qemu/hw/m68k/next-cube.c
Philippe Mathieu-Daudé cdc8d7cada hw/boards: Rename no_sdcard -> auto_create_sdcard
Invert the 'no_sdcard' logic, renaming it as the more explicit
"auto_create_sdcard". Machines are supposed to create a SD Card
drive when this flag is set. In many cases it doesn't make much
sense (as boards don't expose SD Card host controller), but this
is patch only aims to expose that nonsense; so no logical change
intended (mechanical patch using gsed).

Most of the changes are:

  -    mc->no_sdcard = ON_OFF_AUTO_OFF;
  +    mc->auto_create_sdcard = true;

Except in
 . hw/core/null-machine.c
 . hw/arm/xilinx_zynq.c
 . hw/s390x/s390-virtio-ccw.c
where the disabled option is manually removed (since default):

  -    mc->no_sdcard = ON_OFF_AUTO_ON;
  +    mc->auto_create_sdcard = false;
  -    mc->auto_create_sdcard = false;

and in system/vl.c we change the 'default_sdcard' type to boolean.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20250204200934.65279-4-philmd@linaro.org>
2025-02-16 14:25:08 +01:00

1380 lines
38 KiB
C

/*
* NeXT Cube System Driver
*
* Copyright (c) 2011 Bryce Lanham
* Copyright (c) 2024 Mark Cave-Ayland
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "exec/hwaddr.h"
#include "system/system.h"
#include "system/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/misc/empty_slot.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"
#include "migration/vmstate.h"
/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define ENTRY 0x0100001e
#define RAM_SIZE 0x4000000
#define ROM_FILE "Rev_2.5_v66.bin"
#define TYPE_NEXT_RTC "next-rtc"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTRTC, NEXT_RTC)
struct NeXTRTC {
SysBusDevice parent_obj;
int8_t phase;
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
qemu_irq data_out_irq;
qemu_irq power_irq;
};
#define TYPE_NEXT_SCSI "next-scsi"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTSCSI, NEXT_SCSI)
/* NeXT SCSI Controller */
struct NeXTSCSI {
SysBusDevice parent_obj;
MemoryRegion scsi_mem;
SysBusESPState sysbus_esp;
MemoryRegion scsi_csr_mem;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
};
#define TYPE_NEXT_PC "next-pc"
OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC)
/* NeXT Peripheral Controller */
struct NeXTPC {
SysBusDevice parent_obj;
M68kCPU *cpu;
MemoryRegion floppy_mem;
MemoryRegion timer_mem;
MemoryRegion dummyen_mem;
MemoryRegion mmiomem;
MemoryRegion scrmem;
uint32_t scr1;
uint32_t scr2;
uint32_t old_scr2;
uint32_t int_mask;
uint32_t int_status;
uint32_t led;
NeXTSCSI next_scsi;
qemu_irq scsi_reset;
qemu_irq scsi_dma;
ESCCState escc;
NeXTRTC rtc;
qemu_irq rtc_data_irq;
qemu_irq rtc_cmd_reset_irq;
};
typedef struct next_dma {
uint32_t csr;
uint32_t saved_next;
uint32_t saved_limit;
uint32_t saved_start;
uint32_t saved_stop;
uint32_t next;
uint32_t limit;
uint32_t start;
uint32_t stop;
uint32_t next_initbuf;
uint32_t size;
} next_dma;
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
struct NeXTState {
MachineState parent;
MemoryRegion rom;
MemoryRegion rom2;
MemoryRegion dmamem;
MemoryRegion bmapm1;
MemoryRegion bmapm2;
next_dma dma[10];
};
/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};
#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void next_scr2_led_update(NeXTPC *s)
{
if (s->scr2 & 0x1) {
DPRINTF("fault!\n");
s->led++;
if (s->led == 10) {
DPRINTF("LED flashing, possible fault!\n");
s->led = 0;
}
}
}
static void next_scr2_rtc_update(NeXTPC *s)
{
uint8_t old_scr2_rtc, scr2_rtc;
old_scr2_rtc = extract32(s->old_scr2, 8, 8);
scr2_rtc = extract32(s->scr2, 8, 8);
if (scr2_rtc & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */
/* If we are in going down clock... do something */
if (((old_scr2_rtc & SCR2_RTCLK) != (scr2_rtc & SCR2_RTCLK)) &&
((scr2_rtc & SCR2_RTCLK) == 0)) {
if (scr2_rtc & SCR2_RTDATA) {
qemu_irq_raise(s->rtc_data_irq);
} else {
qemu_irq_lower(s->rtc_data_irq);
}
}
} else {
/* else end or abort */
qemu_irq_raise(s->rtc_cmd_reset_irq);
}
}
static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
uint64_t val;
switch (addr) {
case 0x2000: /* 0x2007000 */
/* DPRINTF("Read INT status: %x\n", s->int_status); */
val = s->int_status;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
val = s->int_mask;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
val = extract32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
val = extract32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3);
break;
default:
val = 0;
DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
break;
}
return val;
}
static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTPC *s = NEXT_PC(opaque);
switch (addr) {
case 0x2000: /* 0x2007000 */
DPRINTF("INT Status old: %x new: %x\n", s->int_status,
(unsigned int)val);
s->int_status = val;
break;
case 0x2800: /* 0x2007800 */
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
s->int_mask = val;
break;
case 0x7000 ... 0x7003: /* 0x200c000 */
DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
s->scr1 = deposit32(s->scr1, (4 - (addr - 0x7000) - size) << 3,
size << 3, val);
break;
case 0x8000 ... 0x8003: /* 0x200d000 */
s->scr2 = deposit32(s->scr2, (4 - (addr - 0x8000) - size) << 3,
size << 3, val);
next_scr2_led_update(s);
next_scr2_rtc_update(s);
s->old_scr2 = s->scr2;
break;
default:
DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
(unsigned int)val, size);
}
}
static const MemoryRegionOps next_mmio_ops = {
.read = next_mmio_read,
.write = next_mmio_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
#define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
#define NEXTDMA_SCSI(x) (0x10 + x)
#define NEXTDMA_FD(x) (0x10 + x)
#define NEXTDMA_ENTX(x) (0x110 + x)
#define NEXTDMA_ENRX(x) (0x150 + x)
#define NEXTDMA_CSR 0x0
#define NEXTDMA_NEXT 0x4000
#define NEXTDMA_LIMIT 0x4004
#define NEXTDMA_START 0x4008
#define NEXTDMA_STOP 0x400c
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void next_dma_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = val;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = val;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (val & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (val & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (val & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (val & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (val & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = val;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = val;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = val;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = val;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = val;
break;
default:
DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)val);
}
}
static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
uint64_t val;
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
val = next_state->dma[NEXTDMA_SCSI].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_CSR):
val = next_state->dma[NEXTDMA_ENRX].csr;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_ENRX].next_initbuf;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_ENRX].next;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_ENRX].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
val = next_state->dma[NEXTDMA_SCSI].next;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
val = next_state->dma[NEXTDMA_SCSI].next_initbuf;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
val = next_state->dma[NEXTDMA_SCSI].limit;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
val = next_state->dma[NEXTDMA_SCSI].start;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
val = next_state->dma[NEXTDMA_SCSI].stop;
break;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
val = 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
return val;
}
static const MemoryRegionOps next_dma_ops = {
.read = next_dma_read,
.write = next_dma_write,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_irq(void *opaque, int number, int level)
{
NeXTPC *s = NEXT_PC(opaque);
M68kCPU *cpu = s->cpu;
int shift = 0;
/* first switch sets interrupt status */
/* DPRINTF("IRQ %i\n",number); */
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
shift = 7;
break;
case NEXT_KBD_I:
shift = 3;
break;
case NEXT_PWR_I:
shift = 2;
break;
case NEXT_ENRX_I:
shift = 9;
break;
case NEXT_ENTX_I:
shift = 10;
break;
case NEXT_SCSI_I:
shift = 12;
break;
case NEXT_CLK_I:
shift = 5;
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
shift = 17;
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
shift = 28;
break;
case NEXT_ENRX_DMA_I:
shift = 27;
break;
case NEXT_SCSI_DMA_I:
shift = 26;
break;
case NEXT_SND_I:
shift = 23;
break;
case NEXT_SCC_DMA_I:
shift = 21;
break;
}
/*
* this HAS to be wrong, the interrupt handlers in mach and together
* int_status and int_mask and return if there is a hit
*/
if (s->int_mask & (1 << shift)) {
DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
/* return; */
}
/* second switch triggers the correct interrupt */
if (level) {
s->int_status |= 1 << shift;
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
case NEXT_KBD_I:
case NEXT_PWR_I:
case NEXT_ENRX_I:
case NEXT_ENTX_I:
case NEXT_SCSI_I:
case NEXT_CLK_I:
m68k_set_irq_level(cpu, 3, 27);
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
m68k_set_irq_level(cpu, 5, 29);
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
case NEXT_ENRX_DMA_I:
case NEXT_SCSI_DMA_I:
case NEXT_SND_I:
case NEXT_SCC_DMA_I:
m68k_set_irq_level(cpu, 6, 30);
break;
}
} else {
s->int_status &= ~(1 << shift);
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
}
static void nextdma_write(void *opaque, uint8_t *buf, int size, int type)
{
uint32_t base_addr;
int irq = 0;
uint8_t align = 16;
NeXTState *next_state = NEXT_MACHINE(qdev_get_machine());
if (type == NEXTDMA_ENRX || type == NEXTDMA_ENTX) {
align = 32;
}
/* Most DMA is supposedly 16 byte aligned */
if ((size % align) != 0) {
size -= size % align;
size += align;
}
/*
* prom sets the dma start using initbuf while the bootloader uses next
* so we check to see if initbuf is 0
*/
if (next_state->dma[type].next_initbuf == 0) {
base_addr = next_state->dma[type].next;
} else {
base_addr = next_state->dma[type].next_initbuf;
}
cpu_physical_memory_write(base_addr, buf, size);
next_state->dma[type].next_initbuf = 0;
/* saved limit is checked to calculate packet size by both, rom and netbsd */
next_state->dma[type].saved_limit = (next_state->dma[type].next + size);
next_state->dma[type].saved_next = (next_state->dma[type].next);
/*
* 32 bytes under savedbase seems to be some kind of register
* of which the purpose is unknown as of yet
*/
/* stl_phys(s->rx_dma.base-32,0xFFFFFFFF); */
if (!(next_state->dma[type].csr & DMA_SUPDATE)) {
next_state->dma[type].next = next_state->dma[type].start;
next_state->dma[type].limit = next_state->dma[type].stop;
}
/* Set dma registers and raise an irq */
next_state->dma[type].csr |= DMA_COMPLETE; /* DON'T CHANGE THIS! */
switch (type) {
case NEXTDMA_SCSI:
irq = NEXT_SCSI_DMA_I;
break;
}
next_irq(opaque, irq, 1);
next_irq(opaque, irq, 0);
}
static void nextscsi_read(void *opaque, uint8_t *buf, int len)
{
DPRINTF("SCSI READ: %x\n", len);
abort();
}
static void nextscsi_write(void *opaque, uint8_t *buf, int size)
{
DPRINTF("SCSI WRITE: %i\n", size);
nextdma_write(opaque, buf, size, NEXTDMA_SCSI);
}
static void next_scsi_csr_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
NeXTPC *pc = NEXT_PC(container_of(s, NeXTPC, next_scsi));
switch (addr) {
case 0:
if (val & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
}
if (val & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
* s->scsi_csr_1 = 0xc0;
* s->scsi_csr_1 |= 0x1;
* qemu_irq_pulse(s->scsi_dma);
*/
}
/*
* else
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (val & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
qemu_irq_raise(pc->scsi_reset);
s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1);
qemu_irq_lower(pc->scsi_reset);
}
if (val & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (val & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
pc->int_status |= 0x4000000;
} else {
/* fprintf(stderr,"SCSICSR CPUDMA disabled\n"); */
pc->int_status &= ~(0x4000000);
/* qemu_irq_lower(s->scsi_dma); */
}
if (val & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= val;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
* next_irq(s, NEXT_SCSI_I, level);
* }
*/
} else {
/* int_mask |= 0x1000; */
}
if (val & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR1 Write: %"PRIx64 "\n", val);
s->scsi_csr_1 = val;
break;
case 1:
DPRINTF("SCSICSR2 Write: %"PRIx64 "\n", val);
s->scsi_csr_2 = val;
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_scsi_csr_read(void *opaque, hwaddr addr, unsigned size)
{
NeXTSCSI *s = NEXT_SCSI(opaque);
uint64_t val;
switch (addr) {
case 0:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
val = s->scsi_csr_1;
break;
case 1:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
val = s->scsi_csr_2;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_scsi_csr_ops = {
.read = next_scsi_csr_read,
.write = next_scsi_csr_write,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_scsi_init(Object *obj)
{
NeXTSCSI *s = NEXT_SCSI(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
object_initialize_child(obj, "esp", &s->sysbus_esp, TYPE_SYSBUS_ESP);
memory_region_init_io(&s->scsi_csr_mem, obj, &next_scsi_csr_ops,
s, "csrs", 2);
memory_region_init(&s->scsi_mem, obj, "next.scsi", 0x40);
sysbus_init_mmio(sbd, &s->scsi_mem);
}
static void next_scsi_realize(DeviceState *dev, Error **errp)
{
NeXTSCSI *s = NEXT_SCSI(dev);
SysBusESPState *sysbus_esp;
SysBusDevice *sbd;
ESPState *esp;
NeXTPC *pcdev;
pcdev = NEXT_PC(container_of(s, NeXTPC, next_scsi));
/* ESP */
sysbus_esp = SYSBUS_ESP(&s->sysbus_esp);
esp = &sysbus_esp->esp;
esp->dma_memory_read = nextscsi_read;
esp->dma_memory_write = nextscsi_write;
esp->dma_opaque = pcdev;
sysbus_esp->it_shift = 0;
esp->dma_enabled = 1;
sbd = SYS_BUS_DEVICE(sysbus_esp);
if (!sysbus_realize(sbd, errp)) {
return;
}
memory_region_add_subregion(&s->scsi_mem, 0x0,
sysbus_mmio_get_region(sbd, 0));
/* SCSI CSRs */
memory_region_add_subregion(&s->scsi_mem, 0x20, &s->scsi_csr_mem);
scsi_bus_legacy_handle_cmdline(&s->sysbus_esp.esp.bus);
}
static const VMStateDescription next_scsi_vmstate = {
.name = "next-scsi",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(scsi_csr_1, NeXTSCSI),
VMSTATE_UINT8(scsi_csr_2, NeXTSCSI),
VMSTATE_END_OF_LIST()
},
};
static void next_scsi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NeXT SCSI Controller";
dc->realize = next_scsi_realize;
dc->vmsd = &next_scsi_vmstate;
}
static const TypeInfo next_scsi_info = {
.name = TYPE_NEXT_SCSI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_scsi_init,
.instance_size = sizeof(NeXTSCSI),
.class_init = next_scsi_class_init,
};
static void next_floppy_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0:
DPRINTF("FDCSR Write: %"PRIx64 "\n", val);
if (val == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_floppy_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
val = 0x40 | 0x04 | 0x2 | 0x1;
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_floppy_ops = {
.read = next_floppy_read,
.write = next_floppy_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_timer_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
switch (addr) {
case 0 ... 3:
/* Hardware timer latch - not implemented yet */
break;
default:
g_assert_not_reached();
}
}
static uint64_t next_timer_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0 ... 3:
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far.
*
* Hack: We need to have the LSB change consistently to make it work
*/
val = extract32(clock(), (4 - addr - size) << 3,
size << 3);
break;
default:
g_assert_not_reached();
}
return val;
}
static const MemoryRegionOps next_timer_ops = {
.read = next_timer_read,
.write = next_timer_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static void next_dummy_en_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
/* Do nothing */
return;
}
static uint64_t next_dummy_en_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val;
switch (addr) {
case 0:
/* For now return dummy byte to allow the Ethernet test to timeout */
val = 0xff;
break;
default:
val = 0;
}
return val;
}
static const MemoryRegionOps next_dummy_en_ops = {
.read = next_dummy_en_read,
.write = next_dummy_en_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_BIG_ENDIAN,
};
static bool next_rtc_cmd_is_write(uint8_t cmd)
{
return (cmd >= 0x80 && cmd <= 0x9f) ||
(cmd == 0xb1);
}
static void next_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTRTC *rtc = NEXT_RTC(opaque);
if (rtc->phase < 8) {
rtc->command = (rtc->command << 1) | level;
if (rtc->phase == 7 && !next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command <= 0x1f) {
/* RAM registers */
rtc->retval = rtc->ram[rtc->command];
}
if ((rtc->command >= 0x20) && (rtc->command <= 0x2f)) {
/* RTC */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
rtc->retval = 0;
switch (rtc->command) {
case 0x20:
rtc->retval = SCR2_TOBCD(info->tm_sec);
break;
case 0x21:
rtc->retval = SCR2_TOBCD(info->tm_min);
break;
case 0x22:
rtc->retval = SCR2_TOBCD(info->tm_hour);
break;
case 0x24:
rtc->retval = SCR2_TOBCD(info->tm_mday);
break;
case 0x25:
rtc->retval = SCR2_TOBCD((info->tm_mon + 1));
break;
case 0x26:
rtc->retval = SCR2_TOBCD((info->tm_year - 100));
break;
}
}
if (rtc->command == 0x30) {
/* read the status 0x30 */
rtc->retval = rtc->status;
}
if (rtc->command == 0x31) {
/* read the control 0x31 */
rtc->retval = rtc->control;
}
}
}
if (rtc->phase >= 8 && rtc->phase < 16) {
if (next_rtc_cmd_is_write(rtc->command)) {
/* Shift in value to write */
rtc->value = (rtc->value << 1) | level;
} else {
/* Shift out value to read */
if (rtc->retval & (0x80 >> (rtc->phase - 8))) {
qemu_irq_raise(rtc->data_out_irq);
} else {
qemu_irq_lower(rtc->data_out_irq);
}
}
}
rtc->phase++;
if (rtc->phase == 16 && next_rtc_cmd_is_write(rtc->command)) {
if (rtc->command >= 0x80 && rtc->command <= 0x9f) {
/* RAM registers */
rtc->ram[rtc->command - 0x80] = rtc->value;
}
if (rtc->command == 0xb1) {
/* write to 0x30 register */
if (rtc->value & 0x04) {
/* clear FTU */
rtc->status = rtc->status & (~0x18);
qemu_irq_lower(rtc->power_irq);
}
}
}
}
static void next_rtc_cmd_reset_irq(void *opaque, int n, int level)
{
NeXTRTC *rtc = NEXT_RTC(opaque);
if (level) {
rtc->phase = 0;
rtc->command = 0;
rtc->value = 0;
}
}
static void next_rtc_reset_hold(Object *obj, ResetType type)
{
NeXTRTC *rtc = NEXT_RTC(obj);
rtc->status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(rtc->ram, rtc_ram2, 32);
}
static void next_rtc_init(Object *obj)
{
NeXTRTC *rtc = NEXT_RTC(obj);
qdev_init_gpio_in_named(DEVICE(obj), next_rtc_data_in_irq,
"rtc-data-in", 1);
qdev_init_gpio_out_named(DEVICE(obj), &rtc->data_out_irq,
"rtc-data-out", 1);
qdev_init_gpio_in_named(DEVICE(obj), next_rtc_cmd_reset_irq,
"rtc-cmd-reset", 1);
qdev_init_gpio_out_named(DEVICE(obj), &rtc->power_irq,
"rtc-power-out", 1);
}
static const VMStateDescription next_rtc_vmstate = {
.name = "next-rtc",
.version_id = 3,
.minimum_version_id = 3,
.fields = (const VMStateField[]) {
VMSTATE_INT8(phase, NeXTRTC),
VMSTATE_UINT8_ARRAY(ram, NeXTRTC, 32),
VMSTATE_UINT8(command, NeXTRTC),
VMSTATE_UINT8(value, NeXTRTC),
VMSTATE_UINT8(status, NeXTRTC),
VMSTATE_UINT8(control, NeXTRTC),
VMSTATE_UINT8(retval, NeXTRTC),
VMSTATE_END_OF_LIST()
},
};
static void next_rtc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "NeXT RTC";
dc->vmsd = &next_rtc_vmstate;
rc->phases.hold = next_rtc_reset_hold;
}
static const TypeInfo next_rtc_info = {
.name = TYPE_NEXT_RTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_rtc_init,
.instance_size = sizeof(NeXTRTC),
.class_init = next_rtc_class_init,
};
static void next_pc_rtc_data_in_irq(void *opaque, int n, int level)
{
NeXTPC *s = NEXT_PC(opaque);
uint8_t scr2_2 = extract32(s->scr2, 8, 8);
if (level) {
scr2_2 |= SCR2_RTDATA;
} else {
scr2_2 &= ~SCR2_RTDATA;
}
s->scr2 = deposit32(s->scr2, 8, 8, scr2_2);
}
static void next_pc_reset_hold(Object *obj, ResetType type)
{
NeXTPC *s = NEXT_PC(obj);
/* Set internal registers to initial values */
/* 0x0000XX00 << vital bits */
s->scr1 = 0x00011102;
s->scr2 = 0x00ff0c80;
s->old_scr2 = s->scr2;
}
static void next_pc_realize(DeviceState *dev, Error **errp)
{
NeXTPC *s = NEXT_PC(dev);
SysBusDevice *sbd;
DeviceState *d;
/* SCSI */
sbd = SYS_BUS_DEVICE(&s->next_scsi);
if (!sysbus_realize(sbd, errp)) {
return;
}
d = DEVICE(object_resolve_path_component(OBJECT(&s->next_scsi), "esp"));
sysbus_connect_irq(SYS_BUS_DEVICE(d), 0,
qdev_get_gpio_in(DEVICE(s), NEXT_SCSI_I));
s->scsi_reset = qdev_get_gpio_in(d, 0);
s->scsi_dma = qdev_get_gpio_in(d, 1);
/* ESCC */
d = DEVICE(&s->escc);
qdev_prop_set_uint32(d, "disabled", 0);
qdev_prop_set_uint32(d, "frequency", 9600 * 384);
qdev_prop_set_uint32(d, "it_shift", 0);
qdev_prop_set_bit(d, "bit_swap", true);
qdev_prop_set_chr(d, "chrB", serial_hd(1));
qdev_prop_set_chr(d, "chrA", serial_hd(0));
qdev_prop_set_uint32(d, "chnBtype", escc_serial);
qdev_prop_set_uint32(d, "chnAtype", escc_serial);
sbd = SYS_BUS_DEVICE(d);
if (!sysbus_realize(sbd, errp)) {
return;
}
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(dev, NEXT_SCC_I));
sysbus_connect_irq(sbd, 1, qdev_get_gpio_in(dev, NEXT_SCC_DMA_I));
/* RTC */
d = DEVICE(&s->rtc);
if (!sysbus_realize(SYS_BUS_DEVICE(d), errp)) {
return;
}
/* Data from NeXTPC to RTC */
qdev_connect_gpio_out_named(dev, "rtc-data-out", 0,
qdev_get_gpio_in_named(d, "rtc-data-in", 0));
/* Data from RTC to NeXTPC */
qdev_connect_gpio_out_named(d, "rtc-data-out", 0,
qdev_get_gpio_in_named(dev,
"rtc-data-in", 0));
qdev_connect_gpio_out_named(dev, "rtc-cmd-reset", 0,
qdev_get_gpio_in_named(d, "rtc-cmd-reset", 0));
qdev_connect_gpio_out_named(d, "rtc-power-out", 0,
qdev_get_gpio_in(dev, NEXT_PWR_I));
}
static void next_pc_init(Object *obj)
{
NeXTPC *s = NEXT_PC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
qdev_init_gpio_in(DEVICE(obj), next_irq, NEXT_NUM_IRQS);
memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
"next.mmio", 0x9000);
sysbus_init_mmio(sbd, &s->mmiomem);
memory_region_init_io(&s->dummyen_mem, OBJECT(s), &next_dummy_en_ops, s,
"next.en", 0x20);
sysbus_init_mmio(sbd, &s->dummyen_mem);
object_initialize_child(obj, "next-scsi", &s->next_scsi, TYPE_NEXT_SCSI);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->next_scsi), 0));
memory_region_init_io(&s->floppy_mem, OBJECT(s), &next_floppy_ops, s,
"next.floppy", 4);
sysbus_init_mmio(sbd, &s->floppy_mem);
object_initialize_child(obj, "escc", &s->escc, TYPE_ESCC);
sysbus_init_mmio(sbd,
sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->escc), 0));
memory_region_init_io(&s->timer_mem, OBJECT(s), &next_timer_ops, s,
"next.timer", 4);
sysbus_init_mmio(sbd, &s->timer_mem);
object_initialize_child(obj, "rtc", &s->rtc, TYPE_NEXT_RTC);
qdev_init_gpio_in_named(DEVICE(obj), next_pc_rtc_data_in_irq,
"rtc-data-in", 1);
qdev_init_gpio_out_named(DEVICE(obj), &s->rtc_data_irq,
"rtc-data-out", 1);
qdev_init_gpio_out_named(DEVICE(obj), &s->rtc_cmd_reset_irq,
"rtc-cmd-reset", 1);
}
/*
* If the m68k CPU implemented its inbound irq lines as GPIO lines
* rather than via the m68k_set_irq_level() function we would not need
* this cpu link property and could instead provide outbound IRQ lines
* that the board could wire up to the CPU.
*/
static const Property next_pc_properties[] = {
DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *),
};
static const VMStateDescription next_pc_vmstate = {
.name = "next-pc",
.version_id = 4,
.minimum_version_id = 4,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(scr1, NeXTPC),
VMSTATE_UINT32(scr2, NeXTPC),
VMSTATE_UINT32(old_scr2, NeXTPC),
VMSTATE_UINT32(int_mask, NeXTPC),
VMSTATE_UINT32(int_status, NeXTPC),
VMSTATE_UINT32(led, NeXTPC),
VMSTATE_END_OF_LIST()
},
};
static void next_pc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->desc = "NeXT Peripheral Controller";
dc->realize = next_pc_realize;
device_class_set_props(dc, next_pc_properties);
dc->vmsd = &next_pc_vmstate;
rc->phases.hold = next_pc_reset_hold;
}
static const TypeInfo next_pc_info = {
.name = TYPE_NEXT_PC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = next_pc_init,
.instance_size = sizeof(NeXTPC),
.class_init = next_pc_class_init,
};
static void next_cube_init(MachineState *machine)
{
NeXTState *m = NEXT_MACHINE(machine);
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *sysmem = get_system_memory();
const char *bios_name = machine->firmware ?: ROM_FILE;
DeviceState *pcdev;
/* Initialize the cpu core */
cpu = M68K_CPU(cpu_create(machine->cpu_type));
if (!cpu) {
error_report("Unable to find m68k CPU definition");
exit(1);
}
env = &cpu->env;
/* Initialize CPU registers. */
env->vbr = 0;
env->sr = 0x2700;
/* Peripheral Controller */
pcdev = qdev_new(TYPE_NEXT_PC);
object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal);
/* 64MB RAM starting at 0x04000000 */
memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
/* Framebuffer */
sysbus_create_simple(TYPE_NEXTFB, 0x0B000000, NULL);
/* MMIO */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02005000);
/* BMAP IO - acts as a catch-all for now */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
/* en network (dummy) */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02106000);
/* unknown: Brightness control register? */
empty_slot_init("next.unknown.0", 0x02110000, 0x10);
/* unknown: Magneto-Optical drive controller? */
empty_slot_init("next.unknown.1", 0x02112000, 0x10);
/* SCSI */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 2, 0x02114000);
/* Floppy */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 3, 0x02114108);
/* ESCC */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 4, 0x02118000);
/* unknown: Serial clock configuration register? */
empty_slot_init("next.unknown.2", 0x02118004, 0x10);
/* Timer */
sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 5, 0x0211a000);
/* BMAP memory */
memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem",
64, RAM_SHARED, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1,
0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2);
/* KBD */
sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL);
/* Load ROM here */
memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, &m->rom);
memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
0x20000);
memory_region_add_subregion(sysmem, 0x0, &m->rom2);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
} else {
uint8_t *ptr;
/* Initial PC is always at offset 4 in firmware binaries */
ptr = rom_ptr(0x01000004, 4);
g_assert(ptr != NULL);
env->pc = ldl_be_p(ptr);
if (env->pc >= 0x01020000) {
error_report("'%s' does not seem to be a valid firmware image.",
bios_name);
exit(1);
}
}
/* DMA */
memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine,
"next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "NeXT Cube";
mc->init = next_cube_init;
mc->block_default_type = IF_SCSI;
mc->default_ram_size = RAM_SIZE;
mc->default_ram_id = "next.ram";
mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
mc->no_cdrom = true;
mc->auto_create_sdcard = true;
}
static const TypeInfo next_typeinfo = {
.name = TYPE_NEXT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = next_machine_class_init,
.instance_size = sizeof(NeXTState),
};
static void next_register_type(void)
{
type_register_static(&next_typeinfo);
type_register_static(&next_pc_info);
type_register_static(&next_scsi_info);
type_register_static(&next_rtc_info);
}
type_init(next_register_type)