qemu/rust/qemu-api/src/qdev.rs
Paolo Bonzini d556226d69 rust: qom: get rid of ClassInitImpl
Complete the conversion from the ClassInitImpl trait to class_init() methods.
This will provide more freedom to split the qemu_api crate in separate parts.

Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-02-25 16:18:12 +01:00

367 lines
13 KiB
Rust

// Copyright 2024, Linaro Limited
// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
// SPDX-License-Identifier: GPL-2.0-or-later
//! Bindings to create devices and access device functionality from Rust.
use std::{
ffi::{CStr, CString},
os::raw::{c_int, c_void},
ptr::NonNull,
};
pub use bindings::{Clock, ClockEvent, DeviceClass, DeviceState, Property, ResetType};
use crate::{
bindings::{self, qdev_init_gpio_in, qdev_init_gpio_out, Error, ResettableClass},
callbacks::FnCall,
cell::bql_locked,
chardev::Chardev,
irq::InterruptSource,
prelude::*,
qom::{ObjectClass, ObjectImpl, Owned},
vmstate::VMStateDescription,
};
/// Trait providing the contents of the `ResettablePhases` struct,
/// which is part of the QOM `Resettable` interface.
pub trait ResettablePhasesImpl {
/// If not None, this is called when the object enters reset. It
/// can reset local state of the object, but it must not do anything that
/// has a side-effect on other objects, such as raising or lowering an
/// [`InterruptSource`], or reading or writing guest memory. It takes the
/// reset's type as argument.
const ENTER: Option<fn(&Self, ResetType)> = None;
/// If not None, this is called when the object for entry into reset, once
/// every object in the system which is being reset has had its
/// `ResettablePhasesImpl::ENTER` method called. At this point devices
/// can do actions that affect other objects.
///
/// If in doubt, implement this method.
const HOLD: Option<fn(&Self, ResetType)> = None;
/// If not None, this phase is called when the object leaves the reset
/// state. Actions affecting other objects are permitted.
const EXIT: Option<fn(&Self, ResetType)> = None;
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer that
/// can be downcasted to type `T`. We also expect the device is
/// readable/writeable from one thread at any time.
unsafe extern "C" fn rust_resettable_enter_fn<T: ResettablePhasesImpl>(
obj: *mut Object,
typ: ResetType,
) {
let state = NonNull::new(obj).unwrap().cast::<T>();
T::ENTER.unwrap()(unsafe { state.as_ref() }, typ);
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer that
/// can be downcasted to type `T`. We also expect the device is
/// readable/writeable from one thread at any time.
unsafe extern "C" fn rust_resettable_hold_fn<T: ResettablePhasesImpl>(
obj: *mut Object,
typ: ResetType,
) {
let state = NonNull::new(obj).unwrap().cast::<T>();
T::HOLD.unwrap()(unsafe { state.as_ref() }, typ);
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer that
/// can be downcasted to type `T`. We also expect the device is
/// readable/writeable from one thread at any time.
unsafe extern "C" fn rust_resettable_exit_fn<T: ResettablePhasesImpl>(
obj: *mut Object,
typ: ResetType,
) {
let state = NonNull::new(obj).unwrap().cast::<T>();
T::EXIT.unwrap()(unsafe { state.as_ref() }, typ);
}
/// Trait providing the contents of [`DeviceClass`].
pub trait DeviceImpl: ObjectImpl + ResettablePhasesImpl + IsA<DeviceState> {
/// _Realization_ is the second stage of device creation. It contains
/// all operations that depend on device properties and can fail (note:
/// this is not yet supported for Rust devices).
///
/// If not `None`, the parent class's `realize` method is overridden
/// with the function pointed to by `REALIZE`.
const REALIZE: Option<fn(&Self)> = None;
/// An array providing the properties that the user can set on the
/// device. Not a `const` because referencing statics in constants
/// is unstable until Rust 1.83.0.
fn properties() -> &'static [Property] {
&[]
}
/// A `VMStateDescription` providing the migration format for the device
/// Not a `const` because referencing statics in constants is unstable
/// until Rust 1.83.0.
fn vmsd() -> Option<&'static VMStateDescription> {
None
}
}
/// # Safety
///
/// This function is only called through the QOM machinery and
/// used by `DeviceClass::class_init`.
/// We expect the FFI user of this function to pass a valid pointer that
/// can be downcasted to type `T`. We also expect the device is
/// readable/writeable from one thread at any time.
unsafe extern "C" fn rust_realize_fn<T: DeviceImpl>(dev: *mut DeviceState, _errp: *mut *mut Error) {
let state = NonNull::new(dev).unwrap().cast::<T>();
T::REALIZE.unwrap()(unsafe { state.as_ref() });
}
unsafe impl InterfaceType for ResettableClass {
const TYPE_NAME: &'static CStr =
unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_RESETTABLE_INTERFACE) };
}
impl ResettableClass {
/// Fill in the virtual methods of `ResettableClass` based on the
/// definitions in the `ResettablePhasesImpl` trait.
pub fn class_init<T: ResettablePhasesImpl>(&mut self) {
if <T as ResettablePhasesImpl>::ENTER.is_some() {
self.phases.enter = Some(rust_resettable_enter_fn::<T>);
}
if <T as ResettablePhasesImpl>::HOLD.is_some() {
self.phases.hold = Some(rust_resettable_hold_fn::<T>);
}
if <T as ResettablePhasesImpl>::EXIT.is_some() {
self.phases.exit = Some(rust_resettable_exit_fn::<T>);
}
}
}
impl DeviceClass {
/// Fill in the virtual methods of `DeviceClass` based on the definitions in
/// the `DeviceImpl` trait.
pub fn class_init<T: DeviceImpl>(&mut self) {
if <T as DeviceImpl>::REALIZE.is_some() {
self.realize = Some(rust_realize_fn::<T>);
}
if let Some(vmsd) = <T as DeviceImpl>::vmsd() {
self.vmsd = vmsd;
}
let prop = <T as DeviceImpl>::properties();
if !prop.is_empty() {
unsafe {
bindings::device_class_set_props_n(self, prop.as_ptr(), prop.len());
}
}
ResettableClass::cast::<DeviceState>(self).class_init::<T>();
self.parent_class.class_init::<T>();
}
}
#[macro_export]
macro_rules! define_property {
($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, bit = $bitnr:expr, default = $defval:expr$(,)*) => {
$crate::bindings::Property {
// use associated function syntax for type checking
name: ::std::ffi::CStr::as_ptr($name),
info: $prop,
offset: $crate::offset_of!($state, $field) as isize,
bitnr: $bitnr,
set_default: true,
defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 },
..$crate::zeroable::Zeroable::ZERO
}
};
($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty, default = $defval:expr$(,)*) => {
$crate::bindings::Property {
// use associated function syntax for type checking
name: ::std::ffi::CStr::as_ptr($name),
info: $prop,
offset: $crate::offset_of!($state, $field) as isize,
set_default: true,
defval: $crate::bindings::Property__bindgen_ty_1 { u: $defval as u64 },
..$crate::zeroable::Zeroable::ZERO
}
};
($name:expr, $state:ty, $field:ident, $prop:expr, $type:ty$(,)*) => {
$crate::bindings::Property {
// use associated function syntax for type checking
name: ::std::ffi::CStr::as_ptr($name),
info: $prop,
offset: $crate::offset_of!($state, $field) as isize,
set_default: false,
..$crate::zeroable::Zeroable::ZERO
}
};
}
#[macro_export]
macro_rules! declare_properties {
($ident:ident, $($prop:expr),*$(,)*) => {
pub static $ident: [$crate::bindings::Property; {
let mut len = 0;
$({
_ = stringify!($prop);
len += 1;
})*
len
}] = [
$($prop),*,
];
};
}
unsafe impl ObjectType for DeviceState {
type Class = DeviceClass;
const TYPE_NAME: &'static CStr =
unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_DEVICE) };
}
qom_isa!(DeviceState: Object);
/// Trait for methods exposed by the [`DeviceState`] class. The methods can be
/// called on all objects that have the trait `IsA<DeviceState>`.
///
/// The trait should only be used through the blanket implementation,
/// which guarantees safety via `IsA`.
pub trait DeviceMethods: ObjectDeref
where
Self::Target: IsA<DeviceState>,
{
/// Add an input clock named `name`. Invoke the callback with
/// `self` as the first parameter for the events that are requested.
///
/// The resulting clock is added as a child of `self`, but it also
/// stays alive until after `Drop::drop` is called because C code
/// keeps an extra reference to it until `device_finalize()` calls
/// `qdev_finalize_clocklist()`. Therefore (unlike most cases in
/// which Rust code has a reference to a child object) it would be
/// possible for this function to return a `&Clock` too.
#[inline]
fn init_clock_in<F: for<'a> FnCall<(&'a Self::Target, ClockEvent)>>(
&self,
name: &str,
_cb: &F,
events: ClockEvent,
) -> Owned<Clock> {
fn do_init_clock_in(
dev: *mut DeviceState,
name: &str,
cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)>,
events: ClockEvent,
) -> Owned<Clock> {
assert!(bql_locked());
// SAFETY: the clock is heap allocated, but qdev_init_clock_in()
// does not gift the reference to its caller; so use Owned::from to
// add one. The callback is disabled automatically when the clock
// is unparented, which happens before the device is finalized.
unsafe {
let cstr = CString::new(name).unwrap();
let clk = bindings::qdev_init_clock_in(
dev,
cstr.as_ptr(),
cb,
dev.cast::<c_void>(),
events.0,
);
Owned::from(&*clk)
}
}
let cb: Option<unsafe extern "C" fn(*mut c_void, ClockEvent)> = if F::is_some() {
unsafe extern "C" fn rust_clock_cb<T, F: for<'a> FnCall<(&'a T, ClockEvent)>>(
opaque: *mut c_void,
event: ClockEvent,
) {
// SAFETY: the opaque is "this", which is indeed a pointer to T
F::call((unsafe { &*(opaque.cast::<T>()) }, event))
}
Some(rust_clock_cb::<Self::Target, F>)
} else {
None
};
do_init_clock_in(self.as_mut_ptr(), name, cb, events)
}
/// Add an output clock named `name`.
///
/// The resulting clock is added as a child of `self`, but it also
/// stays alive until after `Drop::drop` is called because C code
/// keeps an extra reference to it until `device_finalize()` calls
/// `qdev_finalize_clocklist()`. Therefore (unlike most cases in
/// which Rust code has a reference to a child object) it would be
/// possible for this function to return a `&Clock` too.
#[inline]
fn init_clock_out(&self, name: &str) -> Owned<Clock> {
unsafe {
let cstr = CString::new(name).unwrap();
let clk = bindings::qdev_init_clock_out(self.as_mut_ptr(), cstr.as_ptr());
Owned::from(&*clk)
}
}
fn prop_set_chr(&self, propname: &str, chr: &Owned<Chardev>) {
assert!(bql_locked());
let c_propname = CString::new(propname).unwrap();
unsafe {
bindings::qdev_prop_set_chr(self.as_mut_ptr(), c_propname.as_ptr(), chr.as_mut_ptr());
}
}
fn init_gpio_in<F: for<'a> FnCall<(&'a Self::Target, u32, u32)>>(
&self,
num_lines: u32,
_cb: F,
) {
let _: () = F::ASSERT_IS_SOME;
unsafe extern "C" fn rust_irq_handler<T, F: for<'a> FnCall<(&'a T, u32, u32)>>(
opaque: *mut c_void,
line: c_int,
level: c_int,
) {
// SAFETY: the opaque was passed as a reference to `T`
F::call((unsafe { &*(opaque.cast::<T>()) }, line as u32, level as u32))
}
let gpio_in_cb: unsafe extern "C" fn(*mut c_void, c_int, c_int) =
rust_irq_handler::<Self::Target, F>;
unsafe {
qdev_init_gpio_in(
self.as_mut_ptr::<DeviceState>(),
Some(gpio_in_cb),
num_lines as c_int,
);
}
}
fn init_gpio_out(&self, pins: &[InterruptSource]) {
unsafe {
qdev_init_gpio_out(
self.as_mut_ptr::<DeviceState>(),
InterruptSource::slice_as_ptr(pins),
pins.len() as c_int,
);
}
}
}
impl<R: ObjectDeref> DeviceMethods for R where R::Target: IsA<DeviceState> {}
unsafe impl ObjectType for Clock {
type Class = ObjectClass;
const TYPE_NAME: &'static CStr =
unsafe { CStr::from_bytes_with_nul_unchecked(bindings::TYPE_CLOCK) };
}
qom_isa!(Clock: Object);