qemu/plugins/api.c
Rowan Hart 30424b8d42 plugins: Add memory hardware address read/write API
This patch adds functions to the plugins API to allow plugins to read
and write memory via hardware addresses. The functions use the current
address space of the current CPU in order to avoid exposing address
space information to users. A later patch may want to add a function to
permit a specified address space, for example to facilitate
architecture-specific plugins that want to operate on them, for example
reading ARM secure memory.

Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Rowan Hart <rowanbhart@gmail.com>
Message-ID: <20250624175351.440780-6-rowanbhart@gmail.com>
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-ID: <20250627112512.1880708-10-alex.bennee@linaro.org>
2025-07-02 10:09:48 +01:00

646 lines
18 KiB
C

/*
* QEMU Plugin API
*
* This provides the API that is available to the plugins to interact
* with QEMU. We have to be careful not to expose internal details of
* how QEMU works so we abstract out things like translation and
* instructions to anonymous data types:
*
* qemu_plugin_tb
* qemu_plugin_insn
* qemu_plugin_register
*
* Which can then be passed back into the API to do additional things.
* As such all the public functions in here are exported in
* qemu-plugin.h.
*
* The general life-cycle of a plugin is:
*
* - plugin is loaded, public qemu_plugin_install called
* - the install func registers callbacks for events
* - usually an atexit_cb is registered to dump info at the end
* - when a registered event occurs the plugin is called
* - some events pass additional info
* - during translation the plugin can decide to instrument any
* instruction
* - when QEMU exits all the registered atexit callbacks are called
*
* Copyright (C) 2017, Emilio G. Cota <cota@braap.org>
* Copyright (C) 2019, Linaro
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "qemu/plugin.h"
#include "qemu/log.h"
#include "system/memory.h"
#include "tcg/tcg.h"
#include "exec/gdbstub.h"
#include "exec/target_page.h"
#include "exec/translation-block.h"
#include "exec/translator.h"
#include "disas/disas.h"
#include "plugin.h"
/* Uninstall and Reset handlers */
void qemu_plugin_uninstall(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, false);
}
void qemu_plugin_reset(qemu_plugin_id_t id, qemu_plugin_simple_cb_t cb)
{
plugin_reset_uninstall(id, cb, true);
}
/*
* Plugin Register Functions
*
* This allows the plugin to register callbacks for various events
* during the translation.
*/
void qemu_plugin_register_vcpu_init_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_INIT, cb);
}
void qemu_plugin_register_vcpu_exit_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_simple_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_EXIT, cb);
}
static bool tb_is_mem_only(void)
{
return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
}
void qemu_plugin_register_vcpu_tb_exec_cb(struct qemu_plugin_tb *tb,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!tb_is_mem_only()) {
plugin_register_dyn_cb__udata(&tb->cbs, cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_tb_exec_cond_cb(struct qemu_plugin_tb *tb,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_cond cond,
qemu_plugin_u64 entry,
uint64_t imm,
void *udata)
{
if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
return;
}
if (cond == QEMU_PLUGIN_COND_ALWAYS) {
qemu_plugin_register_vcpu_tb_exec_cb(tb, cb, flags, udata);
return;
}
plugin_register_dyn_cond_cb__udata(&tb->cbs, cb, flags,
cond, entry, imm, udata);
}
void qemu_plugin_register_vcpu_tb_exec_inline_per_vcpu(
struct qemu_plugin_tb *tb,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
if (!tb_is_mem_only()) {
plugin_register_inline_op_on_entry(&tb->cbs, 0, op, entry, imm);
}
}
void qemu_plugin_register_vcpu_insn_exec_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
void *udata)
{
if (!tb_is_mem_only()) {
plugin_register_dyn_cb__udata(&insn->insn_cbs, cb, flags, udata);
}
}
void qemu_plugin_register_vcpu_insn_exec_cond_cb(
struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_udata_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_cond cond,
qemu_plugin_u64 entry,
uint64_t imm,
void *udata)
{
if (cond == QEMU_PLUGIN_COND_NEVER || tb_is_mem_only()) {
return;
}
if (cond == QEMU_PLUGIN_COND_ALWAYS) {
qemu_plugin_register_vcpu_insn_exec_cb(insn, cb, flags, udata);
return;
}
plugin_register_dyn_cond_cb__udata(&insn->insn_cbs, cb, flags,
cond, entry, imm, udata);
}
void qemu_plugin_register_vcpu_insn_exec_inline_per_vcpu(
struct qemu_plugin_insn *insn,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
if (!tb_is_mem_only()) {
plugin_register_inline_op_on_entry(&insn->insn_cbs, 0, op, entry, imm);
}
}
/*
* We always plant memory instrumentation because they don't finalise until
* after the operation has complete.
*/
void qemu_plugin_register_vcpu_mem_cb(struct qemu_plugin_insn *insn,
qemu_plugin_vcpu_mem_cb_t cb,
enum qemu_plugin_cb_flags flags,
enum qemu_plugin_mem_rw rw,
void *udata)
{
plugin_register_vcpu_mem_cb(&insn->mem_cbs, cb, flags, rw, udata);
}
void qemu_plugin_register_vcpu_mem_inline_per_vcpu(
struct qemu_plugin_insn *insn,
enum qemu_plugin_mem_rw rw,
enum qemu_plugin_op op,
qemu_plugin_u64 entry,
uint64_t imm)
{
plugin_register_inline_op_on_entry(&insn->mem_cbs, rw, op, entry, imm);
}
void qemu_plugin_register_vcpu_tb_trans_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_tb_trans_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_TB_TRANS, cb);
}
void qemu_plugin_register_vcpu_syscall_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL, cb);
}
void
qemu_plugin_register_vcpu_syscall_ret_cb(qemu_plugin_id_t id,
qemu_plugin_vcpu_syscall_ret_cb_t cb)
{
plugin_register_cb(id, QEMU_PLUGIN_EV_VCPU_SYSCALL_RET, cb);
}
/*
* Plugin Queries
*
* These are queries that the plugin can make to gauge information
* from our opaque data types. We do not want to leak internal details
* here just information useful to the plugin.
*/
/*
* Translation block information:
*
* A plugin can query the virtual address of the start of the block
* and the number of instructions in it. It can also get access to
* each translated instruction.
*/
size_t qemu_plugin_tb_n_insns(const struct qemu_plugin_tb *tb)
{
return tb->n;
}
uint64_t qemu_plugin_tb_vaddr(const struct qemu_plugin_tb *tb)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
return db->pc_first;
}
struct qemu_plugin_insn *
qemu_plugin_tb_get_insn(const struct qemu_plugin_tb *tb, size_t idx)
{
if (unlikely(idx >= tb->n)) {
return NULL;
}
return g_ptr_array_index(tb->insns, idx);
}
/*
* Instruction information
*
* These queries allow the plugin to retrieve information about each
* instruction being translated.
*/
size_t qemu_plugin_insn_data(const struct qemu_plugin_insn *insn,
void *dest, size_t len)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
len = MIN(len, insn->len);
return translator_st(db, dest, insn->vaddr, len) ? len : 0;
}
size_t qemu_plugin_insn_size(const struct qemu_plugin_insn *insn)
{
return insn->len;
}
uint64_t qemu_plugin_insn_vaddr(const struct qemu_plugin_insn *insn)
{
return insn->vaddr;
}
void *qemu_plugin_insn_haddr(const struct qemu_plugin_insn *insn)
{
const DisasContextBase *db = tcg_ctx->plugin_db;
vaddr page0_last = db->pc_first | ~qemu_target_page_mask();
if (db->fake_insn) {
return NULL;
}
/*
* ??? The return value is not intended for use of host memory,
* but as a proxy for address space and physical address.
* Thus we are only interested in the first byte and do not
* care about spanning pages.
*/
if (insn->vaddr <= page0_last) {
if (db->host_addr[0] == NULL) {
return NULL;
}
return db->host_addr[0] + insn->vaddr - db->pc_first;
} else {
if (db->host_addr[1] == NULL) {
return NULL;
}
return db->host_addr[1] + insn->vaddr - (page0_last + 1);
}
}
char *qemu_plugin_insn_disas(const struct qemu_plugin_insn *insn)
{
return plugin_disas(tcg_ctx->cpu, tcg_ctx->plugin_db,
insn->vaddr, insn->len);
}
const char *qemu_plugin_insn_symbol(const struct qemu_plugin_insn *insn)
{
const char *sym = lookup_symbol(insn->vaddr);
return sym[0] != 0 ? sym : NULL;
}
/*
* The memory queries allow the plugin to query information about a
* memory access.
*/
unsigned qemu_plugin_mem_size_shift(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIZE;
}
bool qemu_plugin_mem_is_sign_extended(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return op & MO_SIGN;
}
bool qemu_plugin_mem_is_big_endian(qemu_plugin_meminfo_t info)
{
MemOp op = get_memop(info);
return (op & MO_BSWAP) == MO_BE;
}
bool qemu_plugin_mem_is_store(qemu_plugin_meminfo_t info)
{
return get_plugin_meminfo_rw(info) & QEMU_PLUGIN_MEM_W;
}
qemu_plugin_mem_value qemu_plugin_mem_get_value(qemu_plugin_meminfo_t info)
{
uint64_t low = current_cpu->neg.plugin_mem_value_low;
qemu_plugin_mem_value value;
switch (qemu_plugin_mem_size_shift(info)) {
case 0:
value.type = QEMU_PLUGIN_MEM_VALUE_U8;
value.data.u8 = (uint8_t)low;
break;
case 1:
value.type = QEMU_PLUGIN_MEM_VALUE_U16;
value.data.u16 = (uint16_t)low;
break;
case 2:
value.type = QEMU_PLUGIN_MEM_VALUE_U32;
value.data.u32 = (uint32_t)low;
break;
case 3:
value.type = QEMU_PLUGIN_MEM_VALUE_U64;
value.data.u64 = low;
break;
case 4:
value.type = QEMU_PLUGIN_MEM_VALUE_U128;
value.data.u128.low = low;
value.data.u128.high = current_cpu->neg.plugin_mem_value_high;
break;
default:
g_assert_not_reached();
}
return value;
}
int qemu_plugin_num_vcpus(void)
{
return plugin_num_vcpus();
}
/*
* Plugin output
*/
void qemu_plugin_outs(const char *string)
{
qemu_log_mask(CPU_LOG_PLUGIN, "%s", string);
}
bool qemu_plugin_bool_parse(const char *name, const char *value, bool *ret)
{
return name && value && qapi_bool_parse(name, value, ret, NULL);
}
/*
* Create register handles.
*
* We need to create a handle for each register so the plugin
* infrastructure can call gdbstub to read a register. They are
* currently just a pointer encapsulation of the gdb_reg but in
* future may hold internal plugin state so its important plugin
* authors are not tempted to treat them as numbers.
*
* We also construct a result array with those handles and some
* ancillary data the plugin might find useful.
*/
static GArray *create_register_handles(GArray *gdbstub_regs)
{
GArray *find_data = g_array_new(true, true,
sizeof(qemu_plugin_reg_descriptor));
for (int i = 0; i < gdbstub_regs->len; i++) {
GDBRegDesc *grd = &g_array_index(gdbstub_regs, GDBRegDesc, i);
qemu_plugin_reg_descriptor desc;
/* skip "un-named" regs */
if (!grd->name) {
continue;
}
/* Create a record for the plugin */
desc.handle = GINT_TO_POINTER(grd->gdb_reg + 1);
desc.name = g_intern_string(grd->name);
desc.feature = g_intern_string(grd->feature_name);
g_array_append_val(find_data, desc);
}
return find_data;
}
GArray *qemu_plugin_get_registers(void)
{
g_assert(current_cpu);
g_autoptr(GArray) regs = gdb_get_register_list(current_cpu);
return create_register_handles(regs);
}
int qemu_plugin_read_register(struct qemu_plugin_register *reg, GByteArray *buf)
{
g_assert(current_cpu);
if (qemu_plugin_get_cb_flags() == QEMU_PLUGIN_CB_NO_REGS) {
return -1;
}
return gdb_read_register(current_cpu, buf, GPOINTER_TO_INT(reg) - 1);
}
int qemu_plugin_write_register(struct qemu_plugin_register *reg,
GByteArray *buf)
{
g_assert(current_cpu);
if (buf->len == 0 || qemu_plugin_get_cb_flags() != QEMU_PLUGIN_CB_RW_REGS) {
return -1;
}
return gdb_write_register(current_cpu, buf->data, GPOINTER_TO_INT(reg) - 1);
}
bool qemu_plugin_read_memory_vaddr(uint64_t addr, GByteArray *data, size_t len)
{
g_assert(current_cpu);
if (len == 0) {
return false;
}
g_byte_array_set_size(data, len);
int result = cpu_memory_rw_debug(current_cpu, addr, data->data,
data->len, false);
if (result < 0) {
return false;
}
return true;
}
bool qemu_plugin_write_memory_vaddr(uint64_t addr, GByteArray *data)
{
g_assert(current_cpu);
if (data->len == 0) {
return false;
}
int result = cpu_memory_rw_debug(current_cpu, addr, data->data,
data->len, true);
if (result < 0) {
return false;
}
return true;
}
enum qemu_plugin_hwaddr_operation_result
qemu_plugin_read_memory_hwaddr(hwaddr addr, GByteArray *data, size_t len)
{
#ifdef CONFIG_SOFTMMU
if (len == 0) {
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
}
g_assert(current_cpu);
int as_idx = cpu_asidx_from_attrs(current_cpu, MEMTXATTRS_UNSPECIFIED);
AddressSpace *as = cpu_get_address_space(current_cpu, as_idx);
if (as == NULL) {
return QEMU_PLUGIN_HWADDR_OPERATION_INVALID_ADDRESS_SPACE;
}
g_byte_array_set_size(data, len);
MemTxResult res = address_space_rw(as, addr,
MEMTXATTRS_UNSPECIFIED, data->data,
data->len, false);
switch (res) {
case MEMTX_OK:
return QEMU_PLUGIN_HWADDR_OPERATION_OK;
case MEMTX_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_DEVICE_ERROR;
case MEMTX_DECODE_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_INVALID_ADDRESS;
case MEMTX_ACCESS_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_ACCESS_DENIED;
default:
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
}
#else
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
#endif
}
enum qemu_plugin_hwaddr_operation_result
qemu_plugin_write_memory_hwaddr(hwaddr addr, GByteArray *data)
{
#ifdef CONFIG_SOFTMMU
if (data->len == 0) {
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
}
g_assert(current_cpu);
int as_idx = cpu_asidx_from_attrs(current_cpu, MEMTXATTRS_UNSPECIFIED);
AddressSpace *as = cpu_get_address_space(current_cpu, as_idx);
if (as == NULL) {
return QEMU_PLUGIN_HWADDR_OPERATION_INVALID_ADDRESS_SPACE;
}
MemTxResult res = address_space_rw(as, addr,
MEMTXATTRS_UNSPECIFIED, data->data,
data->len, true);
switch (res) {
case MEMTX_OK:
return QEMU_PLUGIN_HWADDR_OPERATION_OK;
case MEMTX_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_DEVICE_ERROR;
case MEMTX_DECODE_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_INVALID_ADDRESS;
case MEMTX_ACCESS_ERROR:
return QEMU_PLUGIN_HWADDR_OPERATION_ACCESS_DENIED;
default:
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
}
#else
return QEMU_PLUGIN_HWADDR_OPERATION_ERROR;
#endif
}
bool qemu_plugin_translate_vaddr(uint64_t vaddr, uint64_t *hwaddr)
{
#ifdef CONFIG_SOFTMMU
g_assert(current_cpu);
uint64_t res = cpu_get_phys_page_debug(current_cpu, vaddr);
if (res == (uint64_t)-1) {
return false;
}
*hwaddr = res | (vaddr & ~TARGET_PAGE_MASK);
return true;
#else
return false;
#endif
}
struct qemu_plugin_scoreboard *qemu_plugin_scoreboard_new(size_t element_size)
{
return plugin_scoreboard_new(element_size);
}
void qemu_plugin_scoreboard_free(struct qemu_plugin_scoreboard *score)
{
plugin_scoreboard_free(score);
}
void *qemu_plugin_scoreboard_find(struct qemu_plugin_scoreboard *score,
unsigned int vcpu_index)
{
g_assert(vcpu_index < qemu_plugin_num_vcpus());
/* we can't use g_array_index since entry size is not statically known */
char *base_ptr = score->data->data;
return base_ptr + vcpu_index * g_array_get_element_size(score->data);
}
static uint64_t *plugin_u64_address(qemu_plugin_u64 entry,
unsigned int vcpu_index)
{
char *ptr = qemu_plugin_scoreboard_find(entry.score, vcpu_index);
return (uint64_t *)(ptr + entry.offset);
}
void qemu_plugin_u64_add(qemu_plugin_u64 entry, unsigned int vcpu_index,
uint64_t added)
{
*plugin_u64_address(entry, vcpu_index) += added;
}
uint64_t qemu_plugin_u64_get(qemu_plugin_u64 entry,
unsigned int vcpu_index)
{
return *plugin_u64_address(entry, vcpu_index);
}
void qemu_plugin_u64_set(qemu_plugin_u64 entry, unsigned int vcpu_index,
uint64_t val)
{
*plugin_u64_address(entry, vcpu_index) = val;
}
uint64_t qemu_plugin_u64_sum(qemu_plugin_u64 entry)
{
uint64_t total = 0;
for (int i = 0, n = qemu_plugin_num_vcpus(); i < n; ++i) {
total += qemu_plugin_u64_get(entry, i);
}
return total;
}