 ... 7:
|
|
val_le = store_bytes_leN(pv, s1, val_le);
|
|
store_whole_le8(pv + s1, s2, val_le);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 4: /* atmax MO_32 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
case MO_64:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
store_whole_le16(pv, 8, int128_make64(cpu_to_le64(val)));
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|
|
|
|
/**
|
|
* store_atom_16:
|
|
* @p: host address
|
|
* @val: the value to store
|
|
* @memop: the full memory op
|
|
*
|
|
* Store 16 bytes to @p, honoring the atomicity of @memop.
|
|
*/
|
|
static void store_atom_16(CPUArchState *env, uintptr_t ra,
|
|
void *pv, MemOp memop, Int128 val)
|
|
{
|
|
uintptr_t pi = (uintptr_t)pv;
|
|
uint64_t a, b;
|
|
int atmax;
|
|
|
|
if (HAVE_ATOMIC128_RW && likely((pi & 15) == 0)) {
|
|
atomic16_set(pv, val);
|
|
return;
|
|
}
|
|
|
|
atmax = required_atomicity(env, pi, memop);
|
|
|
|
a = HOST_BIG_ENDIAN ? int128_gethi(val) : int128_getlo(val);
|
|
b = HOST_BIG_ENDIAN ? int128_getlo(val) : int128_gethi(val);
|
|
switch (atmax) {
|
|
case MO_8:
|
|
memcpy(pv, &val, 16);
|
|
return;
|
|
case MO_16:
|
|
store_atom_8_by_2(pv, a);
|
|
store_atom_8_by_2(pv + 8, b);
|
|
return;
|
|
case MO_32:
|
|
store_atom_8_by_4(pv, a);
|
|
store_atom_8_by_4(pv + 8, b);
|
|
return;
|
|
case MO_64:
|
|
if (HAVE_al8) {
|
|
store_atomic8(pv, a);
|
|
store_atomic8(pv + 8, b);
|
|
return;
|
|
}
|
|
break;
|
|
case -MO_64:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
uint64_t val_le;
|
|
int s2 = pi & 15;
|
|
int s1 = 16 - s2;
|
|
|
|
if (HOST_BIG_ENDIAN) {
|
|
val = bswap128(val);
|
|
}
|
|
switch (s2) {
|
|
case 1 ... 7:
|
|
val_le = store_whole_le16(pv, s1, val);
|
|
store_bytes_leN(pv + s1, s2, val_le);
|
|
break;
|
|
case 9 ... 15:
|
|
store_bytes_leN(pv, s1, int128_getlo(val));
|
|
val = int128_urshift(val, s1 * 8);
|
|
store_whole_le16(pv + s1, s2, val);
|
|
break;
|
|
case 0: /* aligned */
|
|
case 8: /* atmax MO_64 */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
}
|
|
break;
|
|
case MO_128:
|
|
if (HAVE_ATOMIC128_RW) {
|
|
atomic16_set(pv, val);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
cpu_loop_exit_atomic(env_cpu(env), ra);
|
|
}
|