qemu/hw/timer/aspeed_timer.c
Jamin Lin 8bc691bed8 hw/timer/aspeed: Add AST2700 Support
The timer controller include 8 sets of 32-bit decrement counters, based on
either PCLK or 1MHZ clock and the design of timer controller between AST2600
and AST2700 are almost the same.

TIMER0 – TIMER7 has their own individual control and interrupt status register.
In other words, users are able to set timer control in register TMC10 with
different TIMER base address and clear timer control and interrupt status in
register TMC14 with different TIMER base address.

Introduce new "aspeed_2700_timer_read" and "aspeed_2700_timer_write" callback
functions and a new ast2700 class to support AST2700.

The base address of TIMER0 to TIMER7 as following.
Base Address of Timer 0 = 0x12C1_0000
Base Address of Timer 1 = 0x12C1_0040
Base Address of Timer 2 = 0x12C1_0080
Base Address of Timer 3 = 0x12C1_00C0
Base Address of Timer 4 = 0x12C1_0100
Base Address of Timer 5 = 0x12C1_0140
Base Address of Timer 6 = 0x12C1_0180
Base Address of Timer 7 = 0x12C1_01C0

The register address space of each TIMER is "0x40" , and uses the following
formula to get the index and register of each TIMER.

timer_index = offset >> 6;
timer_offset = offset & 0x3f;

The TMC010 is a counter control set and interrupt status register. Write "1" to
TMC10[3:0] will set the specific bits to "1". Introduce a new
"aspeed_2700_timer_set_ctrl" function to handle this register behavior.

The TMC014 is a counter control clear and interrupt status register, to clear
the specific bits to "0", it should write "1" to  TMC14[3:0] on the same bit
position. Introduce a new "aspeed_2700_timer_clear_ctrl" function to handle
this register behavior. TMC014 does not support read operation.

Signed-off-by: Jamin Lin <jamin_lin@aspeedtech.com>
Acked-by: Cédric Le Goater <clg@redhat.com>
Link: https://lore.kernel.org/r/20250113064455.1660564-3-jamin_lin@aspeedtech.com
Signed-off-by: Cédric Le Goater <clg@redhat.com>
2025-01-27 09:38:15 +01:00

1008 lines
29 KiB
C

/*
* ASPEED AST2400 Timer
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright (C) 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "hw/timer/aspeed_timer.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/qdev-properties.h"
#include "trace.h"
#define TIMER_NR_REGS 4
#define TIMER_CTRL_BITS 4
#define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
#define TIMER_CLOCK_USE_EXT true
#define TIMER_CLOCK_EXT_HZ 1000000
#define TIMER_CLOCK_USE_APB false
#define TIMER_REG_STATUS 0
#define TIMER_REG_RELOAD 1
#define TIMER_REG_MATCH_FIRST 2
#define TIMER_REG_MATCH_SECOND 3
#define TIMER_FIRST_CAP_PULSE 4
enum timer_ctrl_op {
op_enable = 0,
op_external_clock,
op_overflow_interrupt,
op_pulse_enable
};
/*
* Minimum value of the reload register to filter out short period
* timers which have a noticeable impact in emulation. 5us should be
* enough, use 20us for "safety".
*/
#define TIMER_MIN_NS (20 * SCALE_US)
/**
* Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
* structs, as it's a waste of memory. The ptimer BH callback needs to know
* whether a specific AspeedTimer is enabled, but this information is held in
* AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
* arbitrary AspeedTimer to AspeedTimerCtrlState.
*/
static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
{
const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
return container_of(timers, AspeedTimerCtrlState, timers);
}
static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
{
return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
}
static inline bool timer_enabled(AspeedTimer *t)
{
return timer_ctrl_status(t, op_enable);
}
static inline bool timer_overflow_interrupt(AspeedTimer *t)
{
return timer_ctrl_status(t, op_overflow_interrupt);
}
static inline bool timer_can_pulse(AspeedTimer *t)
{
return t->id >= TIMER_FIRST_CAP_PULSE;
}
static inline bool timer_external_clock(AspeedTimer *t)
{
return timer_ctrl_status(t, op_external_clock);
}
static inline uint32_t calculate_rate(struct AspeedTimer *t)
{
AspeedTimerCtrlState *s = timer_to_ctrl(t);
return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
aspeed_scu_get_apb_freq(s->scu);
}
static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
{
uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
uint32_t rate = calculate_rate(t);
uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
return t->reload - MIN(t->reload, ticks);
}
static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
{
uint32_t rate = calculate_rate(t);
uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
return value < min_ticks ? min_ticks : value;
}
static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
{
uint64_t delta_ns;
uint64_t delta_ticks;
delta_ticks = t->reload - MIN(t->reload, ticks);
delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
return t->start + delta_ns;
}
static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
{
return t->match[i] < t->reload ? t->match[i] : 0;
}
static uint64_t calculate_next(struct AspeedTimer *t)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t next;
/*
* We don't know the relationship between the values in the match
* registers, so sort using MAX/MIN/zero. We sort in that order as
* the timer counts down to zero.
*/
next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
if (now < next) {
return next;
}
next = calculate_time(t, 0);
if (now < next) {
return next;
}
/* We've missed all deadlines, fire interrupt and try again */
timer_del(&t->timer);
if (timer_overflow_interrupt(t)) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
next = MAX(calculate_match(t, 0), calculate_match(t, 1));
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
return calculate_time(t, next);
}
static void aspeed_timer_mod(AspeedTimer *t)
{
uint64_t next = calculate_next(t);
if (next) {
timer_mod(&t->timer, next);
}
}
static void aspeed_timer_expire(void *opaque)
{
AspeedTimer *t = opaque;
bool interrupt = false;
uint32_t ticks;
if (!timer_enabled(t)) {
return;
}
ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
if (!ticks) {
interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
} else if (ticks <= MIN(t->match[0], t->match[1])) {
interrupt = true;
} else if (ticks <= MAX(t->match[0], t->match[1])) {
interrupt = true;
}
if (interrupt) {
AspeedTimerCtrlState *s = timer_to_ctrl(t);
t->level = !t->level;
s->irq_sts |= BIT(t->id);
qemu_set_irq(t->irq, t->level);
}
aspeed_timer_mod(t);
}
static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
{
uint64_t value;
switch (reg) {
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
} else {
value = t->reload;
}
break;
case TIMER_REG_RELOAD:
value = t->reload;
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
value = t->match[reg - 2];
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
value = 0;
break;
}
return value;
}
static uint64_t aspeed_timer_read_common(AspeedTimerCtrlState *s, hwaddr offset)
{
const int reg = (offset & 0xf) / 4;
uint64_t value;
switch (offset) {
case 0x30: /* Control Register */
value = s->ctrl;
break;
case 0x00 ... 0x2c: /* Timers 1 - 4 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
break;
case 0x40 ... 0x8c: /* Timers 5 - 8 */
value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
}
return value;
}
static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
uint32_t value)
{
AspeedTimer *t;
uint32_t old_reload;
trace_aspeed_timer_set_value(timer, reg, value);
t = &s->timers[timer];
switch (reg) {
case TIMER_REG_RELOAD:
old_reload = t->reload;
t->reload = calculate_min_ticks(t, value);
/*
* If the reload value was not previously set, or zero, and
* the current value is valid, try to start the timer if it is
* enabled.
*/
if (old_reload || !t->reload) {
break;
}
/* fall through to re-enable */
case TIMER_REG_STATUS:
if (timer_enabled(t)) {
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
uint32_t rate = calculate_rate(t);
if (delta >= 0) {
t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
} else {
t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
}
aspeed_timer_mod(t);
}
break;
case TIMER_REG_MATCH_FIRST:
case TIMER_REG_MATCH_SECOND:
t->match[reg - 2] = value;
if (timer_enabled(t)) {
aspeed_timer_mod(t);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
__func__, reg);
break;
}
}
/*
* Control register operations are broken out into helpers that can be
* explicitly called on aspeed_timer_reset(), but also from
* aspeed_timer_ctrl_op().
*/
static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_enable(t->id, enable);
if (enable) {
t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
aspeed_timer_mod(t);
} else {
timer_del(&t->timer);
}
}
static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_external_clock(t->id, enable);
}
static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
{
trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
}
static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
{
if (timer_can_pulse(t)) {
trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Timer does not support pulse mode\n", __func__);
}
}
/**
* Given the actions are fixed in number and completely described in helper
* functions, dispatch with a lookup table rather than manage control flow with
* a switch statement.
*/
static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
[op_enable] = aspeed_timer_ctrl_enable,
[op_external_clock] = aspeed_timer_ctrl_external_clock,
[op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
[op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
};
/**
* Conditionally affect changes chosen by a timer's control bit.
*
* The aspeed_timer_ctrl_op() interface is convenient for the
* aspeed_timer_set_ctrl() function as the "no change" early exit can be
* calculated for all operations, which cleans up the caller code. However the
* interface isn't convenient for the reset function where we want to enter a
* specific state without artificially constructing old and new values that
* will fall through the change guard (and motivates extracting the actions
* out to helper functions).
*
* @t: The timer to manipulate
* @op: The type of operation to be performed
* @old: The old state of the timer's control bits
* @new: The incoming state for the timer's control bits
*/
static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
uint8_t old, uint8_t new)
{
const uint8_t mask = BIT(op);
const bool enable = !!(new & mask);
const bool changed = ((old ^ new) & mask);
if (!changed) {
return;
}
ctrl_ops[op](t, enable);
}
static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
{
int i;
int shift;
uint8_t t_old, t_new;
AspeedTimer *t;
const uint8_t enable_mask = BIT(op_enable);
/*
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* changed, including the 'enable' bit, then we want either disable the
* timer and perform configuration, or perform configuration and then
* enable the timer
*/
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
t = &s->timers[i];
shift = (i * TIMER_CTRL_BITS);
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = (reg >> shift) & TIMER_CTRL_MASK;
/* If we are disabling, do so first */
if ((t_old & enable_mask) && !(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, false);
}
aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
/* If we are enabling, do so last */
if (!(t_old & enable_mask) && (t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, true);
}
}
s->ctrl = reg;
}
static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
{
trace_aspeed_timer_set_ctrl2(value);
}
static void aspeed_timer_write_common(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
const int reg = (offset & 0xf) / 4;
switch (offset) {
/* Control Registers */
case 0x30:
aspeed_timer_set_ctrl(s, tv);
break;
/* Timer Registers */
case 0x00 ... 0x2c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
break;
case 0x40 ... 0x8c:
aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
}
static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
{
AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
return ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
}
static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
AspeedTimerCtrlState *s = ASPEED_TIMER(opaque);
ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
}
static const MemoryRegionOps aspeed_timer_ops = {
.read = aspeed_timer_read,
.write = aspeed_timer_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->ctrl2;
break;
case 0x38:
value = s->ctrl3 & BIT(0);
break;
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
uint8_t command;
switch (offset) {
case 0x34:
aspeed_timer_set_ctrl2(s, tv);
break;
case 0x38:
command = (value >> 1) & 0xFF;
if (command == 0xAE) {
s->ctrl3 = 0x1;
} else if (command == 0xEA) {
s->ctrl3 = 0x0;
}
break;
case 0x3C:
if (s->ctrl3 & BIT(0)) {
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
}
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint64_t value;
switch (offset) {
case 0x34:
value = s->irq_sts;
break;
case 0x38:
case 0x3C:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
value = 0;
break;
default:
value = aspeed_timer_read_common(s, offset);
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
switch (offset) {
case 0x34:
s->irq_sts &= ~tv;
break;
case 0x3C:
aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
break;
case 0x38:
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
default:
aspeed_timer_write_common(s, offset, value);
break;
}
}
static void aspeed_2700_timer_set_ctrl(AspeedTimerCtrlState *s, int index,
uint32_t reg)
{
const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
const uint8_t external_clock_mask = BIT(op_external_clock);
const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
const uint8_t enable_mask = BIT(op_enable);
AspeedTimer *t;
uint8_t t_old;
uint8_t t_new;
int shift;
/*
* Only 1 will set the specific bits to 1
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* set, including the 'enable' bit, perform configuration and then
* enable the timer.
* Interrupt Status bit should not be set.
*/
t = &s->timers[index];
shift = index * TIMER_CTRL_BITS;
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = reg & TIMER_CTRL_MASK;
if (!(t_old & external_clock_mask) &&
(t_new & external_clock_mask)) {
aspeed_timer_ctrl_external_clock(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 1);
}
if (!(t_old & overflow_interrupt_mask) &&
(t_new & overflow_interrupt_mask)) {
aspeed_timer_ctrl_overflow_interrupt(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 1);
}
if (!(t_old & pulse_enable_mask) &&
(t_new & pulse_enable_mask)) {
aspeed_timer_ctrl_pulse_enable(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 1);
}
/* If we are enabling, do so last */
if (!(t_old & enable_mask) &&
(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, true);
s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 1);
}
}
static void aspeed_2700_timer_clear_ctrl(AspeedTimerCtrlState *s, int index,
uint32_t reg)
{
const uint8_t overflow_interrupt_mask = BIT(op_overflow_interrupt);
const uint8_t external_clock_mask = BIT(op_external_clock);
const uint8_t pulse_enable_mask = BIT(op_pulse_enable);
const uint8_t enable_mask = BIT(op_enable);
AspeedTimer *t;
uint8_t t_old;
uint8_t t_new;
int shift;
/*
* Only 1 will clear the specific bits to 0
* Handle a dependency between the 'enable' and remaining three
* configuration bits - i.e. if more than one bit in the control set has
* clear, including the 'enable' bit, then disable the timer and perform
* configuration
*/
t = &s->timers[index];
shift = index * TIMER_CTRL_BITS;
t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
t_new = reg & TIMER_CTRL_MASK;
/* If we are disabling, do so first */
if ((t_old & enable_mask) &&
(t_new & enable_mask)) {
aspeed_timer_ctrl_enable(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_enable, 1, 0);
}
if ((t_old & external_clock_mask) &&
(t_new & external_clock_mask)) {
aspeed_timer_ctrl_external_clock(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_external_clock, 1, 0);
}
if ((t_old & overflow_interrupt_mask) &&
(t_new & overflow_interrupt_mask)) {
aspeed_timer_ctrl_overflow_interrupt(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_overflow_interrupt, 1, 0);
}
if ((t_old & pulse_enable_mask) &&
(t_new & pulse_enable_mask)) {
aspeed_timer_ctrl_pulse_enable(t, false);
s->ctrl = deposit32(s->ctrl, shift + op_pulse_enable, 1, 0);
}
/* Clear interrupt status */
if (reg & 0x10000) {
s->irq_sts = deposit32(s->irq_sts, index, 1, 0);
}
}
static uint64_t aspeed_2700_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
{
uint32_t timer_offset = offset & 0x3f;
int timer_index = offset >> 6;
uint64_t value = 0;
if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%" PRIx64 " out of bounds\n",
__func__, offset);
return 0;
}
switch (timer_offset) {
/*
* Counter Status
* Counter Reload
* Counter First Matching
* Counter Second Matching
*/
case 0x00 ... 0x0C:
value = aspeed_timer_get_value(&s->timers[timer_index],
timer_offset >> 2);
break;
/* Counter Control and Interrupt Status */
case 0x10:
value = deposit64(value, 0, 4,
extract32(s->ctrl, timer_index * 4, 4));
value = deposit64(value, 16, 1,
extract32(s->irq_sts, timer_index, 1));
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: no getter for offset 0x%"
PRIx64"\n", __func__, offset);
value = 0;
break;
}
trace_aspeed_timer_read(offset, value);
return value;
}
static void aspeed_2700_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
uint64_t value)
{
const uint32_t timer_value = (uint32_t)(value & 0xFFFFFFFF);
uint32_t timer_offset = offset & 0x3f;
int timer_index = offset >> 6;
if (timer_index >= ASPEED_TIMER_NR_TIMERS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%" PRIx64 " out of bounds\n",
__func__, offset);
}
switch (timer_offset) {
/*
* Counter Status
* Counter Reload
* Counter First Matching
* Counter Second Matching
*/
case 0x00 ... 0x0C:
aspeed_timer_set_value(s, timer_index, timer_offset >> 2,
timer_value);
break;
/* Counter Control Set and Interrupt Status */
case 0x10:
aspeed_2700_timer_set_ctrl(s, timer_index, timer_value);
break;
/* Counter Control Clear and Interrupr Status */
case 0x14:
aspeed_2700_timer_clear_ctrl(s, timer_index, timer_value);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "%s: no setter for offset 0x%"
PRIx64"\n", __func__, offset);
break;
}
}
static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
{
AspeedTimer *t = &s->timers[id];
t->id = id;
timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
}
static void aspeed_timer_realize(DeviceState *dev, Error **errp)
{
int i;
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
assert(s->scu);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
aspeed_init_one_timer(s, i);
sysbus_init_irq(sbd, &s->timers[i].irq);
}
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
TYPE_ASPEED_TIMER, 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static void aspeed_timer_reset(DeviceState *dev)
{
int i;
AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
AspeedTimer *t = &s->timers[i];
/*
* Explicitly call helpers to avoid any conditional behaviour through
* aspeed_timer_set_ctrl().
*/
aspeed_timer_ctrl_enable(t, false);
aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
aspeed_timer_ctrl_overflow_interrupt(t, false);
aspeed_timer_ctrl_pulse_enable(t, false);
t->level = 0;
t->reload = 0;
t->match[0] = 0;
t->match[1] = 0;
}
s->ctrl = 0;
s->ctrl2 = 0;
s->ctrl3 = 0;
s->irq_sts = 0;
}
static const VMStateDescription vmstate_aspeed_timer = {
.name = "aspeed.timer",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(id, AspeedTimer),
VMSTATE_INT32(level, AspeedTimer),
VMSTATE_TIMER(timer, AspeedTimer),
VMSTATE_UINT32(reload, AspeedTimer),
VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_aspeed_timer_state = {
.name = "aspeed.timerctrl",
.version_id = 2,
.minimum_version_id = 2,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
AspeedTimer),
VMSTATE_END_OF_LIST()
}
};
static const Property aspeed_timer_properties[] = {
DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
AspeedSCUState *),
};
static void timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_timer_realize;
device_class_set_legacy_reset(dc, aspeed_timer_reset);
dc->desc = "ASPEED Timer";
dc->vmsd = &vmstate_aspeed_timer_state;
device_class_set_props(dc, aspeed_timer_properties);
}
static const TypeInfo aspeed_timer_info = {
.name = TYPE_ASPEED_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedTimerCtrlState),
.class_init = timer_class_init,
.class_size = sizeof(AspeedTimerClass),
.abstract = true,
};
static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2400 Timer";
awc->read = aspeed_2400_timer_read;
awc->write = aspeed_2400_timer_write;
}
static const TypeInfo aspeed_2400_timer_info = {
.name = TYPE_ASPEED_2400_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2400_timer_class_init,
};
static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2500 Timer";
awc->read = aspeed_2500_timer_read;
awc->write = aspeed_2500_timer_write;
}
static const TypeInfo aspeed_2500_timer_info = {
.name = TYPE_ASPEED_2500_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2500_timer_class_init,
};
static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2600 Timer";
awc->read = aspeed_2600_timer_read;
awc->write = aspeed_2600_timer_write;
}
static const TypeInfo aspeed_2600_timer_info = {
.name = TYPE_ASPEED_2600_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2600_timer_class_init,
};
static void aspeed_1030_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 1030 Timer";
awc->read = aspeed_2600_timer_read;
awc->write = aspeed_2600_timer_write;
}
static const TypeInfo aspeed_1030_timer_info = {
.name = TYPE_ASPEED_1030_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_1030_timer_class_init,
};
static void aspeed_2700_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
dc->desc = "ASPEED 2700 Timer";
awc->read = aspeed_2700_timer_read;
awc->write = aspeed_2700_timer_write;
}
static const TypeInfo aspeed_2700_timer_info = {
.name = TYPE_ASPEED_2700_TIMER,
.parent = TYPE_ASPEED_TIMER,
.class_init = aspeed_2700_timer_class_init,
};
static void aspeed_timer_register_types(void)
{
type_register_static(&aspeed_timer_info);
type_register_static(&aspeed_2400_timer_info);
type_register_static(&aspeed_2500_timer_info);
type_register_static(&aspeed_2600_timer_info);
type_register_static(&aspeed_1030_timer_info);
type_register_static(&aspeed_2700_timer_info);
}
type_init(aspeed_timer_register_types)