qemu/hw/net/npcm_gmac.c
Nabih Estefan Diaz a4dd7a1dad hw/net: GMAC Rx Implementation
- Implementation of Receive function for packets
- Implementation for reading and writing from and to descriptors in
  memory for Rx

When RX starts, we need to flush the queued packets so that they
can be received by the GMAC device. Without this it won't work
with TAP NIC device.

When RX descriptor list is full, it returns a DMA_STATUS for
software to handle it. But there's no way to indicate the software has
handled all RX descriptors and the whole pipeline stalls.

We do something similar to NPCM7XX EMC to handle this case.

1. Return packet size when RX descriptor is full, effectively dropping
these packets in such a case.
2. When software clears RX descriptor full bit, continue receiving
further packets by flushing QEMU packet queue.

Added relevant trace-events

Change-Id: I132aa254a94cda1a586aba2ea33bbfc74ecdb831
Signed-off-by: Hao Wu <wuhaotsh@google.com>
Signed-off-by: Nabih Estefan <nabihestefan@google.com>
Reviewed-by: Tyrone Ting <kfting@nuvoton.com>
Message-id: 20240131002800.989285-5-nabihestefan@google.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-02-02 13:51:59 +00:00

739 lines
26 KiB
C

/*
* Nuvoton NPCM7xx/8xx GMAC Module
*
* Copyright 2024 Google LLC
* Authors:
* Hao Wu <wuhaotsh@google.com>
* Nabih Estefan <nabihestefan@google.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* Unsupported/unimplemented features:
* - MII is not implemented, MII_ADDR.BUSY and MII_DATA always return zero
* - Precision timestamp (PTP) is not implemented.
*/
#include "qemu/osdep.h"
#include "hw/registerfields.h"
#include "hw/net/mii.h"
#include "hw/net/npcm_gmac.h"
#include "migration/vmstate.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "net/net.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "sysemu/dma.h"
#include "trace.h"
REG32(NPCM_DMA_BUS_MODE, 0x1000)
REG32(NPCM_DMA_XMT_POLL_DEMAND, 0x1004)
REG32(NPCM_DMA_RCV_POLL_DEMAND, 0x1008)
REG32(NPCM_DMA_RX_BASE_ADDR, 0x100c)
REG32(NPCM_DMA_TX_BASE_ADDR, 0x1010)
REG32(NPCM_DMA_STATUS, 0x1014)
REG32(NPCM_DMA_CONTROL, 0x1018)
REG32(NPCM_DMA_INTR_ENA, 0x101c)
REG32(NPCM_DMA_MISSED_FRAME_CTR, 0x1020)
REG32(NPCM_DMA_HOST_TX_DESC, 0x1048)
REG32(NPCM_DMA_HOST_RX_DESC, 0x104c)
REG32(NPCM_DMA_CUR_TX_BUF_ADDR, 0x1050)
REG32(NPCM_DMA_CUR_RX_BUF_ADDR, 0x1054)
REG32(NPCM_DMA_HW_FEATURE, 0x1058)
REG32(NPCM_GMAC_MAC_CONFIG, 0x0)
REG32(NPCM_GMAC_FRAME_FILTER, 0x4)
REG32(NPCM_GMAC_HASH_HIGH, 0x8)
REG32(NPCM_GMAC_HASH_LOW, 0xc)
REG32(NPCM_GMAC_MII_ADDR, 0x10)
REG32(NPCM_GMAC_MII_DATA, 0x14)
REG32(NPCM_GMAC_FLOW_CTRL, 0x18)
REG32(NPCM_GMAC_VLAN_FLAG, 0x1c)
REG32(NPCM_GMAC_VERSION, 0x20)
REG32(NPCM_GMAC_WAKEUP_FILTER, 0x28)
REG32(NPCM_GMAC_PMT, 0x2c)
REG32(NPCM_GMAC_LPI_CTRL, 0x30)
REG32(NPCM_GMAC_TIMER_CTRL, 0x34)
REG32(NPCM_GMAC_INT_STATUS, 0x38)
REG32(NPCM_GMAC_INT_MASK, 0x3c)
REG32(NPCM_GMAC_MAC0_ADDR_HI, 0x40)
REG32(NPCM_GMAC_MAC0_ADDR_LO, 0x44)
REG32(NPCM_GMAC_MAC1_ADDR_HI, 0x48)
REG32(NPCM_GMAC_MAC1_ADDR_LO, 0x4c)
REG32(NPCM_GMAC_MAC2_ADDR_HI, 0x50)
REG32(NPCM_GMAC_MAC2_ADDR_LO, 0x54)
REG32(NPCM_GMAC_MAC3_ADDR_HI, 0x58)
REG32(NPCM_GMAC_MAC3_ADDR_LO, 0x5c)
REG32(NPCM_GMAC_RGMII_STATUS, 0xd8)
REG32(NPCM_GMAC_WATCHDOG, 0xdc)
REG32(NPCM_GMAC_PTP_TCR, 0x700)
REG32(NPCM_GMAC_PTP_SSIR, 0x704)
REG32(NPCM_GMAC_PTP_STSR, 0x708)
REG32(NPCM_GMAC_PTP_STNSR, 0x70c)
REG32(NPCM_GMAC_PTP_STSUR, 0x710)
REG32(NPCM_GMAC_PTP_STNSUR, 0x714)
REG32(NPCM_GMAC_PTP_TAR, 0x718)
REG32(NPCM_GMAC_PTP_TTSR, 0x71c)
/* Register Fields */
#define NPCM_GMAC_MII_ADDR_BUSY BIT(0)
#define NPCM_GMAC_MII_ADDR_WRITE BIT(1)
#define NPCM_GMAC_MII_ADDR_GR(rv) extract16((rv), 6, 5)
#define NPCM_GMAC_MII_ADDR_PA(rv) extract16((rv), 11, 5)
#define NPCM_GMAC_INT_MASK_LPIIM BIT(10)
#define NPCM_GMAC_INT_MASK_PMTM BIT(3)
#define NPCM_GMAC_INT_MASK_RGIM BIT(0)
#define NPCM_DMA_BUS_MODE_SWR BIT(0)
static const uint32_t npcm_gmac_cold_reset_values[NPCM_GMAC_NR_REGS] = {
/* Reduce version to 3.2 so that the kernel can enable interrupt. */
[R_NPCM_GMAC_VERSION] = 0x00001032,
[R_NPCM_GMAC_TIMER_CTRL] = 0x03e80000,
[R_NPCM_GMAC_MAC0_ADDR_HI] = 0x8000ffff,
[R_NPCM_GMAC_MAC0_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC1_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC1_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC2_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC2_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC3_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC3_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_PTP_TCR] = 0x00002000,
[R_NPCM_DMA_BUS_MODE] = 0x00020101,
[R_NPCM_DMA_HW_FEATURE] = 0x100d4f37,
};
static const uint16_t phy_reg_init[] = {
[MII_BMCR] = MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000,
[MII_BMSR] = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_AUTONEG |
MII_BMSR_LINK_ST | MII_BMSR_EXTCAP,
[MII_PHYID1] = 0x0362,
[MII_PHYID2] = 0x5e6a,
[MII_ANAR] = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
MII_ANAR_10 | MII_ANAR_CSMACD,
[MII_ANLPAR] = MII_ANLPAR_ACK | MII_ANLPAR_PAUSE |
MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD |
MII_ANLPAR_10 | MII_ANLPAR_CSMACD,
[MII_ANER] = 0x64 | MII_ANER_NWAY,
[MII_ANNP] = 0x2001,
[MII_CTRL1000] = MII_CTRL1000_FULL,
[MII_STAT1000] = MII_STAT1000_FULL,
[MII_EXTSTAT] = 0x3000, /* 1000BASTE_T full-duplex capable */
};
static void npcm_gmac_soft_reset(NPCMGMACState *gmac)
{
memcpy(gmac->regs, npcm_gmac_cold_reset_values,
NPCM_GMAC_NR_REGS * sizeof(uint32_t));
/* Clear reset bits */
gmac->regs[R_NPCM_DMA_BUS_MODE] &= ~NPCM_DMA_BUS_MODE_SWR;
}
static void gmac_phy_set_link(NPCMGMACState *gmac, bool active)
{
/* Autonegotiation status mirrors link status. */
if (active) {
gmac->phy_regs[0][MII_BMSR] |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
} else {
gmac->phy_regs[0][MII_BMSR] &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
}
}
static bool gmac_can_receive(NetClientState *nc)
{
NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));
/* If GMAC receive is disabled. */
if (!(gmac->regs[R_NPCM_GMAC_MAC_CONFIG] & NPCM_GMAC_MAC_CONFIG_RX_EN)) {
return false;
}
/* If GMAC DMA RX is stopped. */
if (!(gmac->regs[R_NPCM_DMA_CONTROL] & NPCM_DMA_CONTROL_START_STOP_RX)) {
return false;
}
return true;
}
/*
* Function that updates the GMAC IRQ
* It find the logical OR of the enabled bits for NIS (if enabled)
* It find the logical OR of the enabled bits for AIS (if enabled)
*/
static void gmac_update_irq(NPCMGMACState *gmac)
{
/*
* Check if the normal interrupts summary is enabled
* if so, add the bits for the summary that are enabled
*/
if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
(NPCM_DMA_INTR_ENAB_NIE_BITS)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_NIS;
}
/*
* Check if the abnormal interrupts summary is enabled
* if so, add the bits for the summary that are enabled
*/
if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
(NPCM_DMA_INTR_ENAB_AIE_BITS)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_AIS;
}
/* Get the logical OR of both normal and abnormal interrupts */
int level = !!((gmac->regs[R_NPCM_DMA_STATUS] &
gmac->regs[R_NPCM_DMA_INTR_ENA] &
NPCM_DMA_STATUS_NIS) |
(gmac->regs[R_NPCM_DMA_STATUS] &
gmac->regs[R_NPCM_DMA_INTR_ENA] &
NPCM_DMA_STATUS_AIS));
/* Set the IRQ */
trace_npcm_gmac_update_irq(DEVICE(gmac)->canonical_path,
gmac->regs[R_NPCM_DMA_STATUS],
gmac->regs[R_NPCM_DMA_INTR_ENA],
level);
qemu_set_irq(gmac->irq, level);
}
static int gmac_read_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
if (dma_memory_read(&address_space_memory, addr, desc,
sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
desc->rdes0 = le32_to_cpu(desc->rdes0);
desc->rdes1 = le32_to_cpu(desc->rdes1);
desc->rdes2 = le32_to_cpu(desc->rdes2);
desc->rdes3 = le32_to_cpu(desc->rdes3);
return 0;
}
static int gmac_write_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
struct NPCMGMACRxDesc le_desc;
le_desc.rdes0 = cpu_to_le32(desc->rdes0);
le_desc.rdes1 = cpu_to_le32(desc->rdes1);
le_desc.rdes2 = cpu_to_le32(desc->rdes2);
le_desc.rdes3 = cpu_to_le32(desc->rdes3);
if (dma_memory_write(&address_space_memory, addr, &le_desc,
sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
return 0;
}
static int gmac_rx_transfer_frame_to_buffer(uint32_t rx_buf_len,
uint32_t *left_frame,
uint32_t rx_buf_addr,
bool *eof_transferred,
const uint8_t **frame_ptr,
uint16_t *transferred)
{
uint32_t to_transfer;
/*
* Check that buffer is bigger than the frame being transfered
* If bigger then transfer only whats left of frame
* Else, fill frame with all the content possible
*/
if (rx_buf_len >= *left_frame) {
to_transfer = *left_frame;
*eof_transferred = true;
} else {
to_transfer = rx_buf_len;
}
/* write frame part to memory */
if (dma_memory_write(&address_space_memory, (uint64_t) rx_buf_addr,
*frame_ptr, to_transfer, MEMTXATTRS_UNSPECIFIED)) {
return -1;
}
/* update frame pointer and size of whats left of frame */
*frame_ptr += to_transfer;
*left_frame -= to_transfer;
*transferred += to_transfer;
return 0;
}
static void gmac_dma_set_state(NPCMGMACState *gmac, int shift, uint32_t state)
{
gmac->regs[R_NPCM_DMA_STATUS] = deposit32(gmac->regs[R_NPCM_DMA_STATUS],
shift, 3, state);
}
static ssize_t gmac_receive(NetClientState *nc, const uint8_t *buf, size_t len)
{
/*
* Comments have steps that relate to the
* receiving process steps in pg 386
*/
NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));
uint32_t left_frame = len;
const uint8_t *frame_ptr = buf;
uint32_t desc_addr;
uint32_t rx_buf_len, rx_buf_addr;
struct NPCMGMACRxDesc rx_desc;
uint16_t transferred = 0;
bool eof_transferred = false;
trace_npcm_gmac_packet_receive(DEVICE(gmac)->canonical_path, len);
if (!gmac_can_receive(nc)) {
qemu_log_mask(LOG_GUEST_ERROR, "GMAC Currently is not able for Rx");
return -1;
}
if (!gmac->regs[R_NPCM_DMA_HOST_RX_DESC]) {
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] =
NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]);
}
desc_addr = NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_HOST_RX_DESC]);
/* step 1 */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_FETCHING_STATE);
trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr);
if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x cant be read\n",
desc_addr);
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
return -1;
}
/* step 2 */
if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
qemu_log_mask(LOG_GUEST_ERROR,
"RX Descriptor @ 0x%x is owned by software\n",
desc_addr);
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
gmac_update_irq(gmac);
return len;
}
/* step 3 */
/*
* TODO --
* Implement all frame filtering and processing (with its own interrupts)
*/
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* Clear rdes0 for the incoming descriptor and set FS in first descriptor.*/
rx_desc.rdes0 = RX_DESC_RDES0_FIRST_DESC_MASK;
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_TRANSFERRING_STATE);
/* Pad the frame with FCS as the kernel driver will strip it away. */
left_frame += ETH_FCS_LEN;
/* repeat while we still have frame to transfer to memory */
while (!eof_transferred) {
/* Return descriptor no matter what happens */
rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
/* Set the frame to be an IPv4/IPv6 frame. */
rx_desc.rdes0 |= RX_DESC_RDES0_FRM_TYPE_MASK;
/* step 4 */
rx_buf_len = RX_DESC_RDES1_BFFR1_SZ_MASK(rx_desc.rdes1);
rx_buf_addr = rx_desc.rdes2;
gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame, rx_buf_addr,
&eof_transferred, &frame_ptr,
&transferred);
trace_npcm_gmac_packet_receiving_buffer(DEVICE(gmac)->canonical_path,
rx_buf_len, rx_buf_addr);
/* if we still have frame left and the second buffer is not chained */
if (!(rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) && \
!eof_transferred) {
/* repeat process from above on buffer 2 */
rx_buf_len = RX_DESC_RDES1_BFFR2_SZ_MASK(rx_desc.rdes1);
rx_buf_addr = rx_desc.rdes3;
gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame,
rx_buf_addr, &eof_transferred,
&frame_ptr, &transferred);
trace_npcm_gmac_packet_receiving_buffer( \
DEVICE(gmac)->canonical_path,
rx_buf_len, rx_buf_addr);
}
/* update address for descriptor */
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = rx_buf_addr;
/* Return descriptor */
rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
/* Update frame length transferred */
rx_desc.rdes0 |= ((uint32_t)transferred)
<< RX_DESC_RDES0_FRAME_LEN_SHIFT;
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1,
rx_desc.rdes2, rx_desc.rdes3);
/* step 5 */
gmac_write_rx_desc(desc_addr, &rx_desc);
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path,
&rx_desc, rx_desc.rdes0,
rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* read new descriptor into rx_desc if needed*/
if (!eof_transferred) {
/* Get next descriptor address (chained or sequential) */
if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
} else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
desc_addr = rx_desc.rdes3;
} else {
desc_addr += sizeof(rx_desc);
}
trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path,
desc_addr);
if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
qemu_log_mask(LOG_GUEST_ERROR,
"RX Descriptor @ 0x%x cant be read\n",
desc_addr);
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
gmac_update_irq(gmac);
return len;
}
/* step 6 */
if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
if (!(gmac->regs[R_NPCM_DMA_CONTROL] & \
NPCM_DMA_CONTROL_FLUSH_MASK)) {
rx_desc.rdes0 |= RX_DESC_RDES0_DESC_ERR_MASK;
}
eof_transferred = true;
}
/* Clear rdes0 for the incoming descriptor */
rx_desc.rdes0 = 0;
}
}
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_CLOSING_STATE);
rx_desc.rdes0 |= RX_DESC_RDES0_LAST_DESC_MASK;
if (!(rx_desc.rdes1 & RX_DESC_RDES1_DIS_INTR_COMP_MASK)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
gmac_update_irq(gmac);
}
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* step 8 */
gmac->regs[R_NPCM_DMA_CONTROL] |= NPCM_DMA_CONTROL_FLUSH_MASK;
/* step 9 */
trace_npcm_gmac_packet_received(DEVICE(gmac)->canonical_path, left_frame);
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
gmac_write_rx_desc(desc_addr, &rx_desc);
/* Get next descriptor address (chained or sequential) */
if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
} else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
desc_addr = rx_desc.rdes3;
} else {
desc_addr += sizeof(rx_desc);
}
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = desc_addr;
return len;
}
static void gmac_cleanup(NetClientState *nc)
{
/* Nothing to do yet. */
}
static void gmac_set_link(NetClientState *nc)
{
NPCMGMACState *gmac = qemu_get_nic_opaque(nc);
trace_npcm_gmac_set_link(!nc->link_down);
gmac_phy_set_link(gmac, !nc->link_down);
}
static void npcm_gmac_mdio_access(NPCMGMACState *gmac, uint16_t v)
{
bool busy = v & NPCM_GMAC_MII_ADDR_BUSY;
uint8_t is_write;
uint8_t pa, gr;
uint16_t data;
if (busy) {
is_write = v & NPCM_GMAC_MII_ADDR_WRITE;
pa = NPCM_GMAC_MII_ADDR_PA(v);
gr = NPCM_GMAC_MII_ADDR_GR(v);
/* Both pa and gr are 5 bits, so they are less than 32. */
g_assert(pa < NPCM_GMAC_MAX_PHYS);
g_assert(gr < NPCM_GMAC_MAX_PHY_REGS);
if (v & NPCM_GMAC_MII_ADDR_WRITE) {
data = gmac->regs[R_NPCM_GMAC_MII_DATA];
/* Clear reset bit for BMCR register */
switch (gr) {
case MII_BMCR:
data &= ~MII_BMCR_RESET;
/* Autonegotiation is a W1C bit*/
if (data & MII_BMCR_ANRESTART) {
/* Tells autonegotiation to not restart again */
data &= ~MII_BMCR_ANRESTART;
}
if ((data & MII_BMCR_AUTOEN) &&
!(gmac->phy_regs[pa][MII_BMSR] & MII_BMSR_AN_COMP)) {
/* sets autonegotiation as complete */
gmac->phy_regs[pa][MII_BMSR] |= MII_BMSR_AN_COMP;
/* Resolve AN automatically->need to set this */
gmac->phy_regs[0][MII_ANLPAR] = 0x0000;
}
}
gmac->phy_regs[pa][gr] = data;
} else {
data = gmac->phy_regs[pa][gr];
gmac->regs[R_NPCM_GMAC_MII_DATA] = data;
}
trace_npcm_gmac_mdio_access(DEVICE(gmac)->canonical_path, is_write, pa,
gr, data);
}
gmac->regs[R_NPCM_GMAC_MII_ADDR] = v & ~NPCM_GMAC_MII_ADDR_BUSY;
}
static uint64_t npcm_gmac_read(void *opaque, hwaddr offset, unsigned size)
{
NPCMGMACState *gmac = opaque;
uint32_t v = 0;
switch (offset) {
/* Write only registers */
case A_NPCM_DMA_XMT_POLL_DEMAND:
case A_NPCM_DMA_RCV_POLL_DEMAND:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only reg: offset: 0x%04" HWADDR_PRIx
"\n", DEVICE(gmac)->canonical_path, offset);
break;
default:
v = gmac->regs[offset / sizeof(uint32_t)];
}
trace_npcm_gmac_reg_read(DEVICE(gmac)->canonical_path, offset, v);
return v;
}
static void npcm_gmac_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
NPCMGMACState *gmac = opaque;
trace_npcm_gmac_reg_write(DEVICE(gmac)->canonical_path, offset, v);
switch (offset) {
/* Read only registers */
case A_NPCM_GMAC_VERSION:
case A_NPCM_GMAC_INT_STATUS:
case A_NPCM_GMAC_RGMII_STATUS:
case A_NPCM_GMAC_PTP_STSR:
case A_NPCM_GMAC_PTP_STNSR:
case A_NPCM_DMA_MISSED_FRAME_CTR:
case A_NPCM_DMA_HOST_TX_DESC:
case A_NPCM_DMA_HOST_RX_DESC:
case A_NPCM_DMA_CUR_TX_BUF_ADDR:
case A_NPCM_DMA_CUR_RX_BUF_ADDR:
case A_NPCM_DMA_HW_FEATURE:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write of read-only reg: offset: 0x%04" HWADDR_PRIx
", value: 0x%04" PRIx64 "\n",
DEVICE(gmac)->canonical_path, offset, v);
break;
case A_NPCM_GMAC_MAC_CONFIG:
gmac->regs[offset / sizeof(uint32_t)] = v;
break;
case A_NPCM_GMAC_MII_ADDR:
npcm_gmac_mdio_access(gmac, v);
break;
case A_NPCM_GMAC_MAC0_ADDR_HI:
gmac->regs[offset / sizeof(uint32_t)] = v;
gmac->conf.macaddr.a[0] = v >> 8;
gmac->conf.macaddr.a[1] = v >> 0;
break;
case A_NPCM_GMAC_MAC0_ADDR_LO:
gmac->regs[offset / sizeof(uint32_t)] = v;
gmac->conf.macaddr.a[2] = v >> 24;
gmac->conf.macaddr.a[3] = v >> 16;
gmac->conf.macaddr.a[4] = v >> 8;
gmac->conf.macaddr.a[5] = v >> 0;
break;
case A_NPCM_GMAC_MAC1_ADDR_HI:
case A_NPCM_GMAC_MAC1_ADDR_LO:
case A_NPCM_GMAC_MAC2_ADDR_HI:
case A_NPCM_GMAC_MAC2_ADDR_LO:
case A_NPCM_GMAC_MAC3_ADDR_HI:
case A_NPCM_GMAC_MAC3_ADDR_LO:
gmac->regs[offset / sizeof(uint32_t)] = v;
qemu_log_mask(LOG_UNIMP,
"%s: Only MAC Address 0 is supported. This request "
"is ignored.\n", DEVICE(gmac)->canonical_path);
break;
case A_NPCM_DMA_BUS_MODE:
gmac->regs[offset / sizeof(uint32_t)] = v;
if (v & NPCM_DMA_BUS_MODE_SWR) {
npcm_gmac_soft_reset(gmac);
}
break;
case A_NPCM_DMA_RCV_POLL_DEMAND:
/* We dont actually care about the value */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
break;
case A_NPCM_DMA_STATUS:
/* Check that RO bits are not written to */
if (NPCM_DMA_STATUS_RO_MASK(v)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write of read-only bits of reg: offset: 0x%04"
HWADDR_PRIx ", value: 0x%04" PRIx64 "\n",
DEVICE(gmac)->canonical_path, offset, v);
}
/* for W1C bits, implement W1C */
gmac->regs[offset / sizeof(uint32_t)] &= ~NPCM_DMA_STATUS_W1C_MASK(v);
if (v & NPCM_DMA_STATUS_RU) {
/* Clearing RU bit indicates descriptor is owned by DMA again. */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
qemu_flush_queued_packets(qemu_get_queue(gmac->nic));
}
break;
default:
gmac->regs[offset / sizeof(uint32_t)] = v;
break;
}
gmac_update_irq(gmac);
}
static void npcm_gmac_reset(DeviceState *dev)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
npcm_gmac_soft_reset(gmac);
memcpy(gmac->phy_regs[0], phy_reg_init, sizeof(phy_reg_init));
trace_npcm_gmac_reset(DEVICE(gmac)->canonical_path,
gmac->phy_regs[0][MII_BMSR]);
}
static NetClientInfo net_npcm_gmac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = gmac_can_receive,
.receive = gmac_receive,
.cleanup = gmac_cleanup,
.link_status_changed = gmac_set_link,
};
static const struct MemoryRegionOps npcm_gmac_ops = {
.read = npcm_gmac_read,
.write = npcm_gmac_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void npcm_gmac_realize(DeviceState *dev, Error **errp)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
memory_region_init_io(&gmac->iomem, OBJECT(gmac), &npcm_gmac_ops, gmac,
TYPE_NPCM_GMAC, 8 * KiB);
sysbus_init_mmio(sbd, &gmac->iomem);
sysbus_init_irq(sbd, &gmac->irq);
qemu_macaddr_default_if_unset(&gmac->conf.macaddr);
gmac->nic = qemu_new_nic(&net_npcm_gmac_info, &gmac->conf, TYPE_NPCM_GMAC,
dev->id, &dev->mem_reentrancy_guard, gmac);
qemu_format_nic_info_str(qemu_get_queue(gmac->nic), gmac->conf.macaddr.a);
gmac->regs[R_NPCM_GMAC_MAC0_ADDR_HI] = (gmac->conf.macaddr.a[0] << 8) + \
gmac->conf.macaddr.a[1];
gmac->regs[R_NPCM_GMAC_MAC0_ADDR_LO] = (gmac->conf.macaddr.a[2] << 24) + \
(gmac->conf.macaddr.a[3] << 16) + \
(gmac->conf.macaddr.a[4] << 8) + \
gmac->conf.macaddr.a[5];
}
static void npcm_gmac_unrealize(DeviceState *dev)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
qemu_del_nic(gmac->nic);
}
static const VMStateDescription vmstate_npcm_gmac = {
.name = TYPE_NPCM_GMAC,
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, NPCMGMACState, NPCM_GMAC_NR_REGS),
VMSTATE_END_OF_LIST(),
},
};
static Property npcm_gmac_properties[] = {
DEFINE_NIC_PROPERTIES(NPCMGMACState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void npcm_gmac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "NPCM GMAC Controller";
dc->realize = npcm_gmac_realize;
dc->unrealize = npcm_gmac_unrealize;
dc->reset = npcm_gmac_reset;
dc->vmsd = &vmstate_npcm_gmac;
device_class_set_props(dc, npcm_gmac_properties);
}
static const TypeInfo npcm_gmac_types[] = {
{
.name = TYPE_NPCM_GMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCMGMACState),
.class_init = npcm_gmac_class_init,
},
};
DEFINE_TYPES(npcm_gmac_types)