qemu/target/riscv/vcrypto_helper.c
Nazar Kazakov e972bf22f6 target/riscv: Add Zvkned ISA extension support
This commit adds support for the Zvkned vector-crypto extension, which
consists of the following instructions:

* vaesef.[vv,vs]
* vaesdf.[vv,vs]
* vaesdm.[vv,vs]
* vaesz.vs
* vaesem.[vv,vs]
* vaeskf1.vi
* vaeskf2.vi

Translation functions are defined in
`target/riscv/insn_trans/trans_rvvk.c.inc` and helpers are defined in
`target/riscv/vcrypto_helper.c`.

Co-authored-by: Lawrence Hunter <lawrence.hunter@codethink.co.uk>
Co-authored-by: William Salmon <will.salmon@codethink.co.uk>
[max.chou@sifive.com: Replaced vstart checking by TCG op]
Signed-off-by: Lawrence Hunter <lawrence.hunter@codethink.co.uk>
Signed-off-by: William Salmon <will.salmon@codethink.co.uk>
Signed-off-by: Nazar Kazakov <nazar.kazakov@codethink.co.uk>
Signed-off-by: Max Chou <max.chou@sifive.com>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
[max.chou@sifive.com: Imported aes-round.h and exposed x-zvkned
property]
[max.chou@sifive.com: Fixed endian issues and replaced the vstart & vl
egs checking by helper function]
[max.chou@sifive.com: Replaced bswap32 calls in aes key expanding]
Message-ID: <20230711165917.2629866-10-max.chou@sifive.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-09-11 11:45:55 +10:00

399 lines
16 KiB
C

/*
* RISC-V Vector Crypto Extension Helpers for QEMU.
*
* Copyright (C) 2023 SiFive, Inc.
* Written by Codethink Ltd and SiFive.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/host-utils.h"
#include "qemu/bitops.h"
#include "qemu/bswap.h"
#include "cpu.h"
#include "crypto/aes.h"
#include "crypto/aes-round.h"
#include "exec/memop.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "vector_internals.h"
static uint64_t clmul64(uint64_t y, uint64_t x)
{
uint64_t result = 0;
for (int j = 63; j >= 0; j--) {
if ((y >> j) & 1) {
result ^= (x << j);
}
}
return result;
}
static uint64_t clmulh64(uint64_t y, uint64_t x)
{
uint64_t result = 0;
for (int j = 63; j >= 1; j--) {
if ((y >> j) & 1) {
result ^= (x >> (64 - j));
}
}
return result;
}
RVVCALL(OPIVV2, vclmul_vv, OP_UUU_D, H8, H8, H8, clmul64)
GEN_VEXT_VV(vclmul_vv, 8)
RVVCALL(OPIVX2, vclmul_vx, OP_UUU_D, H8, H8, clmul64)
GEN_VEXT_VX(vclmul_vx, 8)
RVVCALL(OPIVV2, vclmulh_vv, OP_UUU_D, H8, H8, H8, clmulh64)
GEN_VEXT_VV(vclmulh_vv, 8)
RVVCALL(OPIVX2, vclmulh_vx, OP_UUU_D, H8, H8, clmulh64)
GEN_VEXT_VX(vclmulh_vx, 8)
RVVCALL(OPIVV2, vror_vv_b, OP_UUU_B, H1, H1, H1, ror8)
RVVCALL(OPIVV2, vror_vv_h, OP_UUU_H, H2, H2, H2, ror16)
RVVCALL(OPIVV2, vror_vv_w, OP_UUU_W, H4, H4, H4, ror32)
RVVCALL(OPIVV2, vror_vv_d, OP_UUU_D, H8, H8, H8, ror64)
GEN_VEXT_VV(vror_vv_b, 1)
GEN_VEXT_VV(vror_vv_h, 2)
GEN_VEXT_VV(vror_vv_w, 4)
GEN_VEXT_VV(vror_vv_d, 8)
RVVCALL(OPIVX2, vror_vx_b, OP_UUU_B, H1, H1, ror8)
RVVCALL(OPIVX2, vror_vx_h, OP_UUU_H, H2, H2, ror16)
RVVCALL(OPIVX2, vror_vx_w, OP_UUU_W, H4, H4, ror32)
RVVCALL(OPIVX2, vror_vx_d, OP_UUU_D, H8, H8, ror64)
GEN_VEXT_VX(vror_vx_b, 1)
GEN_VEXT_VX(vror_vx_h, 2)
GEN_VEXT_VX(vror_vx_w, 4)
GEN_VEXT_VX(vror_vx_d, 8)
RVVCALL(OPIVV2, vrol_vv_b, OP_UUU_B, H1, H1, H1, rol8)
RVVCALL(OPIVV2, vrol_vv_h, OP_UUU_H, H2, H2, H2, rol16)
RVVCALL(OPIVV2, vrol_vv_w, OP_UUU_W, H4, H4, H4, rol32)
RVVCALL(OPIVV2, vrol_vv_d, OP_UUU_D, H8, H8, H8, rol64)
GEN_VEXT_VV(vrol_vv_b, 1)
GEN_VEXT_VV(vrol_vv_h, 2)
GEN_VEXT_VV(vrol_vv_w, 4)
GEN_VEXT_VV(vrol_vv_d, 8)
RVVCALL(OPIVX2, vrol_vx_b, OP_UUU_B, H1, H1, rol8)
RVVCALL(OPIVX2, vrol_vx_h, OP_UUU_H, H2, H2, rol16)
RVVCALL(OPIVX2, vrol_vx_w, OP_UUU_W, H4, H4, rol32)
RVVCALL(OPIVX2, vrol_vx_d, OP_UUU_D, H8, H8, rol64)
GEN_VEXT_VX(vrol_vx_b, 1)
GEN_VEXT_VX(vrol_vx_h, 2)
GEN_VEXT_VX(vrol_vx_w, 4)
GEN_VEXT_VX(vrol_vx_d, 8)
static uint64_t brev8(uint64_t val)
{
val = ((val & 0x5555555555555555ull) << 1) |
((val & 0xAAAAAAAAAAAAAAAAull) >> 1);
val = ((val & 0x3333333333333333ull) << 2) |
((val & 0xCCCCCCCCCCCCCCCCull) >> 2);
val = ((val & 0x0F0F0F0F0F0F0F0Full) << 4) |
((val & 0xF0F0F0F0F0F0F0F0ull) >> 4);
return val;
}
RVVCALL(OPIVV1, vbrev8_v_b, OP_UU_B, H1, H1, brev8)
RVVCALL(OPIVV1, vbrev8_v_h, OP_UU_H, H2, H2, brev8)
RVVCALL(OPIVV1, vbrev8_v_w, OP_UU_W, H4, H4, brev8)
RVVCALL(OPIVV1, vbrev8_v_d, OP_UU_D, H8, H8, brev8)
GEN_VEXT_V(vbrev8_v_b, 1)
GEN_VEXT_V(vbrev8_v_h, 2)
GEN_VEXT_V(vbrev8_v_w, 4)
GEN_VEXT_V(vbrev8_v_d, 8)
#define DO_IDENTITY(a) (a)
RVVCALL(OPIVV1, vrev8_v_b, OP_UU_B, H1, H1, DO_IDENTITY)
RVVCALL(OPIVV1, vrev8_v_h, OP_UU_H, H2, H2, bswap16)
RVVCALL(OPIVV1, vrev8_v_w, OP_UU_W, H4, H4, bswap32)
RVVCALL(OPIVV1, vrev8_v_d, OP_UU_D, H8, H8, bswap64)
GEN_VEXT_V(vrev8_v_b, 1)
GEN_VEXT_V(vrev8_v_h, 2)
GEN_VEXT_V(vrev8_v_w, 4)
GEN_VEXT_V(vrev8_v_d, 8)
#define DO_ANDN(a, b) ((a) & ~(b))
RVVCALL(OPIVV2, vandn_vv_b, OP_UUU_B, H1, H1, H1, DO_ANDN)
RVVCALL(OPIVV2, vandn_vv_h, OP_UUU_H, H2, H2, H2, DO_ANDN)
RVVCALL(OPIVV2, vandn_vv_w, OP_UUU_W, H4, H4, H4, DO_ANDN)
RVVCALL(OPIVV2, vandn_vv_d, OP_UUU_D, H8, H8, H8, DO_ANDN)
GEN_VEXT_VV(vandn_vv_b, 1)
GEN_VEXT_VV(vandn_vv_h, 2)
GEN_VEXT_VV(vandn_vv_w, 4)
GEN_VEXT_VV(vandn_vv_d, 8)
RVVCALL(OPIVX2, vandn_vx_b, OP_UUU_B, H1, H1, DO_ANDN)
RVVCALL(OPIVX2, vandn_vx_h, OP_UUU_H, H2, H2, DO_ANDN)
RVVCALL(OPIVX2, vandn_vx_w, OP_UUU_W, H4, H4, DO_ANDN)
RVVCALL(OPIVX2, vandn_vx_d, OP_UUU_D, H8, H8, DO_ANDN)
GEN_VEXT_VX(vandn_vx_b, 1)
GEN_VEXT_VX(vandn_vx_h, 2)
GEN_VEXT_VX(vandn_vx_w, 4)
GEN_VEXT_VX(vandn_vx_d, 8)
RVVCALL(OPIVV1, vbrev_v_b, OP_UU_B, H1, H1, revbit8)
RVVCALL(OPIVV1, vbrev_v_h, OP_UU_H, H2, H2, revbit16)
RVVCALL(OPIVV1, vbrev_v_w, OP_UU_W, H4, H4, revbit32)
RVVCALL(OPIVV1, vbrev_v_d, OP_UU_D, H8, H8, revbit64)
GEN_VEXT_V(vbrev_v_b, 1)
GEN_VEXT_V(vbrev_v_h, 2)
GEN_VEXT_V(vbrev_v_w, 4)
GEN_VEXT_V(vbrev_v_d, 8)
RVVCALL(OPIVV1, vclz_v_b, OP_UU_B, H1, H1, clz8)
RVVCALL(OPIVV1, vclz_v_h, OP_UU_H, H2, H2, clz16)
RVVCALL(OPIVV1, vclz_v_w, OP_UU_W, H4, H4, clz32)
RVVCALL(OPIVV1, vclz_v_d, OP_UU_D, H8, H8, clz64)
GEN_VEXT_V(vclz_v_b, 1)
GEN_VEXT_V(vclz_v_h, 2)
GEN_VEXT_V(vclz_v_w, 4)
GEN_VEXT_V(vclz_v_d, 8)
RVVCALL(OPIVV1, vctz_v_b, OP_UU_B, H1, H1, ctz8)
RVVCALL(OPIVV1, vctz_v_h, OP_UU_H, H2, H2, ctz16)
RVVCALL(OPIVV1, vctz_v_w, OP_UU_W, H4, H4, ctz32)
RVVCALL(OPIVV1, vctz_v_d, OP_UU_D, H8, H8, ctz64)
GEN_VEXT_V(vctz_v_b, 1)
GEN_VEXT_V(vctz_v_h, 2)
GEN_VEXT_V(vctz_v_w, 4)
GEN_VEXT_V(vctz_v_d, 8)
RVVCALL(OPIVV1, vcpop_v_b, OP_UU_B, H1, H1, ctpop8)
RVVCALL(OPIVV1, vcpop_v_h, OP_UU_H, H2, H2, ctpop16)
RVVCALL(OPIVV1, vcpop_v_w, OP_UU_W, H4, H4, ctpop32)
RVVCALL(OPIVV1, vcpop_v_d, OP_UU_D, H8, H8, ctpop64)
GEN_VEXT_V(vcpop_v_b, 1)
GEN_VEXT_V(vcpop_v_h, 2)
GEN_VEXT_V(vcpop_v_w, 4)
GEN_VEXT_V(vcpop_v_d, 8)
#define DO_SLL(N, M) (N << (M & (sizeof(N) * 8 - 1)))
RVVCALL(OPIVV2, vwsll_vv_b, WOP_UUU_B, H2, H1, H1, DO_SLL)
RVVCALL(OPIVV2, vwsll_vv_h, WOP_UUU_H, H4, H2, H2, DO_SLL)
RVVCALL(OPIVV2, vwsll_vv_w, WOP_UUU_W, H8, H4, H4, DO_SLL)
GEN_VEXT_VV(vwsll_vv_b, 2)
GEN_VEXT_VV(vwsll_vv_h, 4)
GEN_VEXT_VV(vwsll_vv_w, 8)
RVVCALL(OPIVX2, vwsll_vx_b, WOP_UUU_B, H2, H1, DO_SLL)
RVVCALL(OPIVX2, vwsll_vx_h, WOP_UUU_H, H4, H2, DO_SLL)
RVVCALL(OPIVX2, vwsll_vx_w, WOP_UUU_W, H8, H4, DO_SLL)
GEN_VEXT_VX(vwsll_vx_b, 2)
GEN_VEXT_VX(vwsll_vx_h, 4)
GEN_VEXT_VX(vwsll_vx_w, 8)
void HELPER(egs_check)(uint32_t egs, CPURISCVState *env)
{
uint32_t vl = env->vl;
uint32_t vstart = env->vstart;
if (vl % egs != 0 || vstart % egs != 0) {
riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
}
}
static inline void xor_round_key(AESState *round_state, AESState *round_key)
{
round_state->v = round_state->v ^ round_key->v;
}
#define GEN_ZVKNED_HELPER_VV(NAME, ...) \
void HELPER(NAME)(void *vd, void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t total_elems = vext_get_total_elems(env, desc, 4); \
uint32_t vta = vext_vta(desc); \
\
for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) { \
AESState round_key; \
round_key.d[0] = *((uint64_t *)vs2 + H8(i * 2 + 0)); \
round_key.d[1] = *((uint64_t *)vs2 + H8(i * 2 + 1)); \
AESState round_state; \
round_state.d[0] = *((uint64_t *)vd + H8(i * 2 + 0)); \
round_state.d[1] = *((uint64_t *)vd + H8(i * 2 + 1)); \
__VA_ARGS__; \
*((uint64_t *)vd + H8(i * 2 + 0)) = round_state.d[0]; \
*((uint64_t *)vd + H8(i * 2 + 1)) = round_state.d[1]; \
} \
env->vstart = 0; \
/* set tail elements to 1s */ \
vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4); \
}
#define GEN_ZVKNED_HELPER_VS(NAME, ...) \
void HELPER(NAME)(void *vd, void *vs2, CPURISCVState *env, \
uint32_t desc) \
{ \
uint32_t vl = env->vl; \
uint32_t total_elems = vext_get_total_elems(env, desc, 4); \
uint32_t vta = vext_vta(desc); \
\
for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) { \
AESState round_key; \
round_key.d[0] = *((uint64_t *)vs2 + H8(0)); \
round_key.d[1] = *((uint64_t *)vs2 + H8(1)); \
AESState round_state; \
round_state.d[0] = *((uint64_t *)vd + H8(i * 2 + 0)); \
round_state.d[1] = *((uint64_t *)vd + H8(i * 2 + 1)); \
__VA_ARGS__; \
*((uint64_t *)vd + H8(i * 2 + 0)) = round_state.d[0]; \
*((uint64_t *)vd + H8(i * 2 + 1)) = round_state.d[1]; \
} \
env->vstart = 0; \
/* set tail elements to 1s */ \
vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4); \
}
GEN_ZVKNED_HELPER_VV(vaesef_vv, aesenc_SB_SR_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VS(vaesef_vs, aesenc_SB_SR_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VV(vaesdf_vv, aesdec_ISB_ISR_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VS(vaesdf_vs, aesdec_ISB_ISR_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VV(vaesem_vv, aesenc_SB_SR_MC_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VS(vaesem_vs, aesenc_SB_SR_MC_AK(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VV(vaesdm_vv, aesdec_ISB_ISR_AK_IMC(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VS(vaesdm_vs, aesdec_ISB_ISR_AK_IMC(&round_state,
&round_state,
&round_key,
false);)
GEN_ZVKNED_HELPER_VS(vaesz_vs, xor_round_key(&round_state, &round_key);)
void HELPER(vaeskf1_vi)(void *vd_vptr, void *vs2_vptr, uint32_t uimm,
CPURISCVState *env, uint32_t desc)
{
uint32_t *vd = vd_vptr;
uint32_t *vs2 = vs2_vptr;
uint32_t vl = env->vl;
uint32_t total_elems = vext_get_total_elems(env, desc, 4);
uint32_t vta = vext_vta(desc);
uimm &= 0b1111;
if (uimm > 10 || uimm == 0) {
uimm ^= 0b1000;
}
for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
uint32_t rk[8], tmp;
static const uint32_t rcon[] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
0x00000020, 0x00000040, 0x00000080, 0x0000001B, 0x00000036,
};
rk[0] = vs2[i * 4 + H4(0)];
rk[1] = vs2[i * 4 + H4(1)];
rk[2] = vs2[i * 4 + H4(2)];
rk[3] = vs2[i * 4 + H4(3)];
tmp = ror32(rk[3], 8);
rk[4] = rk[0] ^ (((uint32_t)AES_sbox[(tmp >> 24) & 0xff] << 24) |
((uint32_t)AES_sbox[(tmp >> 16) & 0xff] << 16) |
((uint32_t)AES_sbox[(tmp >> 8) & 0xff] << 8) |
((uint32_t)AES_sbox[(tmp >> 0) & 0xff] << 0))
^ rcon[uimm - 1];
rk[5] = rk[1] ^ rk[4];
rk[6] = rk[2] ^ rk[5];
rk[7] = rk[3] ^ rk[6];
vd[i * 4 + H4(0)] = rk[4];
vd[i * 4 + H4(1)] = rk[5];
vd[i * 4 + H4(2)] = rk[6];
vd[i * 4 + H4(3)] = rk[7];
}
env->vstart = 0;
/* set tail elements to 1s */
vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4);
}
void HELPER(vaeskf2_vi)(void *vd_vptr, void *vs2_vptr, uint32_t uimm,
CPURISCVState *env, uint32_t desc)
{
uint32_t *vd = vd_vptr;
uint32_t *vs2 = vs2_vptr;
uint32_t vl = env->vl;
uint32_t total_elems = vext_get_total_elems(env, desc, 4);
uint32_t vta = vext_vta(desc);
uimm &= 0b1111;
if (uimm > 14 || uimm < 2) {
uimm ^= 0b1000;
}
for (uint32_t i = env->vstart / 4; i < env->vl / 4; i++) {
uint32_t rk[12], tmp;
static const uint32_t rcon[] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
0x00000020, 0x00000040, 0x00000080, 0x0000001B, 0x00000036,
};
rk[0] = vd[i * 4 + H4(0)];
rk[1] = vd[i * 4 + H4(1)];
rk[2] = vd[i * 4 + H4(2)];
rk[3] = vd[i * 4 + H4(3)];
rk[4] = vs2[i * 4 + H4(0)];
rk[5] = vs2[i * 4 + H4(1)];
rk[6] = vs2[i * 4 + H4(2)];
rk[7] = vs2[i * 4 + H4(3)];
if (uimm % 2 == 0) {
tmp = ror32(rk[7], 8);
rk[8] = rk[0] ^ (((uint32_t)AES_sbox[(tmp >> 24) & 0xff] << 24) |
((uint32_t)AES_sbox[(tmp >> 16) & 0xff] << 16) |
((uint32_t)AES_sbox[(tmp >> 8) & 0xff] << 8) |
((uint32_t)AES_sbox[(tmp >> 0) & 0xff] << 0))
^ rcon[(uimm - 1) / 2];
} else {
rk[8] = rk[0] ^ (((uint32_t)AES_sbox[(rk[7] >> 24) & 0xff] << 24) |
((uint32_t)AES_sbox[(rk[7] >> 16) & 0xff] << 16) |
((uint32_t)AES_sbox[(rk[7] >> 8) & 0xff] << 8) |
((uint32_t)AES_sbox[(rk[7] >> 0) & 0xff] << 0));
}
rk[9] = rk[1] ^ rk[8];
rk[10] = rk[2] ^ rk[9];
rk[11] = rk[3] ^ rk[10];
vd[i * 4 + H4(0)] = rk[8];
vd[i * 4 + H4(1)] = rk[9];
vd[i * 4 + H4(2)] = rk[10];
vd[i * 4 + H4(3)] = rk[11];
}
env->vstart = 0;
/* set tail elements to 1s */
vext_set_elems_1s(vd, vta, vl * 4, total_elems * 4);
}