qemu/tcg/i386/tcg-target.c.inc
Richard Henderson eafecf0805 tcg: Remove tcg_out_op
All integer opcodes are now converted to TCGOutOp.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2025-04-28 13:40:17 -07:00

4890 lines
151 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* Used for function call generation. */
#define TCG_TARGET_STACK_ALIGN 16
#if defined(_WIN64)
#define TCG_TARGET_CALL_STACK_OFFSET 32
#else
#define TCG_TARGET_CALL_STACK_OFFSET 0
#endif
#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL
#if defined(_WIN64)
# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_BY_REF
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_VEC
#elif TCG_TARGET_REG_BITS == 64
# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL
#else
# define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_NORMAL
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF
#endif
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
#if TCG_TARGET_REG_BITS == 64
"%rax", "%rcx", "%rdx", "%rbx", "%rsp", "%rbp", "%rsi", "%rdi",
#else
"%eax", "%ecx", "%edx", "%ebx", "%esp", "%ebp", "%esi", "%edi",
#endif
"%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15",
"%xmm0", "%xmm1", "%xmm2", "%xmm3", "%xmm4", "%xmm5", "%xmm6", "%xmm7",
#if TCG_TARGET_REG_BITS == 64
"%xmm8", "%xmm9", "%xmm10", "%xmm11",
"%xmm12", "%xmm13", "%xmm14", "%xmm15",
#endif
};
#endif
static const int tcg_target_reg_alloc_order[] = {
#if TCG_TARGET_REG_BITS == 64
TCG_REG_RBP,
TCG_REG_RBX,
TCG_REG_R12,
TCG_REG_R13,
TCG_REG_R14,
TCG_REG_R15,
TCG_REG_R10,
TCG_REG_R11,
TCG_REG_R9,
TCG_REG_R8,
TCG_REG_RCX,
TCG_REG_RDX,
TCG_REG_RSI,
TCG_REG_RDI,
TCG_REG_RAX,
#else
TCG_REG_EBX,
TCG_REG_ESI,
TCG_REG_EDI,
TCG_REG_EBP,
TCG_REG_ECX,
TCG_REG_EDX,
TCG_REG_EAX,
#endif
TCG_REG_XMM0,
TCG_REG_XMM1,
TCG_REG_XMM2,
TCG_REG_XMM3,
TCG_REG_XMM4,
TCG_REG_XMM5,
#ifndef _WIN64
/* The Win64 ABI has xmm6-xmm15 as caller-saves, and we do not save
any of them. Therefore only allow xmm0-xmm5 to be allocated. */
TCG_REG_XMM6,
TCG_REG_XMM7,
#if TCG_TARGET_REG_BITS == 64
TCG_REG_XMM8,
TCG_REG_XMM9,
TCG_REG_XMM10,
TCG_REG_XMM11,
TCG_REG_XMM12,
TCG_REG_XMM13,
TCG_REG_XMM14,
TCG_REG_XMM15,
#endif
#endif
};
#define TCG_TMP_VEC TCG_REG_XMM5
static const int tcg_target_call_iarg_regs[] = {
#if TCG_TARGET_REG_BITS == 64
#if defined(_WIN64)
TCG_REG_RCX,
TCG_REG_RDX,
#else
TCG_REG_RDI,
TCG_REG_RSI,
TCG_REG_RDX,
TCG_REG_RCX,
#endif
TCG_REG_R8,
TCG_REG_R9,
#else
/* 32 bit mode uses stack based calling convention (GCC default). */
#endif
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
switch (kind) {
case TCG_CALL_RET_NORMAL:
tcg_debug_assert(slot >= 0 && slot <= 1);
return slot ? TCG_REG_EDX : TCG_REG_EAX;
#ifdef _WIN64
case TCG_CALL_RET_BY_VEC:
tcg_debug_assert(slot == 0);
return TCG_REG_XMM0;
#endif
default:
g_assert_not_reached();
}
}
/* Constants we accept. */
#define TCG_CT_CONST_S32 0x100
#define TCG_CT_CONST_U32 0x200
#define TCG_CT_CONST_I32 0x400
#define TCG_CT_CONST_WSZ 0x800
#define TCG_CT_CONST_TST 0x1000
#define TCG_CT_CONST_ZERO 0x2000
/* Registers used with L constraint, which are the first argument
registers on x86_64, and two random call clobbered registers on
i386. */
#if TCG_TARGET_REG_BITS == 64
# define TCG_REG_L0 tcg_target_call_iarg_regs[0]
# define TCG_REG_L1 tcg_target_call_iarg_regs[1]
#else
# define TCG_REG_L0 TCG_REG_EAX
# define TCG_REG_L1 TCG_REG_EDX
#endif
#if TCG_TARGET_REG_BITS == 64
# define ALL_GENERAL_REGS 0x0000ffffu
# define ALL_VECTOR_REGS 0xffff0000u
# define ALL_BYTEL_REGS ALL_GENERAL_REGS
#else
# define ALL_GENERAL_REGS 0x000000ffu
# define ALL_VECTOR_REGS 0x00ff0000u
# define ALL_BYTEL_REGS 0x0000000fu
#endif
#define SOFTMMU_RESERVE_REGS \
(tcg_use_softmmu ? (1 << TCG_REG_L0) | (1 << TCG_REG_L1) : 0)
#define have_bmi2 (cpuinfo & CPUINFO_BMI2)
#define have_lzcnt (cpuinfo & CPUINFO_LZCNT)
static const tcg_insn_unit *tb_ret_addr;
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
value += addend;
switch(type) {
case R_386_PC32:
value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
if (value != (int32_t)value) {
return false;
}
/* FALLTHRU */
case R_386_32:
tcg_patch32(code_ptr, value);
break;
case R_386_PC8:
value -= (uintptr_t)tcg_splitwx_to_rx(code_ptr);
if (value != (int8_t)value) {
return false;
}
tcg_patch8(code_ptr, value);
break;
default:
g_assert_not_reached();
}
return true;
}
/* test if a constant matches the constraint */
static bool tcg_target_const_match(int64_t val, int ct,
TCGType type, TCGCond cond, int vece)
{
if (ct & TCG_CT_CONST) {
return 1;
}
if (type == TCG_TYPE_I32) {
if (ct & (TCG_CT_CONST_S32 | TCG_CT_CONST_U32 |
TCG_CT_CONST_I32 | TCG_CT_CONST_TST)) {
return 1;
}
} else {
if ((ct & TCG_CT_CONST_S32) && val == (int32_t)val) {
return 1;
}
if ((ct & TCG_CT_CONST_U32) && val == (uint32_t)val) {
return 1;
}
if ((ct & TCG_CT_CONST_I32) && ~val == (int32_t)~val) {
return 1;
}
/*
* This will be used in combination with TCG_CT_CONST_S32,
* so "normal" TESTQ is already matched. Also accept:
* TESTQ -> TESTL (uint32_t)
* TESTQ -> BT (is_power_of_2)
*/
if ((ct & TCG_CT_CONST_TST)
&& is_tst_cond(cond)
&& (val == (uint32_t)val || is_power_of_2(val))) {
return 1;
}
}
if ((ct & TCG_CT_CONST_WSZ) && val == (type == TCG_TYPE_I32 ? 32 : 64)) {
return 1;
}
if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
}
return 0;
}
# define LOWREGMASK(x) ((x) & 7)
#define P_EXT 0x100 /* 0x0f opcode prefix */
#define P_EXT38 0x200 /* 0x0f 0x38 opcode prefix */
#define P_DATA16 0x400 /* 0x66 opcode prefix */
#define P_VEXW 0x1000 /* Set VEX.W = 1 */
#if TCG_TARGET_REG_BITS == 64
# define P_REXW P_VEXW /* Set REX.W = 1; match VEXW */
# define P_REXB_R 0x2000 /* REG field as byte register */
# define P_REXB_RM 0x4000 /* R/M field as byte register */
# define P_GS 0x8000 /* gs segment override */
#else
# define P_REXW 0
# define P_REXB_R 0
# define P_REXB_RM 0
# define P_GS 0
#endif
#define P_EXT3A 0x10000 /* 0x0f 0x3a opcode prefix */
#define P_SIMDF3 0x20000 /* 0xf3 opcode prefix */
#define P_SIMDF2 0x40000 /* 0xf2 opcode prefix */
#define P_VEXL 0x80000 /* Set VEX.L = 1 */
#define P_EVEX 0x100000 /* Requires EVEX encoding */
#define OPC_ARITH_EbIb (0x80)
#define OPC_ARITH_EvIz (0x81)
#define OPC_ARITH_EvIb (0x83)
#define OPC_ARITH_GvEv (0x03) /* ... plus (ARITH_FOO << 3) */
#define OPC_ANDN (0xf2 | P_EXT38)
#define OPC_ADD_GvEv (OPC_ARITH_GvEv | (ARITH_ADD << 3))
#define OPC_AND_GvEv (OPC_ARITH_GvEv | (ARITH_AND << 3))
#define OPC_BLENDPS (0x0c | P_EXT3A | P_DATA16)
#define OPC_BSF (0xbc | P_EXT)
#define OPC_BSR (0xbd | P_EXT)
#define OPC_BSWAP (0xc8 | P_EXT)
#define OPC_CALL_Jz (0xe8)
#define OPC_CMOVCC (0x40 | P_EXT) /* ... plus condition code */
#define OPC_CMP_GvEv (OPC_ARITH_GvEv | (ARITH_CMP << 3))
#define OPC_DEC_r32 (0x48)
#define OPC_IMUL_GvEv (0xaf | P_EXT)
#define OPC_IMUL_GvEvIb (0x6b)
#define OPC_IMUL_GvEvIz (0x69)
#define OPC_INC_r32 (0x40)
#define OPC_JCC_long (0x80 | P_EXT) /* ... plus condition code */
#define OPC_JCC_short (0x70) /* ... plus condition code */
#define OPC_JMP_long (0xe9)
#define OPC_JMP_short (0xeb)
#define OPC_LEA (0x8d)
#define OPC_LZCNT (0xbd | P_EXT | P_SIMDF3)
#define OPC_MOVB_EvGv (0x88) /* stores, more or less */
#define OPC_MOVL_EvGv (0x89) /* stores, more or less */
#define OPC_MOVL_GvEv (0x8b) /* loads, more or less */
#define OPC_MOVB_EvIz (0xc6)
#define OPC_MOVL_EvIz (0xc7)
#define OPC_MOVB_Ib (0xb0)
#define OPC_MOVL_Iv (0xb8)
#define OPC_MOVBE_GyMy (0xf0 | P_EXT38)
#define OPC_MOVBE_MyGy (0xf1 | P_EXT38)
#define OPC_MOVD_VyEy (0x6e | P_EXT | P_DATA16)
#define OPC_MOVD_EyVy (0x7e | P_EXT | P_DATA16)
#define OPC_MOVDDUP (0x12 | P_EXT | P_SIMDF2)
#define OPC_MOVDQA_VxWx (0x6f | P_EXT | P_DATA16)
#define OPC_MOVDQA_WxVx (0x7f | P_EXT | P_DATA16)
#define OPC_MOVDQU_VxWx (0x6f | P_EXT | P_SIMDF3)
#define OPC_MOVDQU_WxVx (0x7f | P_EXT | P_SIMDF3)
#define OPC_MOVQ_VqWq (0x7e | P_EXT | P_SIMDF3)
#define OPC_MOVQ_WqVq (0xd6 | P_EXT | P_DATA16)
#define OPC_MOVSBL (0xbe | P_EXT)
#define OPC_MOVSWL (0xbf | P_EXT)
#define OPC_MOVSLQ (0x63 | P_REXW)
#define OPC_MOVZBL (0xb6 | P_EXT)
#define OPC_MOVZWL (0xb7 | P_EXT)
#define OPC_PABSB (0x1c | P_EXT38 | P_DATA16)
#define OPC_PABSW (0x1d | P_EXT38 | P_DATA16)
#define OPC_PABSD (0x1e | P_EXT38 | P_DATA16)
#define OPC_VPABSQ (0x1f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PACKSSDW (0x6b | P_EXT | P_DATA16)
#define OPC_PACKSSWB (0x63 | P_EXT | P_DATA16)
#define OPC_PACKUSDW (0x2b | P_EXT38 | P_DATA16)
#define OPC_PACKUSWB (0x67 | P_EXT | P_DATA16)
#define OPC_PADDB (0xfc | P_EXT | P_DATA16)
#define OPC_PADDW (0xfd | P_EXT | P_DATA16)
#define OPC_PADDD (0xfe | P_EXT | P_DATA16)
#define OPC_PADDQ (0xd4 | P_EXT | P_DATA16)
#define OPC_PADDSB (0xec | P_EXT | P_DATA16)
#define OPC_PADDSW (0xed | P_EXT | P_DATA16)
#define OPC_PADDUB (0xdc | P_EXT | P_DATA16)
#define OPC_PADDUW (0xdd | P_EXT | P_DATA16)
#define OPC_PAND (0xdb | P_EXT | P_DATA16)
#define OPC_PANDN (0xdf | P_EXT | P_DATA16)
#define OPC_PBLENDW (0x0e | P_EXT3A | P_DATA16)
#define OPC_PCMPEQB (0x74 | P_EXT | P_DATA16)
#define OPC_PCMPEQW (0x75 | P_EXT | P_DATA16)
#define OPC_PCMPEQD (0x76 | P_EXT | P_DATA16)
#define OPC_PCMPEQQ (0x29 | P_EXT38 | P_DATA16)
#define OPC_PCMPGTB (0x64 | P_EXT | P_DATA16)
#define OPC_PCMPGTW (0x65 | P_EXT | P_DATA16)
#define OPC_PCMPGTD (0x66 | P_EXT | P_DATA16)
#define OPC_PCMPGTQ (0x37 | P_EXT38 | P_DATA16)
#define OPC_PEXTRD (0x16 | P_EXT3A | P_DATA16)
#define OPC_PINSRD (0x22 | P_EXT3A | P_DATA16)
#define OPC_PMAXSB (0x3c | P_EXT38 | P_DATA16)
#define OPC_PMAXSW (0xee | P_EXT | P_DATA16)
#define OPC_PMAXSD (0x3d | P_EXT38 | P_DATA16)
#define OPC_VPMAXSQ (0x3d | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PMAXUB (0xde | P_EXT | P_DATA16)
#define OPC_PMAXUW (0x3e | P_EXT38 | P_DATA16)
#define OPC_PMAXUD (0x3f | P_EXT38 | P_DATA16)
#define OPC_VPMAXUQ (0x3f | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PMINSB (0x38 | P_EXT38 | P_DATA16)
#define OPC_PMINSW (0xea | P_EXT | P_DATA16)
#define OPC_PMINSD (0x39 | P_EXT38 | P_DATA16)
#define OPC_VPMINSQ (0x39 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PMINUB (0xda | P_EXT | P_DATA16)
#define OPC_PMINUW (0x3a | P_EXT38 | P_DATA16)
#define OPC_PMINUD (0x3b | P_EXT38 | P_DATA16)
#define OPC_VPMINUQ (0x3b | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PMOVSXBW (0x20 | P_EXT38 | P_DATA16)
#define OPC_PMOVSXWD (0x23 | P_EXT38 | P_DATA16)
#define OPC_PMOVSXDQ (0x25 | P_EXT38 | P_DATA16)
#define OPC_PMOVZXBW (0x30 | P_EXT38 | P_DATA16)
#define OPC_PMOVZXWD (0x33 | P_EXT38 | P_DATA16)
#define OPC_PMOVZXDQ (0x35 | P_EXT38 | P_DATA16)
#define OPC_PMULLW (0xd5 | P_EXT | P_DATA16)
#define OPC_PMULLD (0x40 | P_EXT38 | P_DATA16)
#define OPC_VPMULLQ (0x40 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_POR (0xeb | P_EXT | P_DATA16)
#define OPC_PSHUFB (0x00 | P_EXT38 | P_DATA16)
#define OPC_PSHUFD (0x70 | P_EXT | P_DATA16)
#define OPC_PSHUFLW (0x70 | P_EXT | P_SIMDF2)
#define OPC_PSHUFHW (0x70 | P_EXT | P_SIMDF3)
#define OPC_PSHIFTW_Ib (0x71 | P_EXT | P_DATA16) /* /2 /6 /4 */
#define OPC_PSHIFTD_Ib (0x72 | P_EXT | P_DATA16) /* /1 /2 /6 /4 */
#define OPC_PSHIFTQ_Ib (0x73 | P_EXT | P_DATA16) /* /2 /6 /4 */
#define OPC_PSLLW (0xf1 | P_EXT | P_DATA16)
#define OPC_PSLLD (0xf2 | P_EXT | P_DATA16)
#define OPC_PSLLQ (0xf3 | P_EXT | P_DATA16)
#define OPC_PSRAW (0xe1 | P_EXT | P_DATA16)
#define OPC_PSRAD (0xe2 | P_EXT | P_DATA16)
#define OPC_VPSRAQ (0xe2 | P_EXT | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_PSRLW (0xd1 | P_EXT | P_DATA16)
#define OPC_PSRLD (0xd2 | P_EXT | P_DATA16)
#define OPC_PSRLQ (0xd3 | P_EXT | P_DATA16)
#define OPC_PSUBB (0xf8 | P_EXT | P_DATA16)
#define OPC_PSUBW (0xf9 | P_EXT | P_DATA16)
#define OPC_PSUBD (0xfa | P_EXT | P_DATA16)
#define OPC_PSUBQ (0xfb | P_EXT | P_DATA16)
#define OPC_PSUBSB (0xe8 | P_EXT | P_DATA16)
#define OPC_PSUBSW (0xe9 | P_EXT | P_DATA16)
#define OPC_PSUBUB (0xd8 | P_EXT | P_DATA16)
#define OPC_PSUBUW (0xd9 | P_EXT | P_DATA16)
#define OPC_PUNPCKLBW (0x60 | P_EXT | P_DATA16)
#define OPC_PUNPCKLWD (0x61 | P_EXT | P_DATA16)
#define OPC_PUNPCKLDQ (0x62 | P_EXT | P_DATA16)
#define OPC_PUNPCKLQDQ (0x6c | P_EXT | P_DATA16)
#define OPC_PUNPCKHBW (0x68 | P_EXT | P_DATA16)
#define OPC_PUNPCKHWD (0x69 | P_EXT | P_DATA16)
#define OPC_PUNPCKHDQ (0x6a | P_EXT | P_DATA16)
#define OPC_PUNPCKHQDQ (0x6d | P_EXT | P_DATA16)
#define OPC_PXOR (0xef | P_EXT | P_DATA16)
#define OPC_POP_r32 (0x58)
#define OPC_POPCNT (0xb8 | P_EXT | P_SIMDF3)
#define OPC_PUSH_r32 (0x50)
#define OPC_PUSH_Iv (0x68)
#define OPC_PUSH_Ib (0x6a)
#define OPC_RET (0xc3)
#define OPC_SETCC (0x90 | P_EXT | P_REXB_RM) /* ... plus cc */
#define OPC_SHIFT_1 (0xd1)
#define OPC_SHIFT_Ib (0xc1)
#define OPC_SHIFT_cl (0xd3)
#define OPC_SARX (0xf7 | P_EXT38 | P_SIMDF3)
#define OPC_SHUFPS (0xc6 | P_EXT)
#define OPC_SHLX (0xf7 | P_EXT38 | P_DATA16)
#define OPC_SHRX (0xf7 | P_EXT38 | P_SIMDF2)
#define OPC_SHRD_Ib (0xac | P_EXT)
#define OPC_STC (0xf9)
#define OPC_TESTB (0x84)
#define OPC_TESTL (0x85)
#define OPC_TZCNT (0xbc | P_EXT | P_SIMDF3)
#define OPC_UD2 (0x0b | P_EXT)
#define OPC_VPBLENDD (0x02 | P_EXT3A | P_DATA16)
#define OPC_VPBLENDVB (0x4c | P_EXT3A | P_DATA16)
#define OPC_VPBLENDMB (0x66 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPBLENDMW (0x66 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPBLENDMD (0x64 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPBLENDMQ (0x64 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPCMPB (0x3f | P_EXT3A | P_DATA16 | P_EVEX)
#define OPC_VPCMPUB (0x3e | P_EXT3A | P_DATA16 | P_EVEX)
#define OPC_VPCMPW (0x3f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPCMPUW (0x3e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPCMPD (0x1f | P_EXT3A | P_DATA16 | P_EVEX)
#define OPC_VPCMPUD (0x1e | P_EXT3A | P_DATA16 | P_EVEX)
#define OPC_VPCMPQ (0x1f | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPCMPUQ (0x1e | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPINSRB (0x20 | P_EXT3A | P_DATA16)
#define OPC_VPINSRW (0xc4 | P_EXT | P_DATA16)
#define OPC_VBROADCASTSS (0x18 | P_EXT38 | P_DATA16)
#define OPC_VBROADCASTSD (0x19 | P_EXT38 | P_DATA16)
#define OPC_VPBROADCASTB (0x78 | P_EXT38 | P_DATA16)
#define OPC_VPBROADCASTW (0x79 | P_EXT38 | P_DATA16)
#define OPC_VPBROADCASTD (0x58 | P_EXT38 | P_DATA16)
#define OPC_VPBROADCASTQ (0x59 | P_EXT38 | P_DATA16)
#define OPC_VPMOVM2B (0x28 | P_EXT38 | P_SIMDF3 | P_EVEX)
#define OPC_VPMOVM2W (0x28 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
#define OPC_VPMOVM2D (0x38 | P_EXT38 | P_SIMDF3 | P_EVEX)
#define OPC_VPMOVM2Q (0x38 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
#define OPC_VPERMQ (0x00 | P_EXT3A | P_DATA16 | P_VEXW)
#define OPC_VPERM2I128 (0x46 | P_EXT3A | P_DATA16 | P_VEXL)
#define OPC_VPROLVD (0x15 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPROLVQ (0x15 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPRORVD (0x14 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPRORVQ (0x14 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHLDW (0x70 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHLDD (0x71 | P_EXT3A | P_DATA16 | P_EVEX)
#define OPC_VPSHLDQ (0x71 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHLDVW (0x70 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHLDVD (0x71 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPSHLDVQ (0x71 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHRDVW (0x72 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSHRDVD (0x73 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPSHRDVQ (0x73 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSLLVW (0x12 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSLLVD (0x47 | P_EXT38 | P_DATA16)
#define OPC_VPSLLVQ (0x47 | P_EXT38 | P_DATA16 | P_VEXW)
#define OPC_VPSRAVW (0x11 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSRAVD (0x46 | P_EXT38 | P_DATA16)
#define OPC_VPSRAVQ (0x46 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSRLVW (0x10 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPSRLVD (0x45 | P_EXT38 | P_DATA16)
#define OPC_VPSRLVQ (0x45 | P_EXT38 | P_DATA16 | P_VEXW)
#define OPC_VPTERNLOGQ (0x25 | P_EXT3A | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPTESTMB (0x26 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPTESTMW (0x26 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPTESTMD (0x27 | P_EXT38 | P_DATA16 | P_EVEX)
#define OPC_VPTESTMQ (0x27 | P_EXT38 | P_DATA16 | P_VEXW | P_EVEX)
#define OPC_VPTESTNMB (0x26 | P_EXT38 | P_SIMDF3 | P_EVEX)
#define OPC_VPTESTNMW (0x26 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
#define OPC_VPTESTNMD (0x27 | P_EXT38 | P_SIMDF3 | P_EVEX)
#define OPC_VPTESTNMQ (0x27 | P_EXT38 | P_SIMDF3 | P_VEXW | P_EVEX)
#define OPC_VZEROUPPER (0x77 | P_EXT)
#define OPC_XCHG_ax_r32 (0x90)
#define OPC_XCHG_EvGv (0x87)
#define OPC_GRP3_Eb (0xf6)
#define OPC_GRP3_Ev (0xf7)
#define OPC_GRP5 (0xff)
#define OPC_GRP14 (0x73 | P_EXT | P_DATA16)
#define OPC_GRPBT (0xba | P_EXT)
#define OPC_GRPBT_BT 4
#define OPC_GRPBT_BTS 5
#define OPC_GRPBT_BTR 6
#define OPC_GRPBT_BTC 7
/* Group 1 opcode extensions for 0x80-0x83.
These are also used as modifiers for OPC_ARITH. */
#define ARITH_ADD 0
#define ARITH_OR 1
#define ARITH_ADC 2
#define ARITH_SBB 3
#define ARITH_AND 4
#define ARITH_SUB 5
#define ARITH_XOR 6
#define ARITH_CMP 7
/* Group 2 opcode extensions for 0xc0, 0xc1, 0xd0-0xd3. */
#define SHIFT_ROL 0
#define SHIFT_ROR 1
#define SHIFT_SHL 4
#define SHIFT_SHR 5
#define SHIFT_SAR 7
/* Group 3 opcode extensions for 0xf6, 0xf7. To be used with OPC_GRP3. */
#define EXT3_TESTi 0
#define EXT3_NOT 2
#define EXT3_NEG 3
#define EXT3_MUL 4
#define EXT3_IMUL 5
#define EXT3_DIV 6
#define EXT3_IDIV 7
/* Group 5 opcode extensions for 0xff. To be used with OPC_GRP5. */
#define EXT5_INC_Ev 0
#define EXT5_DEC_Ev 1
#define EXT5_CALLN_Ev 2
#define EXT5_JMPN_Ev 4
/* Condition codes to be added to OPC_JCC_{long,short}. */
#define JCC_JMP (-1)
#define JCC_JO 0x0
#define JCC_JNO 0x1
#define JCC_JB 0x2
#define JCC_JAE 0x3
#define JCC_JE 0x4
#define JCC_JNE 0x5
#define JCC_JBE 0x6
#define JCC_JA 0x7
#define JCC_JS 0x8
#define JCC_JNS 0x9
#define JCC_JP 0xa
#define JCC_JNP 0xb
#define JCC_JL 0xc
#define JCC_JGE 0xd
#define JCC_JLE 0xe
#define JCC_JG 0xf
static const uint8_t tcg_cond_to_jcc[] = {
[TCG_COND_EQ] = JCC_JE,
[TCG_COND_NE] = JCC_JNE,
[TCG_COND_LT] = JCC_JL,
[TCG_COND_GE] = JCC_JGE,
[TCG_COND_LE] = JCC_JLE,
[TCG_COND_GT] = JCC_JG,
[TCG_COND_LTU] = JCC_JB,
[TCG_COND_GEU] = JCC_JAE,
[TCG_COND_LEU] = JCC_JBE,
[TCG_COND_GTU] = JCC_JA,
[TCG_COND_TSTEQ] = JCC_JE,
[TCG_COND_TSTNE] = JCC_JNE,
};
#if TCG_TARGET_REG_BITS == 64
static void tcg_out_opc(TCGContext *s, int opc, int r, int rm, int x)
{
int rex;
if (opc & P_GS) {
tcg_out8(s, 0x65);
}
if (opc & P_DATA16) {
/* We should never be asking for both 16 and 64-bit operation. */
tcg_debug_assert((opc & P_REXW) == 0);
tcg_out8(s, 0x66);
}
if (opc & P_SIMDF3) {
tcg_out8(s, 0xf3);
} else if (opc & P_SIMDF2) {
tcg_out8(s, 0xf2);
}
rex = 0;
rex |= (opc & P_REXW) ? 0x8 : 0x0; /* REX.W */
rex |= (r & 8) >> 1; /* REX.R */
rex |= (x & 8) >> 2; /* REX.X */
rex |= (rm & 8) >> 3; /* REX.B */
/* P_REXB_{R,RM} indicates that the given register is the low byte.
For %[abcd]l we need no REX prefix, but for %{si,di,bp,sp}l we do,
as otherwise the encoding indicates %[abcd]h. Note that the values
that are ORed in merely indicate that the REX byte must be present;
those bits get discarded in output. */
rex |= opc & (r >= 4 ? P_REXB_R : 0);
rex |= opc & (rm >= 4 ? P_REXB_RM : 0);
if (rex) {
tcg_out8(s, (uint8_t)(rex | 0x40));
}
if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
tcg_out8(s, 0x0f);
if (opc & P_EXT38) {
tcg_out8(s, 0x38);
} else if (opc & P_EXT3A) {
tcg_out8(s, 0x3a);
}
}
tcg_out8(s, opc);
}
#else
static void tcg_out_opc(TCGContext *s, int opc)
{
if (opc & P_DATA16) {
tcg_out8(s, 0x66);
}
if (opc & P_SIMDF3) {
tcg_out8(s, 0xf3);
} else if (opc & P_SIMDF2) {
tcg_out8(s, 0xf2);
}
if (opc & (P_EXT | P_EXT38 | P_EXT3A)) {
tcg_out8(s, 0x0f);
if (opc & P_EXT38) {
tcg_out8(s, 0x38);
} else if (opc & P_EXT3A) {
tcg_out8(s, 0x3a);
}
}
tcg_out8(s, opc);
}
/* Discard the register arguments to tcg_out_opc early, so as not to penalize
the 32-bit compilation paths. This method works with all versions of gcc,
whereas relying on optimization may not be able to exclude them. */
#define tcg_out_opc(s, opc, r, rm, x) (tcg_out_opc)(s, opc)
#endif
static void tcg_out_modrm(TCGContext *s, int opc, int r, int rm)
{
tcg_out_opc(s, opc, r, rm, 0);
tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
}
static void tcg_out_vex_opc(TCGContext *s, int opc, int r, int v,
int rm, int index)
{
int tmp;
if (opc & P_GS) {
tcg_out8(s, 0x65);
}
/* Use the two byte form if possible, which cannot encode
VEX.W, VEX.B, VEX.X, or an m-mmmm field other than P_EXT. */
if ((opc & (P_EXT | P_EXT38 | P_EXT3A | P_VEXW)) == P_EXT
&& ((rm | index) & 8) == 0) {
/* Two byte VEX prefix. */
tcg_out8(s, 0xc5);
tmp = (r & 8 ? 0 : 0x80); /* VEX.R */
} else {
/* Three byte VEX prefix. */
tcg_out8(s, 0xc4);
/* VEX.m-mmmm */
if (opc & P_EXT3A) {
tmp = 3;
} else if (opc & P_EXT38) {
tmp = 2;
} else if (opc & P_EXT) {
tmp = 1;
} else {
g_assert_not_reached();
}
tmp |= (r & 8 ? 0 : 0x80); /* VEX.R */
tmp |= (index & 8 ? 0 : 0x40); /* VEX.X */
tmp |= (rm & 8 ? 0 : 0x20); /* VEX.B */
tcg_out8(s, tmp);
tmp = (opc & P_VEXW ? 0x80 : 0); /* VEX.W */
}
tmp |= (opc & P_VEXL ? 0x04 : 0); /* VEX.L */
/* VEX.pp */
if (opc & P_DATA16) {
tmp |= 1; /* 0x66 */
} else if (opc & P_SIMDF3) {
tmp |= 2; /* 0xf3 */
} else if (opc & P_SIMDF2) {
tmp |= 3; /* 0xf2 */
}
tmp |= (~v & 15) << 3; /* VEX.vvvv */
tcg_out8(s, tmp);
tcg_out8(s, opc);
}
static void tcg_out_evex_opc(TCGContext *s, int opc, int r, int v,
int rm, int index, int aaa, bool z)
{
/* The entire 4-byte evex prefix; with R' and V' set. */
uint32_t p = 0x08041062;
int mm, pp;
tcg_debug_assert(have_avx512vl);
/* EVEX.mm */
if (opc & P_EXT3A) {
mm = 3;
} else if (opc & P_EXT38) {
mm = 2;
} else if (opc & P_EXT) {
mm = 1;
} else {
g_assert_not_reached();
}
/* EVEX.pp */
if (opc & P_DATA16) {
pp = 1; /* 0x66 */
} else if (opc & P_SIMDF3) {
pp = 2; /* 0xf3 */
} else if (opc & P_SIMDF2) {
pp = 3; /* 0xf2 */
} else {
pp = 0;
}
p = deposit32(p, 8, 2, mm);
p = deposit32(p, 13, 1, (rm & 8) == 0); /* EVEX.RXB.B */
p = deposit32(p, 14, 1, (index & 8) == 0); /* EVEX.RXB.X */
p = deposit32(p, 15, 1, (r & 8) == 0); /* EVEX.RXB.R */
p = deposit32(p, 16, 2, pp);
p = deposit32(p, 19, 4, ~v);
p = deposit32(p, 23, 1, (opc & P_VEXW) != 0);
p = deposit32(p, 24, 3, aaa);
p = deposit32(p, 29, 2, (opc & P_VEXL) != 0);
p = deposit32(p, 31, 1, z);
tcg_out32(s, p);
tcg_out8(s, opc);
}
static void tcg_out_vex_modrm(TCGContext *s, int opc, int r, int v, int rm)
{
if (opc & P_EVEX) {
tcg_out_evex_opc(s, opc, r, v, rm, 0, 0, false);
} else {
tcg_out_vex_opc(s, opc, r, v, rm, 0);
}
tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
}
static void tcg_out_vex_modrm_type(TCGContext *s, int opc,
int r, int v, int rm, TCGType type)
{
if (type == TCG_TYPE_V256) {
opc |= P_VEXL;
}
tcg_out_vex_modrm(s, opc, r, v, rm);
}
static void tcg_out_evex_modrm_type(TCGContext *s, int opc, int r, int v,
int rm, int aaa, bool z, TCGType type)
{
if (type == TCG_TYPE_V256) {
opc |= P_VEXL;
}
tcg_out_evex_opc(s, opc, r, v, rm, 0, aaa, z);
tcg_out8(s, 0xc0 | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
}
/* Output an opcode with a full "rm + (index<<shift) + offset" address mode.
We handle either RM and INDEX missing with a negative value. In 64-bit
mode for absolute addresses, ~RM is the size of the immediate operand
that will follow the instruction. */
static void tcg_out_sib_offset(TCGContext *s, int r, int rm, int index,
int shift, intptr_t offset)
{
int mod, len;
if (index < 0 && rm < 0) {
if (TCG_TARGET_REG_BITS == 64) {
/* Try for a rip-relative addressing mode. This has replaced
the 32-bit-mode absolute addressing encoding. */
intptr_t pc = (intptr_t)s->code_ptr + 5 + ~rm;
intptr_t disp = offset - pc;
if (disp == (int32_t)disp) {
tcg_out8(s, (LOWREGMASK(r) << 3) | 5);
tcg_out32(s, disp);
return;
}
/* Try for an absolute address encoding. This requires the
use of the MODRM+SIB encoding and is therefore larger than
rip-relative addressing. */
if (offset == (int32_t)offset) {
tcg_out8(s, (LOWREGMASK(r) << 3) | 4);
tcg_out8(s, (4 << 3) | 5);
tcg_out32(s, offset);
return;
}
/* ??? The memory isn't directly addressable. */
g_assert_not_reached();
} else {
/* Absolute address. */
tcg_out8(s, (r << 3) | 5);
tcg_out32(s, offset);
return;
}
}
/* Find the length of the immediate addend. Note that the encoding
that would be used for (%ebp) indicates absolute addressing. */
if (rm < 0) {
mod = 0, len = 4, rm = 5;
} else if (offset == 0 && LOWREGMASK(rm) != TCG_REG_EBP) {
mod = 0, len = 0;
} else if (offset == (int8_t)offset) {
mod = 0x40, len = 1;
} else {
mod = 0x80, len = 4;
}
/* Use a single byte MODRM format if possible. Note that the encoding
that would be used for %esp is the escape to the two byte form. */
if (index < 0 && LOWREGMASK(rm) != TCG_REG_ESP) {
/* Single byte MODRM format. */
tcg_out8(s, mod | (LOWREGMASK(r) << 3) | LOWREGMASK(rm));
} else {
/* Two byte MODRM+SIB format. */
/* Note that the encoding that would place %esp into the index
field indicates no index register. In 64-bit mode, the REX.X
bit counts, so %r12 can be used as the index. */
if (index < 0) {
index = 4;
} else {
tcg_debug_assert(index != TCG_REG_ESP);
}
tcg_out8(s, mod | (LOWREGMASK(r) << 3) | 4);
tcg_out8(s, (shift << 6) | (LOWREGMASK(index) << 3) | LOWREGMASK(rm));
}
if (len == 1) {
tcg_out8(s, offset);
} else if (len == 4) {
tcg_out32(s, offset);
}
}
static void tcg_out_modrm_sib_offset(TCGContext *s, int opc, int r, int rm,
int index, int shift, intptr_t offset)
{
tcg_out_opc(s, opc, r, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
tcg_out_sib_offset(s, r, rm, index, shift, offset);
}
static void tcg_out_vex_modrm_sib_offset(TCGContext *s, int opc, int r, int v,
int rm, int index, int shift,
intptr_t offset)
{
tcg_out_vex_opc(s, opc, r, v, rm < 0 ? 0 : rm, index < 0 ? 0 : index);
tcg_out_sib_offset(s, r, rm, index, shift, offset);
}
/* A simplification of the above with no index or shift. */
static inline void tcg_out_modrm_offset(TCGContext *s, int opc, int r,
int rm, intptr_t offset)
{
tcg_out_modrm_sib_offset(s, opc, r, rm, -1, 0, offset);
}
static inline void tcg_out_vex_modrm_offset(TCGContext *s, int opc, int r,
int v, int rm, intptr_t offset)
{
tcg_out_vex_modrm_sib_offset(s, opc, r, v, rm, -1, 0, offset);
}
/* Output an opcode with an expected reference to the constant pool. */
static inline void tcg_out_modrm_pool(TCGContext *s, int opc, int r)
{
tcg_out_opc(s, opc, r, 0, 0);
/* Absolute for 32-bit, pc-relative for 64-bit. */
tcg_out8(s, LOWREGMASK(r) << 3 | 5);
tcg_out32(s, 0);
}
/* Output an opcode with an expected reference to the constant pool. */
static inline void tcg_out_vex_modrm_pool(TCGContext *s, int opc, int r)
{
tcg_out_vex_opc(s, opc, r, 0, 0, 0);
/* Absolute for 32-bit, pc-relative for 64-bit. */
tcg_out8(s, LOWREGMASK(r) << 3 | 5);
tcg_out32(s, 0);
}
/* Generate dest op= src. Uses the same ARITH_* codes as tgen_arithi. */
static inline void tgen_arithr(TCGContext *s, int subop, int dest, int src)
{
/* Propagate an opcode prefix, such as P_REXW. */
int ext = subop & ~0x7;
subop &= 0x7;
tcg_out_modrm(s, OPC_ARITH_GvEv + (subop << 3) + ext, dest, src);
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
int rexw = 0;
if (arg == ret) {
return true;
}
switch (type) {
case TCG_TYPE_I64:
rexw = P_REXW;
/* fallthru */
case TCG_TYPE_I32:
if (ret < 16) {
if (arg < 16) {
tcg_out_modrm(s, OPC_MOVL_GvEv + rexw, ret, arg);
} else {
tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, arg, 0, ret);
}
} else {
if (arg < 16) {
tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, ret, 0, arg);
} else {
tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
}
}
break;
case TCG_TYPE_V64:
tcg_debug_assert(ret >= 16 && arg >= 16);
tcg_out_vex_modrm(s, OPC_MOVQ_VqWq, ret, 0, arg);
break;
case TCG_TYPE_V128:
tcg_debug_assert(ret >= 16 && arg >= 16);
tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx, ret, 0, arg);
break;
case TCG_TYPE_V256:
tcg_debug_assert(ret >= 16 && arg >= 16);
tcg_out_vex_modrm(s, OPC_MOVDQA_VxWx | P_VEXL, ret, 0, arg);
break;
default:
g_assert_not_reached();
}
return true;
}
static const int avx2_dup_insn[4] = {
OPC_VPBROADCASTB, OPC_VPBROADCASTW,
OPC_VPBROADCASTD, OPC_VPBROADCASTQ,
};
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg r, TCGReg a)
{
if (have_avx2) {
tcg_out_vex_modrm_type(s, avx2_dup_insn[vece], r, 0, a, type);
} else {
switch (vece) {
case MO_8:
/* ??? With zero in a register, use PSHUFB. */
tcg_out_vex_modrm(s, OPC_PUNPCKLBW, r, a, a);
a = r;
/* FALLTHRU */
case MO_16:
tcg_out_vex_modrm(s, OPC_PUNPCKLWD, r, a, a);
a = r;
/* FALLTHRU */
case MO_32:
tcg_out_vex_modrm(s, OPC_PSHUFD, r, 0, a);
/* imm8 operand: all output lanes selected from input lane 0. */
tcg_out8(s, 0);
break;
case MO_64:
tcg_out_vex_modrm(s, OPC_PUNPCKLQDQ, r, a, a);
break;
default:
g_assert_not_reached();
}
}
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg r, TCGReg base, intptr_t offset)
{
if (have_avx2) {
int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
tcg_out_vex_modrm_offset(s, avx2_dup_insn[vece] + vex_l,
r, 0, base, offset);
} else {
switch (vece) {
case MO_64:
tcg_out_vex_modrm_offset(s, OPC_MOVDDUP, r, 0, base, offset);
break;
case MO_32:
tcg_out_vex_modrm_offset(s, OPC_VBROADCASTSS, r, 0, base, offset);
break;
case MO_16:
tcg_out_vex_modrm_offset(s, OPC_VPINSRW, r, r, base, offset);
tcg_out8(s, 0); /* imm8 */
tcg_out_dup_vec(s, type, vece, r, r);
break;
case MO_8:
tcg_out_vex_modrm_offset(s, OPC_VPINSRB, r, r, base, offset);
tcg_out8(s, 0); /* imm8 */
tcg_out_dup_vec(s, type, vece, r, r);
break;
default:
g_assert_not_reached();
}
}
return true;
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg ret, int64_t arg)
{
int vex_l = (type == TCG_TYPE_V256 ? P_VEXL : 0);
if (arg == 0) {
tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
return;
}
if (arg == -1) {
tcg_out_vex_modrm(s, OPC_PCMPEQB + vex_l, ret, ret, ret);
return;
}
if (TCG_TARGET_REG_BITS == 32 && vece < MO_64) {
if (have_avx2) {
tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTD + vex_l, ret);
} else {
tcg_out_vex_modrm_pool(s, OPC_VBROADCASTSS, ret);
}
new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
} else {
if (type == TCG_TYPE_V64) {
tcg_out_vex_modrm_pool(s, OPC_MOVQ_VqWq, ret);
} else if (have_avx2) {
tcg_out_vex_modrm_pool(s, OPC_VPBROADCASTQ + vex_l, ret);
} else {
tcg_out_vex_modrm_pool(s, OPC_MOVDDUP, ret);
}
if (TCG_TARGET_REG_BITS == 64) {
new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
} else {
new_pool_l2(s, R_386_32, s->code_ptr - 4, 0, arg, arg >> 32);
}
}
}
static void tcg_out_movi_vec(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
if (arg == 0) {
tcg_out_vex_modrm(s, OPC_PXOR, ret, ret, ret);
return;
}
if (arg == -1) {
tcg_out_vex_modrm(s, OPC_PCMPEQB, ret, ret, ret);
return;
}
int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
tcg_out_vex_modrm_pool(s, OPC_MOVD_VyEy + rexw, ret);
if (TCG_TARGET_REG_BITS == 64) {
new_pool_label(s, arg, R_386_PC32, s->code_ptr - 4, -4);
} else {
new_pool_label(s, arg, R_386_32, s->code_ptr - 4, 0);
}
}
static void tcg_out_movi_int(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
tcg_target_long diff;
if (arg == 0 && !s->carry_live) {
tgen_arithr(s, ARITH_XOR, ret, ret);
return;
}
if (arg == (uint32_t)arg || type == TCG_TYPE_I32) {
tcg_out_opc(s, OPC_MOVL_Iv + LOWREGMASK(ret), 0, ret, 0);
tcg_out32(s, arg);
return;
}
if (arg == (int32_t)arg) {
tcg_out_modrm(s, OPC_MOVL_EvIz + P_REXW, 0, ret);
tcg_out32(s, arg);
return;
}
/* Try a 7 byte pc-relative lea before the 10 byte movq. */
diff = tcg_pcrel_diff(s, (const void *)arg) - 7;
if (diff == (int32_t)diff) {
tcg_out_opc(s, OPC_LEA | P_REXW, ret, 0, 0);
tcg_out8(s, (LOWREGMASK(ret) << 3) | 5);
tcg_out32(s, diff);
return;
}
tcg_out_opc(s, OPC_MOVL_Iv + P_REXW + LOWREGMASK(ret), 0, ret, 0);
tcg_out64(s, arg);
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
switch (type) {
case TCG_TYPE_I32:
#if TCG_TARGET_REG_BITS == 64
case TCG_TYPE_I64:
#endif
if (ret < 16) {
tcg_out_movi_int(s, type, ret, arg);
} else {
tcg_out_movi_vec(s, type, ret, arg);
}
break;
default:
g_assert_not_reached();
}
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_XCHG_EvGv + rexw, r1, r2);
return true;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
/* This function is only used for passing structs by reference. */
tcg_debug_assert(imm == (int32_t)imm);
tcg_out_modrm_offset(s, OPC_LEA | P_REXW, rd, rs, imm);
}
static inline void tcg_out_pushi(TCGContext *s, tcg_target_long val)
{
if (val == (int8_t)val) {
tcg_out_opc(s, OPC_PUSH_Ib, 0, 0, 0);
tcg_out8(s, val);
} else if (val == (int32_t)val) {
tcg_out_opc(s, OPC_PUSH_Iv, 0, 0, 0);
tcg_out32(s, val);
} else {
g_assert_not_reached();
}
}
static void tcg_out_mb(TCGContext *s, unsigned a0)
{
/* Given the strength of x86 memory ordering, we only need care for
store-load ordering. Experimentally, "lock orl $0,0(%esp)" is
faster than "mfence", so don't bother with the sse insn. */
if (a0 & TCG_MO_ST_LD) {
tcg_out8(s, 0xf0);
tcg_out_modrm_offset(s, OPC_ARITH_EvIb, ARITH_OR, TCG_REG_ESP, 0);
tcg_out8(s, 0);
}
}
static inline void tcg_out_push(TCGContext *s, int reg)
{
tcg_out_opc(s, OPC_PUSH_r32 + LOWREGMASK(reg), 0, reg, 0);
}
static inline void tcg_out_pop(TCGContext *s, int reg)
{
tcg_out_opc(s, OPC_POP_r32 + LOWREGMASK(reg), 0, reg, 0);
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg ret,
TCGReg arg1, intptr_t arg2)
{
switch (type) {
case TCG_TYPE_I32:
if (ret < 16) {
tcg_out_modrm_offset(s, OPC_MOVL_GvEv, ret, arg1, arg2);
} else {
tcg_out_vex_modrm_offset(s, OPC_MOVD_VyEy, ret, 0, arg1, arg2);
}
break;
case TCG_TYPE_I64:
if (ret < 16) {
tcg_out_modrm_offset(s, OPC_MOVL_GvEv | P_REXW, ret, arg1, arg2);
break;
}
/* FALLTHRU */
case TCG_TYPE_V64:
/* There is no instruction that can validate 8-byte alignment. */
tcg_debug_assert(ret >= 16);
tcg_out_vex_modrm_offset(s, OPC_MOVQ_VqWq, ret, 0, arg1, arg2);
break;
case TCG_TYPE_V128:
/*
* The gvec infrastructure is asserts that v128 vector loads
* and stores use a 16-byte aligned offset. Validate that the
* final pointer is aligned by using an insn that will SIGSEGV.
*/
tcg_debug_assert(ret >= 16);
tcg_out_vex_modrm_offset(s, OPC_MOVDQA_VxWx, ret, 0, arg1, arg2);
break;
case TCG_TYPE_V256:
/*
* The gvec infrastructure only requires 16-byte alignment,
* so here we must use an unaligned load.
*/
tcg_debug_assert(ret >= 16);
tcg_out_vex_modrm_offset(s, OPC_MOVDQU_VxWx | P_VEXL,
ret, 0, arg1, arg2);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
switch (type) {
case TCG_TYPE_I32:
if (arg < 16) {
tcg_out_modrm_offset(s, OPC_MOVL_EvGv, arg, arg1, arg2);
} else {
tcg_out_vex_modrm_offset(s, OPC_MOVD_EyVy, arg, 0, arg1, arg2);
}
break;
case TCG_TYPE_I64:
if (arg < 16) {
tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_REXW, arg, arg1, arg2);
break;
}
/* FALLTHRU */
case TCG_TYPE_V64:
/* There is no instruction that can validate 8-byte alignment. */
tcg_debug_assert(arg >= 16);
tcg_out_vex_modrm_offset(s, OPC_MOVQ_WqVq, arg, 0, arg1, arg2);
break;
case TCG_TYPE_V128:
/*
* The gvec infrastructure is asserts that v128 vector loads
* and stores use a 16-byte aligned offset. Validate that the
* final pointer is aligned by using an insn that will SIGSEGV.
*
* This specific instance is also used by TCG_CALL_RET_BY_VEC,
* for _WIN64, which must have SSE2 but may not have AVX.
*/
tcg_debug_assert(arg >= 16);
if (have_avx1) {
tcg_out_vex_modrm_offset(s, OPC_MOVDQA_WxVx, arg, 0, arg1, arg2);
} else {
tcg_out_modrm_offset(s, OPC_MOVDQA_WxVx, arg, arg1, arg2);
}
break;
case TCG_TYPE_V256:
/*
* The gvec infrastructure only requires 16-byte alignment,
* so here we must use an unaligned store.
*/
tcg_debug_assert(arg >= 16);
tcg_out_vex_modrm_offset(s, OPC_MOVDQU_WxVx | P_VEXL,
arg, 0, arg1, arg2);
break;
default:
g_assert_not_reached();
}
}
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
int rexw = 0;
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
if (val != (int32_t)val) {
return false;
}
rexw = P_REXW;
} else if (type != TCG_TYPE_I32) {
return false;
}
tcg_out_modrm_offset(s, OPC_MOVL_EvIz | rexw, 0, base, ofs);
tcg_out32(s, val);
return true;
}
static void tcg_out_shifti(TCGContext *s, int subopc, int reg, int count)
{
/* Propagate an opcode prefix, such as P_DATA16. */
int ext = subopc & ~0x7;
subopc &= 0x7;
if (count == 1) {
tcg_out_modrm(s, OPC_SHIFT_1 + ext, subopc, reg);
} else {
tcg_out_modrm(s, OPC_SHIFT_Ib + ext, subopc, reg);
tcg_out8(s, count);
}
}
static inline void tcg_out_bswap32(TCGContext *s, int reg)
{
tcg_out_opc(s, OPC_BSWAP + LOWREGMASK(reg), 0, reg, 0);
}
static inline void tcg_out_rolw_8(TCGContext *s, int reg)
{
tcg_out_shifti(s, SHIFT_ROL + P_DATA16, reg, 8);
}
static void tcg_out_ext8u(TCGContext *s, TCGReg dest, TCGReg src)
{
if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
tcg_out_mov(s, TCG_TYPE_I32, dest, src);
if (dest >= 4) {
tcg_out_modrm(s, OPC_ARITH_EvIz, ARITH_AND, dest);
tcg_out32(s, 0xff);
return;
}
src = dest;
}
tcg_out_modrm(s, OPC_MOVZBL + P_REXB_RM, dest, src);
}
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (TCG_TARGET_REG_BITS == 32 && src >= 4) {
tcg_out_mov(s, TCG_TYPE_I32, dest, src);
if (dest >= 4) {
tcg_out_shifti(s, SHIFT_SHL, dest, 24);
tcg_out_shifti(s, SHIFT_SAR, dest, 24);
return;
}
src = dest;
}
tcg_out_modrm(s, OPC_MOVSBL + P_REXB_RM + rexw, dest, src);
}
static void tcg_out_ext16u(TCGContext *s, TCGReg dest, TCGReg src)
{
/* movzwl */
tcg_out_modrm(s, OPC_MOVZWL, dest, src);
}
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg dest, TCGReg src)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
/* movsw[lq] */
tcg_out_modrm(s, OPC_MOVSWL + rexw, dest, src);
}
static void tcg_out_ext32u(TCGContext *s, TCGReg dest, TCGReg src)
{
/* 32-bit mov zero extends. */
tcg_out_modrm(s, OPC_MOVL_GvEv, dest, src);
}
static void tcg_out_ext32s(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_modrm(s, OPC_MOVSLQ, dest, src);
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_ext32s(s, dest, src);
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg dest, TCGReg src)
{
if (dest != src) {
tcg_out_ext32u(s, dest, src);
}
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg dest, TCGReg src)
{
tcg_out_ext32u(s, dest, src);
}
static inline void tcg_out_bswap64(TCGContext *s, int reg)
{
tcg_out_opc(s, OPC_BSWAP + P_REXW + LOWREGMASK(reg), 0, reg, 0);
}
static void tgen_arithi(TCGContext *s, int c, int r0,
tcg_target_long val, int cf)
{
int rexw = 0;
if (TCG_TARGET_REG_BITS == 64) {
rexw = c & -8;
c &= 7;
}
switch (c) {
case ARITH_ADD:
case ARITH_SUB:
if (!cf) {
/*
* ??? While INC is 2 bytes shorter than ADDL $1, they also induce
* partial flags update stalls on Pentium4 and are not recommended
* by current Intel optimization manuals.
*/
if (val == 1 || val == -1) {
int is_inc = (c == ARITH_ADD) ^ (val < 0);
if (TCG_TARGET_REG_BITS == 64) {
/*
* The single-byte increment encodings are re-tasked
* as the REX prefixes. Use the MODRM encoding.
*/
tcg_out_modrm(s, OPC_GRP5 + rexw,
(is_inc ? EXT5_INC_Ev : EXT5_DEC_Ev), r0);
} else {
tcg_out8(s, (is_inc ? OPC_INC_r32 : OPC_DEC_r32) + r0);
}
return;
}
if (val == 128) {
/*
* Facilitate using an 8-bit immediate. Carry is inverted
* by this transformation, so do it only if cf == 0.
*/
c ^= ARITH_ADD ^ ARITH_SUB;
val = -128;
}
}
break;
case ARITH_AND:
if (TCG_TARGET_REG_BITS == 64) {
if (val == 0xffffffffu) {
tcg_out_ext32u(s, r0, r0);
return;
}
if (val == (uint32_t)val) {
/* AND with no high bits set can use a 32-bit operation. */
rexw = 0;
}
}
if (val == 0xffu && (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
tcg_out_ext8u(s, r0, r0);
return;
}
if (val == 0xffffu) {
tcg_out_ext16u(s, r0, r0);
return;
}
break;
case ARITH_OR:
case ARITH_XOR:
if (val >= 0x80 && val <= 0xff
&& (r0 < 4 || TCG_TARGET_REG_BITS == 64)) {
tcg_out_modrm(s, OPC_ARITH_EbIb + P_REXB_RM, c, r0);
tcg_out8(s, val);
return;
}
break;
}
if (val == (int8_t)val) {
tcg_out_modrm(s, OPC_ARITH_EvIb + rexw, c, r0);
tcg_out8(s, val);
return;
}
if (rexw == 0 || val == (int32_t)val) {
tcg_out_modrm(s, OPC_ARITH_EvIz + rexw, c, r0);
tcg_out32(s, val);
return;
}
g_assert_not_reached();
}
static void tcg_out_addi(TCGContext *s, int reg, tcg_target_long val)
{
if (val != 0) {
tgen_arithi(s, ARITH_ADD + P_REXW, reg, val, 0);
}
}
/* Set SMALL to force a short forward branch. */
static void tcg_out_jxx(TCGContext *s, int opc, TCGLabel *l, bool small)
{
int32_t val, val1;
if (l->has_value) {
val = tcg_pcrel_diff(s, l->u.value_ptr);
val1 = val - 2;
if ((int8_t)val1 == val1) {
if (opc == -1) {
tcg_out8(s, OPC_JMP_short);
} else {
tcg_out8(s, OPC_JCC_short + opc);
}
tcg_out8(s, val1);
} else {
tcg_debug_assert(!small);
if (opc == -1) {
tcg_out8(s, OPC_JMP_long);
tcg_out32(s, val - 5);
} else {
tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
tcg_out32(s, val - 6);
}
}
} else if (small) {
if (opc == -1) {
tcg_out8(s, OPC_JMP_short);
} else {
tcg_out8(s, OPC_JCC_short + opc);
}
tcg_out_reloc(s, s->code_ptr, R_386_PC8, l, -1);
s->code_ptr += 1;
} else {
if (opc == -1) {
tcg_out8(s, OPC_JMP_long);
} else {
tcg_out_opc(s, OPC_JCC_long + opc, 0, 0, 0);
}
tcg_out_reloc(s, s->code_ptr, R_386_PC32, l, -4);
s->code_ptr += 4;
}
}
static void tcg_out_br(TCGContext *s, TCGLabel *l)
{
tcg_out_jxx(s, JCC_JMP, l, 0);
}
static int tcg_out_cmp(TCGContext *s, TCGCond cond, TCGArg arg1,
TCGArg arg2, int const_arg2, int rexw)
{
int jz, js;
if (!is_tst_cond(cond)) {
if (!const_arg2) {
tgen_arithr(s, ARITH_CMP + rexw, arg1, arg2);
} else if (arg2 == 0) {
tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg1);
} else {
tcg_debug_assert(!rexw || arg2 == (int32_t)arg2);
tgen_arithi(s, ARITH_CMP + rexw, arg1, arg2, 0);
}
return tcg_cond_to_jcc[cond];
}
jz = tcg_cond_to_jcc[cond];
js = (cond == TCG_COND_TSTNE ? JCC_JS : JCC_JNS);
if (!const_arg2) {
tcg_out_modrm(s, OPC_TESTL + rexw, arg1, arg2);
return jz;
}
if (arg2 <= 0xff && (TCG_TARGET_REG_BITS == 64 || arg1 < 4)) {
if (arg2 == 0x80) {
tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
return js;
}
if (arg2 == 0xff) {
tcg_out_modrm(s, OPC_TESTB | P_REXB_R, arg1, arg1);
return jz;
}
tcg_out_modrm(s, OPC_GRP3_Eb | P_REXB_RM, EXT3_TESTi, arg1);
tcg_out8(s, arg2);
return jz;
}
if ((arg2 & ~0xff00) == 0 && arg1 < 4) {
if (arg2 == 0x8000) {
tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
return js;
}
if (arg2 == 0xff00) {
tcg_out_modrm(s, OPC_TESTB, arg1 + 4, arg1 + 4);
return jz;
}
tcg_out_modrm(s, OPC_GRP3_Eb, EXT3_TESTi, arg1 + 4);
tcg_out8(s, arg2 >> 8);
return jz;
}
if (arg2 == 0xffff) {
tcg_out_modrm(s, OPC_TESTL | P_DATA16, arg1, arg1);
return jz;
}
if (arg2 == 0xffffffffu) {
tcg_out_modrm(s, OPC_TESTL, arg1, arg1);
return jz;
}
if (is_power_of_2(rexw ? arg2 : (uint32_t)arg2)) {
int jc = (cond == TCG_COND_TSTNE ? JCC_JB : JCC_JAE);
int sh = ctz64(arg2);
rexw = (sh & 32 ? P_REXW : 0);
if ((sh & 31) == 31) {
tcg_out_modrm(s, OPC_TESTL | rexw, arg1, arg1);
return js;
} else {
tcg_out_modrm(s, OPC_GRPBT | rexw, OPC_GRPBT_BT, arg1);
tcg_out8(s, sh);
return jc;
}
}
if (rexw) {
if (arg2 == (uint32_t)arg2) {
rexw = 0;
} else {
tcg_debug_assert(arg2 == (int32_t)arg2);
}
}
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_TESTi, arg1);
tcg_out32(s, arg2);
return jz;
}
static void tcg_out_brcond(TCGContext *s, int rexw, TCGCond cond,
TCGArg arg1, TCGArg arg2, int const_arg2,
TCGLabel *label, bool small)
{
int jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, rexw);
tcg_out_jxx(s, jcc, label, small);
}
static void tgen_brcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg arg1, TCGReg arg2, TCGLabel *label)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_brcond(s, rexw, cond, arg1, arg2, false, label, false);
}
static void tgen_brcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg arg1, tcg_target_long arg2, TCGLabel *label)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_brcond(s, rexw, cond, arg1, arg2, true, label, false);
}
static const TCGOutOpBrcond outop_brcond = {
.base.static_constraint = C_O0_I2(r, reT),
.out_rr = tgen_brcond,
.out_ri = tgen_brcondi,
};
static void tcg_out_brcond2(TCGContext *s, TCGCond cond, TCGReg al,
TCGReg ah, TCGArg bl, bool blconst,
TCGArg bh, bool bhconst,
TCGLabel *label_this, bool small)
{
TCGLabel *label_next = gen_new_label();
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_TSTEQ:
tcg_out_brcond(s, 0, tcg_invert_cond(cond),
al, bl, blconst, label_next, true);
tcg_out_brcond(s, 0, cond, ah, bh, bhconst, label_this, small);
break;
case TCG_COND_NE:
case TCG_COND_TSTNE:
tcg_out_brcond(s, 0, cond, al, bl, blconst, label_this, small);
tcg_out_brcond(s, 0, cond, ah, bh, bhconst, label_this, small);
break;
default:
tcg_out_brcond(s, 0, tcg_high_cond(cond),
ah, bh, bhconst, label_this, small);
tcg_out_jxx(s, JCC_JNE, label_next, 1);
tcg_out_brcond(s, 0, tcg_unsigned_cond(cond),
al, bl, blconst, label_this, small);
break;
}
tcg_out_label(s, label_next);
}
static void tgen_brcond2(TCGContext *s, TCGCond cond, TCGReg al,
TCGReg ah, TCGArg bl, bool blconst,
TCGArg bh, bool bhconst, TCGLabel *l)
{
tcg_out_brcond2(s, cond, al, ah, bl, blconst, bh, bhconst, l, false);
}
#if TCG_TARGET_REG_BITS != 32
__attribute__((unused))
#endif
static const TCGOutOpBrcond2 outop_brcond2 = {
.base.static_constraint = C_O0_I4(r, r, ri, ri),
.out = tgen_brcond2,
};
static void tcg_out_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg arg1, TCGArg arg2,
bool const_arg2, bool neg)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
int cmp_rexw = rexw;
bool inv = false;
bool cleared;
int jcc;
switch (cond) {
case TCG_COND_NE:
inv = true;
/* fall through */
case TCG_COND_EQ:
/* If arg2 is 0, convert to LTU/GEU vs 1. */
if (const_arg2 && arg2 == 0) {
arg2 = 1;
goto do_ltu;
}
break;
case TCG_COND_TSTNE:
inv = true;
/* fall through */
case TCG_COND_TSTEQ:
/* If arg2 is -1, convert to LTU/GEU vs 1. */
if (const_arg2 && arg2 == 0xffffffffu) {
arg2 = 1;
cmp_rexw = 0;
goto do_ltu;
}
break;
case TCG_COND_LEU:
inv = true;
/* fall through */
case TCG_COND_GTU:
/* If arg2 is a register, swap for LTU/GEU. */
if (!const_arg2) {
TCGReg t = arg1;
arg1 = arg2;
arg2 = t;
goto do_ltu;
}
break;
case TCG_COND_GEU:
inv = true;
/* fall through */
case TCG_COND_LTU:
do_ltu:
/*
* Relying on the carry bit, use SBB to produce -1 if LTU, 0 if GEU.
* We can then use NEG or INC to produce the desired result.
* This is always smaller than the SETCC expansion.
*/
tcg_out_cmp(s, TCG_COND_LTU, arg1, arg2, const_arg2, cmp_rexw);
/* X - X - C = -C = (C ? -1 : 0) */
tgen_arithr(s, ARITH_SBB + (neg ? rexw : 0), dest, dest);
if (inv && neg) {
/* ~(C ? -1 : 0) = (C ? 0 : -1) */
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
} else if (inv) {
/* (C ? -1 : 0) + 1 = (C ? 0 : 1) */
tgen_arithi(s, ARITH_ADD, dest, 1, 0);
} else if (!neg) {
/* -(C ? -1 : 0) = (C ? 1 : 0) */
tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, dest);
}
return;
case TCG_COND_GE:
inv = true;
/* fall through */
case TCG_COND_LT:
/* If arg2 is 0, extract the sign bit. */
if (const_arg2 && arg2 == 0) {
tcg_out_mov(s, type, dest, arg1);
if (inv) {
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, dest);
}
tcg_out_shifti(s, (neg ? SHIFT_SAR : SHIFT_SHR) + rexw,
dest, rexw ? 63 : 31);
return;
}
break;
default:
break;
}
/*
* If dest does not overlap the inputs, clearing it first is preferred.
* The XOR breaks any false dependency for the low-byte write to dest,
* and is also one byte smaller than MOVZBL.
*/
cleared = false;
if (dest != arg1 && (const_arg2 || dest != arg2)) {
tgen_arithr(s, ARITH_XOR, dest, dest);
cleared = true;
}
jcc = tcg_out_cmp(s, cond, arg1, arg2, const_arg2, cmp_rexw);
tcg_out_modrm(s, OPC_SETCC | jcc, 0, dest);
if (!cleared) {
tcg_out_ext8u(s, dest, dest);
}
if (neg) {
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, dest);
}
}
static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg arg1, TCGReg arg2)
{
tcg_out_setcond(s, type, cond, dest, arg1, arg2, false, false);
}
static void tgen_setcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg arg1, tcg_target_long arg2)
{
tcg_out_setcond(s, type, cond, dest, arg1, arg2, true, false);
}
static const TCGOutOpSetcond outop_setcond = {
.base.static_constraint = C_O1_I2(q, r, reT),
.out_rrr = tgen_setcond,
.out_rri = tgen_setcondi,
};
static void tgen_negsetcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg arg1, TCGReg arg2)
{
tcg_out_setcond(s, type, cond, dest, arg1, arg2, false, true);
}
static void tgen_negsetcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg arg1, tcg_target_long arg2)
{
tcg_out_setcond(s, type, cond, dest, arg1, arg2, true, true);
}
static const TCGOutOpSetcond outop_negsetcond = {
.base.static_constraint = C_O1_I2(q, r, reT),
.out_rrr = tgen_negsetcond,
.out_rri = tgen_negsetcondi,
};
static void tgen_setcond2(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg al, TCGReg ah,
TCGArg bl, bool const_bl,
TCGArg bh, bool const_bh)
{
TCGLabel *label_over = gen_new_label();
if (ret == al || ret == ah
|| (!const_bl && ret == bl)
|| (!const_bh && ret == bh)) {
/*
* When the destination overlaps with one of the argument
* registers, don't do anything tricky.
*/
TCGLabel *label_true = gen_new_label();
tcg_out_brcond2(s, cond, al, ah, bl, const_bl,
bh, const_bh, label_true, true);
tcg_out_movi(s, TCG_TYPE_I32, ret, 0);
tcg_out_jxx(s, JCC_JMP, label_over, 1);
tcg_out_label(s, label_true);
tcg_out_movi(s, TCG_TYPE_I32, ret, 1);
} else {
/*
* When the destination does not overlap one of the arguments,
* clear the destination first, jump if cond false, and emit an
* increment in the true case. This results in smaller code.
*/
tcg_out_movi(s, TCG_TYPE_I32, ret, 0);
tcg_out_brcond2(s, tcg_invert_cond(cond), al, ah, bl, const_bl,
bh, const_bh, label_over, true);
tgen_arithi(s, ARITH_ADD, ret, 1, 0);
}
tcg_out_label(s, label_over);
}
#if TCG_TARGET_REG_BITS != 32
__attribute__((unused))
#endif
static const TCGOutOpSetcond2 outop_setcond2 = {
.base.static_constraint = C_O1_I4(r, r, r, ri, ri),
.out = tgen_setcond2,
};
static void tcg_out_cmov(TCGContext *s, int jcc, int rexw,
TCGReg dest, TCGReg v1)
{
tcg_out_modrm(s, OPC_CMOVCC | jcc | rexw, dest, v1);
}
static void tgen_movcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg dest, TCGReg c1, TCGArg c2, bool const_c2,
TCGArg vt, bool const_vt,
TCGArg vf, bool consf_vf)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
int jcc = tcg_out_cmp(s, cond, c1, c2, const_c2, rexw);
tcg_out_cmov(s, jcc, rexw, dest, vt);
}
static const TCGOutOpMovcond outop_movcond = {
.base.static_constraint = C_O1_I4(r, r, reT, r, 0),
.out = tgen_movcond,
};
static void tcg_out_branch(TCGContext *s, int call, const tcg_insn_unit *dest)
{
intptr_t disp = tcg_pcrel_diff(s, dest) - 5;
if (disp == (int32_t)disp) {
tcg_out_opc(s, call ? OPC_CALL_Jz : OPC_JMP_long, 0, 0, 0);
tcg_out32(s, disp);
} else {
/* rip-relative addressing into the constant pool.
This is 6 + 8 = 14 bytes, as compared to using an
immediate load 10 + 6 = 16 bytes, plus we may
be able to re-use the pool constant for more calls. */
tcg_out_opc(s, OPC_GRP5, 0, 0, 0);
tcg_out8(s, (call ? EXT5_CALLN_Ev : EXT5_JMPN_Ev) << 3 | 5);
new_pool_label(s, (uintptr_t)dest, R_386_PC32, s->code_ptr, -4);
tcg_out32(s, 0);
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *dest,
const TCGHelperInfo *info)
{
tcg_out_branch(s, 1, dest);
#ifndef _WIN32
if (TCG_TARGET_REG_BITS == 32 && info->out_kind == TCG_CALL_RET_BY_REF) {
/*
* The sysv i386 abi for struct return places a reference as the
* first argument of the stack, and pops that argument with the
* return statement. Since we want to retain the aligned stack
* pointer for the callee, we do not want to actually push that
* argument before the call but rely on the normal store to the
* stack slot. But we do need to compensate for the pop in order
* to reset our correct stack pointer value.
* Pushing a garbage value back onto the stack is quickest.
*/
tcg_out_push(s, TCG_REG_EAX);
}
#endif
}
static void tcg_out_jmp(TCGContext *s, const tcg_insn_unit *dest)
{
tcg_out_branch(s, 0, dest);
}
static void tcg_out_nopn(TCGContext *s, int n)
{
int i;
/* Emit 1 or 2 operand size prefixes for the standard one byte nop,
* "xchg %eax,%eax", forming "xchg %ax,%ax". All cores accept the
* duplicate prefix, and all of the interesting recent cores can
* decode and discard the duplicates in a single cycle.
*/
tcg_debug_assert(n >= 1);
for (i = 1; i < n; ++i) {
tcg_out8(s, 0x66);
}
tcg_out8(s, 0x90);
}
typedef struct {
TCGReg base;
int index;
int ofs;
int seg;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
TCGAtomAlign aa;
if (!have_movbe) {
return false;
}
if ((memop & MO_SIZE) < MO_128) {
return true;
}
/*
* Reject 16-byte memop with 16-byte atomicity, i.e. VMOVDQA,
* but do allow a pair of 64-bit operations, i.e. MOVBEQ.
*/
aa = atom_and_align_for_opc(tcg_ctx, memop, MO_ATOM_IFALIGN, true);
return aa.atom < MO_128;
}
/*
* Because i686 has no register parameters and because x86_64 has xchg
* to handle addr/data register overlap, we have placed all input arguments
* before we need might need a scratch reg.
*
* Even then, a scratch is only needed for l->raddr. Rather than expose
* a general-purpose scratch when we don't actually know it's available,
* use the ra_gen hook to load into RAX if needed.
*/
#if TCG_TARGET_REG_BITS == 64
static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
{
if (arg < 0) {
arg = TCG_REG_RAX;
}
tcg_out_movi(s, TCG_TYPE_PTR, arg, (uintptr_t)l->raddr);
return arg;
}
static const TCGLdstHelperParam ldst_helper_param = {
.ra_gen = ldst_ra_gen
};
#else
static const TCGLdstHelperParam ldst_helper_param = { };
#endif
static void tcg_out_vec_to_pair(TCGContext *s, TCGType type,
TCGReg l, TCGReg h, TCGReg v)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
/* vpmov{d,q} %v, %l */
tcg_out_vex_modrm(s, OPC_MOVD_EyVy + rexw, v, 0, l);
/* vpextr{d,q} $1, %v, %h */
tcg_out_vex_modrm(s, OPC_PEXTRD + rexw, v, 0, h);
tcg_out8(s, 1);
}
static void tcg_out_pair_to_vec(TCGContext *s, TCGType type,
TCGReg v, TCGReg l, TCGReg h)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
/* vmov{d,q} %l, %v */
tcg_out_vex_modrm(s, OPC_MOVD_VyEy + rexw, v, 0, l);
/* vpinsr{d,q} $1, %h, %v, %v */
tcg_out_vex_modrm(s, OPC_PINSRD + rexw, v, v, h);
tcg_out8(s, 1);
}
/*
* Generate code for the slow path for a load at the end of block
*/
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
MemOp opc = get_memop(l->oi);
tcg_insn_unit **label_ptr = &l->label_ptr[0];
/* resolve label address */
tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
if (label_ptr[1]) {
tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
}
tcg_out_ld_helper_args(s, l, &ldst_helper_param);
tcg_out_branch(s, 1, qemu_ld_helpers[opc & MO_SIZE]);
tcg_out_ld_helper_ret(s, l, false, &ldst_helper_param);
tcg_out_jmp(s, l->raddr);
return true;
}
/*
* Generate code for the slow path for a store at the end of block
*/
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
MemOp opc = get_memop(l->oi);
tcg_insn_unit **label_ptr = &l->label_ptr[0];
/* resolve label address */
tcg_patch32(label_ptr[0], s->code_ptr - label_ptr[0] - 4);
if (label_ptr[1]) {
tcg_patch32(label_ptr[1], s->code_ptr - label_ptr[1] - 4);
}
tcg_out_st_helper_args(s, l, &ldst_helper_param);
tcg_out_branch(s, 1, qemu_st_helpers[opc & MO_SIZE]);
tcg_out_jmp(s, l->raddr);
return true;
}
#ifdef CONFIG_USER_ONLY
static HostAddress x86_guest_base = {
.index = -1
};
#if defined(__x86_64__) && defined(__linux__)
# include <asm/prctl.h>
# include <sys/prctl.h>
int arch_prctl(int code, unsigned long addr);
static inline int setup_guest_base_seg(void)
{
if (arch_prctl(ARCH_SET_GS, guest_base) == 0) {
return P_GS;
}
return 0;
}
#define setup_guest_base_seg setup_guest_base_seg
#elif defined(__x86_64__) && \
(defined (__FreeBSD__) || defined (__FreeBSD_kernel__))
# include <machine/sysarch.h>
static inline int setup_guest_base_seg(void)
{
if (sysarch(AMD64_SET_GSBASE, &guest_base) == 0) {
return P_GS;
}
return 0;
}
#define setup_guest_base_seg setup_guest_base_seg
#endif
#else
# define x86_guest_base (*(HostAddress *)({ qemu_build_not_reached(); NULL; }))
#endif /* CONFIG_USER_ONLY */
#ifndef setup_guest_base_seg
# define setup_guest_base_seg() 0
#endif
#define MIN_TLB_MASK_TABLE_OFS INT_MIN
/*
* For softmmu, perform the TLB load and compare.
* For useronly, perform any required alignment tests.
* In both cases, return a TCGLabelQemuLdst structure if the slow path
* is required and fill in @h with the host address for the fast path.
*/
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addr, MemOpIdx oi, bool is_ld)
{
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
MemOp s_bits = opc & MO_SIZE;
unsigned a_mask;
if (tcg_use_softmmu) {
h->index = TCG_REG_L0;
h->ofs = 0;
h->seg = 0;
} else {
*h = x86_guest_base;
}
h->base = addr;
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, s_bits == MO_128);
a_mask = (1 << h->aa.align) - 1;
if (tcg_use_softmmu) {
int cmp_ofs = is_ld ? offsetof(CPUTLBEntry, addr_read)
: offsetof(CPUTLBEntry, addr_write);
TCGType ttype = TCG_TYPE_I32;
TCGType tlbtype = TCG_TYPE_I32;
int trexw = 0, hrexw = 0, tlbrexw = 0;
unsigned mem_index = get_mmuidx(oi);
unsigned s_mask = (1 << s_bits) - 1;
int fast_ofs = tlb_mask_table_ofs(s, mem_index);
int tlb_mask;
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
if (TCG_TARGET_REG_BITS == 64) {
ttype = s->addr_type;
trexw = (ttype == TCG_TYPE_I32 ? 0 : P_REXW);
if (TCG_TYPE_PTR == TCG_TYPE_I64) {
hrexw = P_REXW;
if (s->page_bits + s->tlb_dyn_max_bits > 32) {
tlbtype = TCG_TYPE_I64;
tlbrexw = P_REXW;
}
}
}
tcg_out_mov(s, tlbtype, TCG_REG_L0, addr);
tcg_out_shifti(s, SHIFT_SHR + tlbrexw, TCG_REG_L0,
s->page_bits - CPU_TLB_ENTRY_BITS);
tcg_out_modrm_offset(s, OPC_AND_GvEv + trexw, TCG_REG_L0, TCG_AREG0,
fast_ofs + offsetof(CPUTLBDescFast, mask));
tcg_out_modrm_offset(s, OPC_ADD_GvEv + hrexw, TCG_REG_L0, TCG_AREG0,
fast_ofs + offsetof(CPUTLBDescFast, table));
/*
* If the required alignment is at least as large as the access,
* simply copy the address and mask. For lesser alignments,
* check that we don't cross pages for the complete access.
*/
if (a_mask >= s_mask) {
tcg_out_mov(s, ttype, TCG_REG_L1, addr);
} else {
tcg_out_modrm_offset(s, OPC_LEA + trexw, TCG_REG_L1,
addr, s_mask - a_mask);
}
tlb_mask = s->page_mask | a_mask;
tgen_arithi(s, ARITH_AND + trexw, TCG_REG_L1, tlb_mask, 0);
/* cmp 0(TCG_REG_L0), TCG_REG_L1 */
tcg_out_modrm_offset(s, OPC_CMP_GvEv + trexw,
TCG_REG_L1, TCG_REG_L0, cmp_ofs);
/* jne slow_path */
tcg_out_opc(s, OPC_JCC_long + JCC_JNE, 0, 0, 0);
ldst->label_ptr[0] = s->code_ptr;
s->code_ptr += 4;
/* TLB Hit. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_REG_L0, TCG_REG_L0,
offsetof(CPUTLBEntry, addend));
} else if (a_mask) {
int jcc;
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
/* jne slow_path */
jcc = tcg_out_cmp(s, TCG_COND_TSTNE, addr, a_mask, true, false);
tcg_out_opc(s, OPC_JCC_long + jcc, 0, 0, 0);
ldst->label_ptr[0] = s->code_ptr;
s->code_ptr += 4;
}
return ldst;
}
static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
HostAddress h, TCGType type, MemOp memop)
{
bool use_movbe = false;
int rexw = (type == TCG_TYPE_I32 ? 0 : P_REXW);
int movop = OPC_MOVL_GvEv;
/* Do big-endian loads with movbe. */
if (memop & MO_BSWAP) {
tcg_debug_assert(have_movbe);
use_movbe = true;
movop = OPC_MOVBE_GyMy;
}
switch (memop & MO_SSIZE) {
case MO_UB:
tcg_out_modrm_sib_offset(s, OPC_MOVZBL + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
case MO_SB:
tcg_out_modrm_sib_offset(s, OPC_MOVSBL + rexw + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
case MO_UW:
if (use_movbe) {
/* There is no extending movbe; only low 16-bits are modified. */
if (datalo != h.base && datalo != h.index) {
/* XOR breaks dependency chains. */
tgen_arithr(s, ARITH_XOR, datalo, datalo);
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
datalo, h.base, h.index, 0, h.ofs);
} else {
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
datalo, h.base, h.index, 0, h.ofs);
tcg_out_ext16u(s, datalo, datalo);
}
} else {
tcg_out_modrm_sib_offset(s, OPC_MOVZWL + h.seg, datalo,
h.base, h.index, 0, h.ofs);
}
break;
case MO_SW:
if (use_movbe) {
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + P_DATA16 + h.seg,
datalo, h.base, h.index, 0, h.ofs);
tcg_out_ext16s(s, type, datalo, datalo);
} else {
tcg_out_modrm_sib_offset(s, OPC_MOVSWL + rexw + h.seg,
datalo, h.base, h.index, 0, h.ofs);
}
break;
case MO_UL:
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
#if TCG_TARGET_REG_BITS == 64
case MO_SL:
if (use_movbe) {
tcg_out_modrm_sib_offset(s, OPC_MOVBE_GyMy + h.seg, datalo,
h.base, h.index, 0, h.ofs);
tcg_out_ext32s(s, datalo, datalo);
} else {
tcg_out_modrm_sib_offset(s, OPC_MOVSLQ + h.seg, datalo,
h.base, h.index, 0, h.ofs);
}
break;
#endif
case MO_UQ:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
}
if (use_movbe) {
TCGReg t = datalo;
datalo = datahi;
datahi = t;
}
if (h.base == datalo || h.index == datalo) {
tcg_out_modrm_sib_offset(s, OPC_LEA, datahi,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_offset(s, movop + h.seg, datalo, datahi, 0);
tcg_out_modrm_offset(s, movop + h.seg, datahi, datahi, 4);
} else {
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
h.base, h.index, 0, h.ofs + 4);
}
break;
case MO_128:
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
/*
* Without 16-byte atomicity, use integer regs.
* That is where we want the data, and it allows bswaps.
*/
if (h.aa.atom < MO_128) {
if (use_movbe) {
TCGReg t = datalo;
datalo = datahi;
datahi = t;
}
if (h.base == datalo || h.index == datalo) {
tcg_out_modrm_sib_offset(s, OPC_LEA + P_REXW, datahi,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
datalo, datahi, 0);
tcg_out_modrm_offset(s, movop + P_REXW + h.seg,
datahi, datahi, 8);
} else {
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
h.base, h.index, 0, h.ofs + 8);
}
break;
}
/*
* With 16-byte atomicity, a vector load is required.
* If we already have 16-byte alignment, then VMOVDQA always works.
* Else if VMOVDQU has atomicity with dynamic alignment, use that.
* Else use we require a runtime test for alignment for VMOVDQA;
* use VMOVDQU on the unaligned nonatomic path for simplicity.
*/
if (h.aa.align >= MO_128) {
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
} else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
} else {
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
int jcc;
jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
tcg_out_jxx(s, jcc, l1, true);
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_VxWx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
tcg_out_jxx(s, JCC_JMP, l2, true);
tcg_out_label(s, l1);
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_VxWx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
tcg_out_label(s, l2);
}
tcg_out_vec_to_pair(s, TCG_TYPE_I64, datalo, datahi, TCG_TMP_VEC);
break;
default:
g_assert_not_reached();
}
}
static void tgen_qemu_ld(TCGContext *s, TCGType type, TCGReg data,
TCGReg addr, MemOpIdx oi)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, true);
tcg_out_qemu_ld_direct(s, data, -1, h, type, get_memop(oi));
if (ldst) {
ldst->type = type;
ldst->datalo_reg = data;
ldst->datahi_reg = -1;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static const TCGOutOpQemuLdSt outop_qemu_ld = {
.base.static_constraint = C_O1_I1(r, L),
.out = tgen_qemu_ld,
};
static void tgen_qemu_ld2(TCGContext *s, TCGType type, TCGReg datalo,
TCGReg datahi, TCGReg addr, MemOpIdx oi)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, true);
tcg_out_qemu_ld_direct(s, datalo, datahi, h, type, get_memop(oi));
if (ldst) {
ldst->type = type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static const TCGOutOpQemuLdSt2 outop_qemu_ld2 = {
.base.static_constraint = C_O2_I1(r, r, L),
.out = tgen_qemu_ld2,
};
static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg datalo, TCGReg datahi,
HostAddress h, MemOp memop)
{
bool use_movbe = false;
int movop = OPC_MOVL_EvGv;
/*
* Do big-endian stores with movbe or system-mode.
* User-only without movbe will have its swapping done generically.
*/
if (memop & MO_BSWAP) {
tcg_debug_assert(have_movbe);
use_movbe = true;
movop = OPC_MOVBE_MyGy;
}
switch (memop & MO_SIZE) {
case MO_8:
/* This is handled with constraints in cset_qemu_st(). */
tcg_debug_assert(TCG_TARGET_REG_BITS == 64 || datalo < 4);
tcg_out_modrm_sib_offset(s, OPC_MOVB_EvGv + P_REXB_R + h.seg,
datalo, h.base, h.index, 0, h.ofs);
break;
case MO_16:
tcg_out_modrm_sib_offset(s, movop + P_DATA16 + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
case MO_32:
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
h.base, h.index, 0, h.ofs);
break;
case MO_64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
h.base, h.index, 0, h.ofs);
} else {
if (use_movbe) {
TCGReg t = datalo;
datalo = datahi;
datahi = t;
}
tcg_out_modrm_sib_offset(s, movop + h.seg, datalo,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_sib_offset(s, movop + h.seg, datahi,
h.base, h.index, 0, h.ofs + 4);
}
break;
case MO_128:
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
/*
* Without 16-byte atomicity, use integer regs.
* That is where we have the data, and it allows bswaps.
*/
if (h.aa.atom < MO_128) {
if (use_movbe) {
TCGReg t = datalo;
datalo = datahi;
datahi = t;
}
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datalo,
h.base, h.index, 0, h.ofs);
tcg_out_modrm_sib_offset(s, movop + P_REXW + h.seg, datahi,
h.base, h.index, 0, h.ofs + 8);
break;
}
/*
* With 16-byte atomicity, a vector store is required.
* If we already have 16-byte alignment, then VMOVDQA always works.
* Else if VMOVDQU has atomicity with dynamic alignment, use that.
* Else use we require a runtime test for alignment for VMOVDQA;
* use VMOVDQU on the unaligned nonatomic path for simplicity.
*/
tcg_out_pair_to_vec(s, TCG_TYPE_I64, TCG_TMP_VEC, datalo, datahi);
if (h.aa.align >= MO_128) {
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
} else if (cpuinfo & CPUINFO_ATOMIC_VMOVDQU) {
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
} else {
TCGLabel *l1 = gen_new_label();
TCGLabel *l2 = gen_new_label();
int jcc;
jcc = tcg_out_cmp(s, TCG_COND_TSTNE, h.base, 15, true, false);
tcg_out_jxx(s, jcc, l1, true);
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQA_WxVx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
tcg_out_jxx(s, JCC_JMP, l2, true);
tcg_out_label(s, l1);
tcg_out_vex_modrm_sib_offset(s, OPC_MOVDQU_WxVx + h.seg,
TCG_TMP_VEC, 0,
h.base, h.index, 0, h.ofs);
tcg_out_label(s, l2);
}
break;
default:
g_assert_not_reached();
}
}
static void tgen_qemu_st(TCGContext *s, TCGType type, TCGReg data,
TCGReg addr, MemOpIdx oi)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, false);
tcg_out_qemu_st_direct(s, data, -1, h, get_memop(oi));
if (ldst) {
ldst->type = type;
ldst->datalo_reg = data;
ldst->datahi_reg = -1;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static TCGConstraintSetIndex cset_qemu_st(TCGType type, unsigned flags)
{
return flags == MO_8 ? C_O0_I2(s, L) : C_O0_I2(L, L);
}
static const TCGOutOpQemuLdSt outop_qemu_st = {
.base.static_constraint =
TCG_TARGET_REG_BITS == 32 ? C_Dynamic : C_O0_I2(L, L),
.base.dynamic_constraint =
TCG_TARGET_REG_BITS == 32 ? cset_qemu_st : NULL,
.out = tgen_qemu_st,
};
static void tgen_qemu_st2(TCGContext *s, TCGType type, TCGReg datalo,
TCGReg datahi, TCGReg addr, MemOpIdx oi)
{
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, false);
tcg_out_qemu_st_direct(s, datalo, datahi, h, get_memop(oi));
if (ldst) {
ldst->type = type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static const TCGOutOpQemuLdSt2 outop_qemu_st2 = {
.base.static_constraint = C_O0_I3(L, L, L),
.out = tgen_qemu_st2,
};
static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
{
/* Reuse the zeroing that exists for goto_ptr. */
if (a0 == 0) {
tcg_out_jmp(s, tcg_code_gen_epilogue);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_EAX, a0);
tcg_out_jmp(s, tb_ret_addr);
}
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
/*
* Jump displacement must be aligned for atomic patching;
* see if we need to add extra nops before jump
*/
int gap = QEMU_ALIGN_PTR_UP(s->code_ptr + 1, 4) - s->code_ptr;
if (gap != 1) {
tcg_out_nopn(s, gap - 1);
}
tcg_out8(s, OPC_JMP_long); /* jmp im */
set_jmp_insn_offset(s, which);
tcg_out32(s, 0);
set_jmp_reset_offset(s, which);
}
static void tcg_out_goto_ptr(TCGContext *s, TCGReg a0)
{
/* Jump to the given host address (could be epilogue) */
tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, a0);
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
/* patch the branch destination */
uintptr_t addr = tb->jmp_target_addr[n];
qatomic_set((int32_t *)jmp_rw, addr - (jmp_rx + 4));
/* no need to flush icache explicitly */
}
static void tgen_add(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (a0 == a1) {
tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
} else if (a0 == a2) {
tgen_arithr(s, ARITH_ADD + rexw, a0, a1);
} else {
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a2, 0, 0);
}
}
static void tgen_addi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (a0 == a1) {
tgen_arithi(s, ARITH_ADD + rexw, a0, a2, false);
} else {
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, -1, 0, a2);
}
}
static const TCGOutOpBinary outop_add = {
.base.static_constraint = C_O1_I2(r, r, re),
.out_rrr = tgen_add,
.out_rri = tgen_addi,
};
static void tgen_addco(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_ADD + rexw, a0, a2);
}
static void tgen_addco_imm(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_ADD + rexw, a0, a2, true);
}
static const TCGOutOpBinary outop_addco = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_addco,
.out_rri = tgen_addco_imm,
};
static void tgen_addcio(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_ADC + rexw, a0, a2);
}
static void tgen_addcio_imm(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_ADC + rexw, a0, a2, true);
}
static const TCGOutOpBinary outop_addcio = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_addcio,
.out_rri = tgen_addcio_imm,
};
static void tgen_addci_rrr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
/* Because "0O" is not a valid constraint, we must match ourselves. */
if (a0 == a2) {
tgen_addcio(s, type, a0, a0, a1);
} else {
tcg_out_mov(s, type, a0, a1);
tgen_addcio(s, type, a0, a0, a2);
}
}
static void tgen_addci_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_mov(s, type, a0, a1);
tgen_addcio_imm(s, type, a0, a0, a2);
}
static void tgen_addci_rir(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, TCGReg a2)
{
tgen_addci_rri(s, type, a0, a2, a1);
}
static void tgen_addci_rii(TCGContext *s, TCGType type, TCGReg a0,
tcg_target_long a1, tcg_target_long a2)
{
if (a2 == 0) {
/* Implement 0 + 0 + C with -(x - x - c). */
tgen_arithr(s, ARITH_SBB, a0, a0);
tcg_out_modrm(s, OPC_GRP3_Ev, EXT3_NEG, a0);
} else {
tcg_out_movi(s, type, a0, a2);
tgen_addcio_imm(s, type, a0, a0, a1);
}
}
static const TCGOutOpAddSubCarry outop_addci = {
.base.static_constraint = C_O1_I2(r, rO, re),
.out_rrr = tgen_addci_rrr,
.out_rri = tgen_addci_rri,
.out_rir = tgen_addci_rir,
.out_rii = tgen_addci_rii,
};
static void tcg_out_set_carry(TCGContext *s)
{
tcg_out8(s, OPC_STC);
}
static void tgen_and(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_AND + rexw, a0, a2);
}
static void tgen_andi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_AND + rexw, a0, a2, false);
}
static const TCGOutOpBinary outop_and = {
.base.static_constraint = C_O1_I2(r, 0, reZ),
.out_rrr = tgen_and,
.out_rri = tgen_andi,
};
static void tgen_andc(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_vex_modrm(s, OPC_ANDN + rexw, a0, a2, a1);
}
static TCGConstraintSetIndex cset_andc(TCGType type, unsigned flags)
{
return have_bmi1 ? C_O1_I2(r, r, r) : C_NotImplemented;
}
static const TCGOutOpBinary outop_andc = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_andc,
.out_rrr = tgen_andc,
};
static void tgen_clz(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
int jcc;
if (have_lzcnt) {
tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
jcc = JCC_JB;
} else {
/* Recall that the output of BSR is the index not the count. */
tcg_out_modrm(s, OPC_BSR + rexw, a0, a1);
tgen_arithi(s, ARITH_XOR + rexw, a0, rexw ? 63 : 31, 0);
/* Since we have destroyed the flags from BSR, we have to re-test. */
jcc = tcg_out_cmp(s, TCG_COND_EQ, a1, 0, 1, rexw);
}
tcg_out_cmov(s, jcc, rexw, a0, a2);
}
static void tgen_clzi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_LZCNT + rexw, a0, a1);
}
static TCGConstraintSetIndex cset_clz(TCGType type, unsigned flags)
{
return have_lzcnt ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
}
static const TCGOutOpBinary outop_clz = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_clz,
.out_rrr = tgen_clz,
.out_rri = tgen_clzi,
};
static void tgen_ctpop(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_POPCNT + rexw, a0, a1);
}
static TCGConstraintSetIndex cset_ctpop(TCGType type, unsigned flags)
{
return have_popcnt ? C_O1_I1(r, r) : C_NotImplemented;
}
static const TCGOutOpUnary outop_ctpop = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_ctpop,
.out_rr = tgen_ctpop,
};
static void tgen_ctz(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
int jcc;
if (have_bmi1) {
tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
jcc = JCC_JB;
} else {
tcg_out_modrm(s, OPC_BSF + rexw, a0, a1);
jcc = JCC_JE;
}
tcg_out_cmov(s, jcc, rexw, a0, a2);
}
static void tgen_ctzi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_TZCNT + rexw, a0, a1);
}
static TCGConstraintSetIndex cset_ctz(TCGType type, unsigned flags)
{
return have_bmi1 ? C_N1_I2(r, r, rW) : C_N1_I2(r, r, r);
}
static const TCGOutOpBinary outop_ctz = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_ctz,
.out_rrr = tgen_ctz,
.out_rri = tgen_ctzi,
};
static const TCGOutOpBinary outop_divs = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_divs2(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a4)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IDIV, a4);
}
static const TCGOutOpDivRem outop_divs2 = {
.base.static_constraint = C_O2_I3(a, d, 0, 1, r),
.out_rr01r = tgen_divs2,
};
static const TCGOutOpBinary outop_divu = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_divu2(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a4)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_DIV, a4);
}
static const TCGOutOpDivRem outop_divu2 = {
.base.static_constraint = C_O2_I3(a, d, 0, 1, r),
.out_rr01r = tgen_divu2,
};
static const TCGOutOpBinary outop_eqv = {
.base.static_constraint = C_NotImplemented,
};
#if TCG_TARGET_REG_BITS == 64
static void tgen_extrh_i64_i32(TCGContext *s, TCGType t, TCGReg a0, TCGReg a1)
{
tcg_out_shifti(s, SHIFT_SHR + P_REXW, a0, 32);
}
static const TCGOutOpUnary outop_extrh_i64_i32 = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_extrh_i64_i32,
};
#endif /* TCG_TARGET_REG_BITS == 64 */
static void tgen_mul(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_IMUL_GvEv + rexw, a0, a2);
}
static void tgen_muli(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (a2 == (int8_t)a2) {
tcg_out_modrm(s, OPC_IMUL_GvEvIb + rexw, a0, a0);
tcg_out8(s, a2);
} else {
tcg_out_modrm(s, OPC_IMUL_GvEvIz + rexw, a0, a0);
tcg_out32(s, a2);
}
}
static const TCGOutOpBinary outop_mul = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_mul,
.out_rri = tgen_muli,
};
static void tgen_muls2(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2, TCGReg a3)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_IMUL, a3);
}
static const TCGOutOpMul2 outop_muls2 = {
.base.static_constraint = C_O2_I2(a, d, a, r),
.out_rrrr = tgen_muls2,
};
static const TCGOutOpBinary outop_mulsh = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_muluh = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_mulu2(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2, TCGReg a3)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_MUL, a3);
}
static const TCGOutOpMul2 outop_mulu2 = {
.base.static_constraint = C_O2_I2(a, d, a, r),
.out_rrrr = tgen_mulu2,
};
static const TCGOutOpBinary outop_nand = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_nor = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_or(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_OR + rexw, a0, a2);
}
static void tgen_ori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_OR + rexw, a0, a2, false);
}
static const TCGOutOpBinary outop_or = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_or,
.out_rri = tgen_ori,
};
static const TCGOutOpBinary outop_orc = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_rems = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_remu = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_rotl(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROL, a0);
}
static void tgen_rotli(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_shifti(s, SHIFT_ROL + rexw, a0, a2);
}
static const TCGOutOpBinary outop_rotl = {
.base.static_constraint = C_O1_I2(r, 0, ci),
.out_rrr = tgen_rotl,
.out_rri = tgen_rotli,
};
static void tgen_rotr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_ROR, a0);
}
static void tgen_rotri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_shifti(s, SHIFT_ROR + rexw, a0, a2);
}
static const TCGOutOpBinary outop_rotr = {
.base.static_constraint = C_O1_I2(r, 0, ci),
.out_rrr = tgen_rotr,
.out_rri = tgen_rotri,
};
static TCGConstraintSetIndex cset_shift(TCGType type, unsigned flags)
{
return have_bmi2 ? C_O1_I2(r, r, ri) : C_O1_I2(r, 0, ci);
}
static void tgen_sar(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (have_bmi2) {
tcg_out_vex_modrm(s, OPC_SARX + rexw, a0, a2, a1);
} else {
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SAR, a0);
}
}
static void tgen_sari(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_mov(s, type, a0, a1);
tcg_out_shifti(s, SHIFT_SAR + rexw, a0, a2);
}
static const TCGOutOpBinary outop_sar = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_shift,
.out_rrr = tgen_sar,
.out_rri = tgen_sari,
};
static void tgen_shl(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (have_bmi2) {
tcg_out_vex_modrm(s, OPC_SHLX + rexw, a0, a2, a1);
} else {
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHL, a0);
}
}
static void tgen_shli(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
/* For small constant 3-operand shift, use LEA. */
if (a0 != a1 && a2 >= 1 && a2 <= 3) {
if (a2 == 1) {
/* shl $1,a1,a0 -> lea (a1,a1),a0 */
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, a1, a1, 0, 0);
} else {
/* shl $n,a1,a0 -> lea 0(,a1,n),a0 */
tcg_out_modrm_sib_offset(s, OPC_LEA + rexw, a0, -1, a1, a2, 0);
}
return;
}
tcg_out_mov(s, type, a0, a1);
tcg_out_shifti(s, SHIFT_SHL + rexw, a0, a2);
}
static const TCGOutOpBinary outop_shl = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_shift,
.out_rrr = tgen_shl,
.out_rri = tgen_shli,
};
static void tgen_shr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (have_bmi2) {
tcg_out_vex_modrm(s, OPC_SHRX + rexw, a0, a2, a1);
} else {
tcg_out_modrm(s, OPC_SHIFT_cl + rexw, SHIFT_SHR, a0);
}
}
static void tgen_shri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_mov(s, type, a0, a1);
tcg_out_shifti(s, SHIFT_SHR + rexw, a0, a2);
}
static const TCGOutOpBinary outop_shr = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_shift,
.out_rrr = tgen_shr,
.out_rri = tgen_shri,
};
static void tgen_sub(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_SUB + rexw, a0, a2);
}
static const TCGOutOpSubtract outop_sub = {
.base.static_constraint = C_O1_I2(r, 0, r),
.out_rrr = tgen_sub,
};
static void tgen_subbo_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_SUB + rexw, a0, a2, 1);
}
static const TCGOutOpAddSubCarry outop_subbo = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_sub,
.out_rri = tgen_subbo_rri,
};
static void tgen_subbio_rrr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_SBB + rexw, a0, a2);
}
static void tgen_subbio_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_SBB + rexw, a0, a2, 1);
}
static const TCGOutOpAddSubCarry outop_subbio = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_subbio_rrr,
.out_rri = tgen_subbio_rri,
};
#define outop_subbi outop_subbio
static void tcg_out_set_borrow(TCGContext *s)
{
tcg_out8(s, OPC_STC);
}
static void tgen_xor(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithr(s, ARITH_XOR + rexw, a0, a2);
}
static void tgen_xori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tgen_arithi(s, ARITH_XOR + rexw, a0, a2, false);
}
static const TCGOutOpBinary outop_xor = {
.base.static_constraint = C_O1_I2(r, 0, re),
.out_rrr = tgen_xor,
.out_rri = tgen_xori,
};
static void tgen_bswap16(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, unsigned flags)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
if (flags & TCG_BSWAP_OS) {
/* Output must be sign-extended. */
if (rexw) {
tcg_out_bswap64(s, a0);
tcg_out_shifti(s, SHIFT_SAR + rexw, a0, 48);
} else {
tcg_out_bswap32(s, a0);
tcg_out_shifti(s, SHIFT_SAR, a0, 16);
}
} else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
/* Output must be zero-extended, but input isn't. */
tcg_out_bswap32(s, a0);
tcg_out_shifti(s, SHIFT_SHR, a0, 16);
} else {
tcg_out_rolw_8(s, a0);
}
}
static const TCGOutOpBswap outop_bswap16 = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_bswap16,
};
static void tgen_bswap32(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, unsigned flags)
{
tcg_out_bswap32(s, a0);
if (flags & TCG_BSWAP_OS) {
tcg_out_ext32s(s, a0, a0);
}
}
static const TCGOutOpBswap outop_bswap32 = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_bswap32,
};
#if TCG_TARGET_REG_BITS == 64
static void tgen_bswap64(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
tcg_out_bswap64(s, a0);
}
static const TCGOutOpUnary outop_bswap64 = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_bswap64,
};
#endif
static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NEG, a0);
}
static const TCGOutOpUnary outop_neg = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_neg,
};
static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm(s, OPC_GRP3_Ev + rexw, EXT3_NOT, a0);
}
static const TCGOutOpUnary outop_not = {
.base.static_constraint = C_O1_I1(r, 0),
.out_rr = tgen_not,
};
static void tgen_deposit(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
TCGReg a2, unsigned ofs, unsigned len)
{
if (ofs == 0 && len == 8) {
tcg_out_modrm(s, OPC_MOVB_EvGv | P_REXB_R | P_REXB_RM, a2, a0);
} else if (ofs == 0 && len == 16) {
tcg_out_modrm(s, OPC_MOVL_EvGv | P_DATA16, a2, a0);
} else if (TCG_TARGET_REG_BITS == 32 && ofs == 8 && len == 8) {
tcg_out_modrm(s, OPC_MOVB_EvGv, a2, a0 + 4);
} else {
g_assert_not_reached();
}
}
static void tgen_depositi(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
tcg_target_long a2, unsigned ofs, unsigned len)
{
if (ofs == 0 && len == 8) {
tcg_out_opc(s, OPC_MOVB_Ib | P_REXB_RM | LOWREGMASK(a0), 0, a0, 0);
tcg_out8(s, a2);
} else if (ofs == 0 && len == 16) {
tcg_out_opc(s, OPC_MOVL_Iv | P_DATA16 | LOWREGMASK(a0), 0, a0, 0);
tcg_out16(s, a2);
} else if (TCG_TARGET_REG_BITS == 32 && ofs == 8 && len == 8) {
tcg_out8(s, OPC_MOVB_Ib + a0 + 4);
tcg_out8(s, a2);
} else {
g_assert_not_reached();
}
}
static const TCGOutOpDeposit outop_deposit = {
.base.static_constraint = C_O1_I2(q, 0, qi),
.out_rrr = tgen_deposit,
.out_rri = tgen_depositi,
};
static void tgen_extract(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
unsigned ofs, unsigned len)
{
if (ofs == 0) {
switch (len) {
case 8:
tcg_out_ext8u(s, a0, a1);
return;
case 16:
tcg_out_ext16u(s, a0, a1);
return;
case 32:
tcg_out_ext32u(s, a0, a1);
return;
}
} else if (TCG_TARGET_REG_BITS == 64 && ofs + len == 32) {
/* This is a 32-bit zero-extending right shift. */
tcg_out_mov(s, TCG_TYPE_I32, a0, a1);
tcg_out_shifti(s, SHIFT_SHR, a0, ofs);
return;
} else if (ofs == 8 && len == 8) {
/*
* On the off-chance that we can use the high-byte registers.
* Otherwise we emit the same ext16 + shift pattern that we
* would have gotten from the normal tcg-op.c expansion.
*/
if (a1 < 4 && (TCG_TARGET_REG_BITS == 32 || a0 < 8)) {
tcg_out_modrm(s, OPC_MOVZBL, a0, a1 + 4);
} else {
tcg_out_ext16u(s, a0, a1);
tcg_out_shifti(s, SHIFT_SHR, a0, 8);
}
return;
}
g_assert_not_reached();
}
static const TCGOutOpExtract outop_extract = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_extract,
};
static void tgen_sextract(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
unsigned ofs, unsigned len)
{
if (ofs == 0) {
switch (len) {
case 8:
tcg_out_ext8s(s, type, a0, a1);
return;
case 16:
tcg_out_ext16s(s, type, a0, a1);
return;
case 32:
tcg_out_ext32s(s, a0, a1);
return;
}
} else if (ofs == 8 && len == 8) {
if (type == TCG_TYPE_I32 && a1 < 4 && a0 < 8) {
tcg_out_modrm(s, OPC_MOVSBL, a0, a1 + 4);
} else {
tcg_out_ext16s(s, type, a0, a1);
tgen_sari(s, type, a0, a0, 8);
}
return;
}
g_assert_not_reached();
}
static const TCGOutOpExtract outop_sextract = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_sextract,
};
static void tgen_extract2(TCGContext *s, TCGType type, TCGReg a0,
TCGReg a1, TCGReg a2, unsigned shr)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
/* Note that SHRD outputs to the r/m operand. */
tcg_out_modrm(s, OPC_SHRD_Ib + rexw, a2, a0);
tcg_out8(s, shr);
}
static const TCGOutOpExtract2 outop_extract2 = {
.base.static_constraint = C_O1_I2(r, 0, r),
.out_rrr = tgen_extract2,
};
static void tgen_ld8u(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVZBL, dest, base, offset);
}
static const TCGOutOpLoad outop_ld8u = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld8u,
};
static void tgen_ld8s(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm_offset(s, OPC_MOVSBL + rexw, dest, base, offset);
}
static const TCGOutOpLoad outop_ld8s = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld8s,
};
static void tgen_ld16u(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVZWL, dest, base, offset);
}
static const TCGOutOpLoad outop_ld16u = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld16u,
};
static void tgen_ld16s(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
int rexw = type == TCG_TYPE_I32 ? 0 : P_REXW;
tcg_out_modrm_offset(s, OPC_MOVSWL + rexw, dest, base, offset);
}
static const TCGOutOpLoad outop_ld16s = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld16s,
};
#if TCG_TARGET_REG_BITS == 64
static void tgen_ld32u(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVL_GvEv, dest, base, offset);
}
static const TCGOutOpLoad outop_ld32u = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld32u,
};
static void tgen_ld32s(TCGContext *s, TCGType type, TCGReg dest,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVSLQ, dest, base, offset);
}
static const TCGOutOpLoad outop_ld32s = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld32s,
};
#endif
static void tgen_st8_r(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVB_EvGv | P_REXB_R, data, base, offset);
}
static void tgen_st8_i(TCGContext *s, TCGType type, tcg_target_long data,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVB_EvIz, 0, base, offset);
tcg_out8(s, data);
}
static const TCGOutOpStore outop_st8 = {
.base.static_constraint = C_O0_I2(qi, r),
.out_r = tgen_st8_r,
.out_i = tgen_st8_i,
};
static void tgen_st16_r(TCGContext *s, TCGType type, TCGReg data,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVL_EvGv | P_DATA16, data, base, offset);
}
static void tgen_st16_i(TCGContext *s, TCGType type, tcg_target_long data,
TCGReg base, ptrdiff_t offset)
{
tcg_out_modrm_offset(s, OPC_MOVL_EvIz | P_DATA16, 0, base, offset);
tcg_out16(s, data);
}
static const TCGOutOpStore outop_st16 = {
.base.static_constraint = C_O0_I2(ri, r),
.out_r = tgen_st16_r,
.out_i = tgen_st16_i,
};
static void tgen_st_i(TCGContext *s, TCGType type, tcg_target_long data,
TCGReg base, ptrdiff_t offset)
{
bool ok = tcg_out_sti(s, type, data, base, offset);
tcg_debug_assert(ok);
}
static const TCGOutOpStore outop_st = {
.base.static_constraint = C_O0_I2(re, r),
.out_r = tcg_out_st,
.out_i = tgen_st_i,
};
static int const umin_insn[4] = {
OPC_PMINUB, OPC_PMINUW, OPC_PMINUD, OPC_VPMINUQ
};
static int const umax_insn[4] = {
OPC_PMAXUB, OPC_PMAXUW, OPC_PMAXUD, OPC_VPMAXUQ
};
static bool tcg_out_cmp_vec_noinv(TCGContext *s, TCGType type, unsigned vece,
TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
{
static int const cmpeq_insn[4] = {
OPC_PCMPEQB, OPC_PCMPEQW, OPC_PCMPEQD, OPC_PCMPEQQ
};
static int const cmpgt_insn[4] = {
OPC_PCMPGTB, OPC_PCMPGTW, OPC_PCMPGTD, OPC_PCMPGTQ
};
enum {
NEED_INV = 1,
NEED_SWAP = 2,
NEED_UMIN = 4,
NEED_UMAX = 8,
INVALID = 16,
};
static const uint8_t cond_fixup[16] = {
[0 ... 15] = INVALID,
[TCG_COND_EQ] = 0,
[TCG_COND_GT] = 0,
[TCG_COND_NE] = NEED_INV,
[TCG_COND_LE] = NEED_INV,
[TCG_COND_LT] = NEED_SWAP,
[TCG_COND_GE] = NEED_SWAP | NEED_INV,
[TCG_COND_LEU] = NEED_UMIN,
[TCG_COND_GTU] = NEED_UMIN | NEED_INV,
[TCG_COND_GEU] = NEED_UMAX,
[TCG_COND_LTU] = NEED_UMAX | NEED_INV,
};
int fixup = cond_fixup[cond];
assert(!(fixup & INVALID));
if (fixup & NEED_INV) {
cond = tcg_invert_cond(cond);
}
if (fixup & NEED_SWAP) {
TCGReg swap = v1;
v1 = v2;
v2 = swap;
cond = tcg_swap_cond(cond);
}
if (fixup & (NEED_UMIN | NEED_UMAX)) {
int op = (fixup & NEED_UMIN ? umin_insn[vece] : umax_insn[vece]);
/* avx2 does not have 64-bit min/max; adjusted during expand. */
assert(vece <= MO_32);
tcg_out_vex_modrm_type(s, op, TCG_TMP_VEC, v1, v2, type);
v2 = TCG_TMP_VEC;
cond = TCG_COND_EQ;
}
switch (cond) {
case TCG_COND_EQ:
tcg_out_vex_modrm_type(s, cmpeq_insn[vece], v0, v1, v2, type);
break;
case TCG_COND_GT:
tcg_out_vex_modrm_type(s, cmpgt_insn[vece], v0, v1, v2, type);
break;
default:
g_assert_not_reached();
}
return fixup & NEED_INV;
}
static void tcg_out_cmp_vec_k1(TCGContext *s, TCGType type, unsigned vece,
TCGReg v1, TCGReg v2, TCGCond cond)
{
static const int cmpm_insn[2][4] = {
{ OPC_VPCMPB, OPC_VPCMPW, OPC_VPCMPD, OPC_VPCMPQ },
{ OPC_VPCMPUB, OPC_VPCMPUW, OPC_VPCMPUD, OPC_VPCMPUQ }
};
static const int testm_insn[4] = {
OPC_VPTESTMB, OPC_VPTESTMW, OPC_VPTESTMD, OPC_VPTESTMQ
};
static const int testnm_insn[4] = {
OPC_VPTESTNMB, OPC_VPTESTNMW, OPC_VPTESTNMD, OPC_VPTESTNMQ
};
static const int cond_ext[16] = {
[TCG_COND_EQ] = 0,
[TCG_COND_NE] = 4,
[TCG_COND_LT] = 1,
[TCG_COND_LTU] = 1,
[TCG_COND_LE] = 2,
[TCG_COND_LEU] = 2,
[TCG_COND_NEVER] = 3,
[TCG_COND_GE] = 5,
[TCG_COND_GEU] = 5,
[TCG_COND_GT] = 6,
[TCG_COND_GTU] = 6,
[TCG_COND_ALWAYS] = 7,
};
switch (cond) {
case TCG_COND_TSTNE:
tcg_out_vex_modrm_type(s, testm_insn[vece], /* k1 */ 1, v1, v2, type);
break;
case TCG_COND_TSTEQ:
tcg_out_vex_modrm_type(s, testnm_insn[vece], /* k1 */ 1, v1, v2, type);
break;
default:
tcg_out_vex_modrm_type(s, cmpm_insn[is_unsigned_cond(cond)][vece],
/* k1 */ 1, v1, v2, type);
tcg_out8(s, cond_ext[cond]);
break;
}
}
static void tcg_out_k1_to_vec(TCGContext *s, TCGType type,
unsigned vece, TCGReg dest)
{
static const int movm_insn[] = {
OPC_VPMOVM2B, OPC_VPMOVM2W, OPC_VPMOVM2D, OPC_VPMOVM2Q
};
tcg_out_vex_modrm_type(s, movm_insn[vece], dest, 0, /* k1 */ 1, type);
}
static void tcg_out_cmp_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg v0, TCGReg v1, TCGReg v2, TCGCond cond)
{
/*
* With avx512, we have a complete set of comparisons into mask.
* Unless there's a single insn expansion for the comparision,
* expand via a mask in k1.
*/
if ((vece <= MO_16 ? have_avx512bw : have_avx512dq)
&& cond != TCG_COND_EQ
&& cond != TCG_COND_LT
&& cond != TCG_COND_GT) {
tcg_out_cmp_vec_k1(s, type, vece, v1, v2, cond);
tcg_out_k1_to_vec(s, type, vece, v0);
return;
}
if (tcg_out_cmp_vec_noinv(s, type, vece, v0, v1, v2, cond)) {
tcg_out_dupi_vec(s, type, vece, TCG_TMP_VEC, -1);
tcg_out_vex_modrm_type(s, OPC_PXOR, v0, v0, TCG_TMP_VEC, type);
}
}
static void tcg_out_cmpsel_vec_k1(TCGContext *s, TCGType type, unsigned vece,
TCGReg v0, TCGReg c1, TCGReg c2,
TCGReg v3, TCGReg v4, TCGCond cond)
{
static const int vpblendm_insn[] = {
OPC_VPBLENDMB, OPC_VPBLENDMW, OPC_VPBLENDMD, OPC_VPBLENDMQ
};
bool z = false;
/* Swap to place constant in V4 to take advantage of zero-masking. */
if (!v3) {
z = true;
v3 = v4;
cond = tcg_invert_cond(cond);
}
tcg_out_cmp_vec_k1(s, type, vece, c1, c2, cond);
tcg_out_evex_modrm_type(s, vpblendm_insn[vece], v0, v4, v3,
/* k1 */1, z, type);
}
static void tcg_out_cmpsel_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg v0, TCGReg c1, TCGReg c2,
TCGReg v3, TCGReg v4, TCGCond cond)
{
bool inv;
if (vece <= MO_16 ? have_avx512bw : have_avx512vl) {
tcg_out_cmpsel_vec_k1(s, type, vece, v0, c1, c2, v3, v4, cond);
return;
}
inv = tcg_out_cmp_vec_noinv(s, type, vece, TCG_TMP_VEC, c1, c2, cond);
/*
* Since XMM0 is 16, the only way we get 0 into V3
* is via the constant zero constraint.
*/
if (!v3) {
if (inv) {
tcg_out_vex_modrm_type(s, OPC_PAND, v0, TCG_TMP_VEC, v4, type);
} else {
tcg_out_vex_modrm_type(s, OPC_PANDN, v0, TCG_TMP_VEC, v4, type);
}
} else {
if (inv) {
TCGReg swap = v3;
v3 = v4;
v4 = swap;
}
tcg_out_vex_modrm_type(s, OPC_VPBLENDVB, v0, v4, v3, type);
tcg_out8(s, (TCG_TMP_VEC - TCG_REG_XMM0) << 4);
}
}
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
static int const add_insn[4] = {
OPC_PADDB, OPC_PADDW, OPC_PADDD, OPC_PADDQ
};
static int const ssadd_insn[4] = {
OPC_PADDSB, OPC_PADDSW, OPC_UD2, OPC_UD2
};
static int const usadd_insn[4] = {
OPC_PADDUB, OPC_PADDUW, OPC_UD2, OPC_UD2
};
static int const sub_insn[4] = {
OPC_PSUBB, OPC_PSUBW, OPC_PSUBD, OPC_PSUBQ
};
static int const sssub_insn[4] = {
OPC_PSUBSB, OPC_PSUBSW, OPC_UD2, OPC_UD2
};
static int const ussub_insn[4] = {
OPC_PSUBUB, OPC_PSUBUW, OPC_UD2, OPC_UD2
};
static int const mul_insn[4] = {
OPC_UD2, OPC_PMULLW, OPC_PMULLD, OPC_VPMULLQ
};
static int const shift_imm_insn[4] = {
OPC_UD2, OPC_PSHIFTW_Ib, OPC_PSHIFTD_Ib, OPC_PSHIFTQ_Ib
};
static int const punpckl_insn[4] = {
OPC_PUNPCKLBW, OPC_PUNPCKLWD, OPC_PUNPCKLDQ, OPC_PUNPCKLQDQ
};
static int const punpckh_insn[4] = {
OPC_PUNPCKHBW, OPC_PUNPCKHWD, OPC_PUNPCKHDQ, OPC_PUNPCKHQDQ
};
static int const packss_insn[4] = {
OPC_PACKSSWB, OPC_PACKSSDW, OPC_UD2, OPC_UD2
};
static int const packus_insn[4] = {
OPC_PACKUSWB, OPC_PACKUSDW, OPC_UD2, OPC_UD2
};
static int const smin_insn[4] = {
OPC_PMINSB, OPC_PMINSW, OPC_PMINSD, OPC_VPMINSQ
};
static int const smax_insn[4] = {
OPC_PMAXSB, OPC_PMAXSW, OPC_PMAXSD, OPC_VPMAXSQ
};
static int const rotlv_insn[4] = {
OPC_UD2, OPC_UD2, OPC_VPROLVD, OPC_VPROLVQ
};
static int const rotrv_insn[4] = {
OPC_UD2, OPC_UD2, OPC_VPRORVD, OPC_VPRORVQ
};
static int const shlv_insn[4] = {
OPC_UD2, OPC_VPSLLVW, OPC_VPSLLVD, OPC_VPSLLVQ
};
static int const shrv_insn[4] = {
OPC_UD2, OPC_VPSRLVW, OPC_VPSRLVD, OPC_VPSRLVQ
};
static int const sarv_insn[4] = {
OPC_UD2, OPC_VPSRAVW, OPC_VPSRAVD, OPC_VPSRAVQ
};
static int const shls_insn[4] = {
OPC_UD2, OPC_PSLLW, OPC_PSLLD, OPC_PSLLQ
};
static int const shrs_insn[4] = {
OPC_UD2, OPC_PSRLW, OPC_PSRLD, OPC_PSRLQ
};
static int const sars_insn[4] = {
OPC_UD2, OPC_PSRAW, OPC_PSRAD, OPC_VPSRAQ
};
static int const vpshldi_insn[4] = {
OPC_UD2, OPC_VPSHLDW, OPC_VPSHLDD, OPC_VPSHLDQ
};
static int const vpshldv_insn[4] = {
OPC_UD2, OPC_VPSHLDVW, OPC_VPSHLDVD, OPC_VPSHLDVQ
};
static int const vpshrdv_insn[4] = {
OPC_UD2, OPC_VPSHRDVW, OPC_VPSHRDVD, OPC_VPSHRDVQ
};
static int const abs_insn[4] = {
OPC_PABSB, OPC_PABSW, OPC_PABSD, OPC_VPABSQ
};
TCGType type = vecl + TCG_TYPE_V64;
int insn, sub;
TCGArg a0, a1, a2, a3;
a0 = args[0];
a1 = args[1];
a2 = args[2];
switch (opc) {
case INDEX_op_add_vec:
insn = add_insn[vece];
goto gen_simd;
case INDEX_op_ssadd_vec:
insn = ssadd_insn[vece];
goto gen_simd;
case INDEX_op_usadd_vec:
insn = usadd_insn[vece];
goto gen_simd;
case INDEX_op_sub_vec:
insn = sub_insn[vece];
goto gen_simd;
case INDEX_op_sssub_vec:
insn = sssub_insn[vece];
goto gen_simd;
case INDEX_op_ussub_vec:
insn = ussub_insn[vece];
goto gen_simd;
case INDEX_op_mul_vec:
insn = mul_insn[vece];
goto gen_simd;
case INDEX_op_and_vec:
insn = OPC_PAND;
goto gen_simd;
case INDEX_op_or_vec:
insn = OPC_POR;
goto gen_simd;
case INDEX_op_xor_vec:
insn = OPC_PXOR;
goto gen_simd;
case INDEX_op_smin_vec:
insn = smin_insn[vece];
goto gen_simd;
case INDEX_op_umin_vec:
insn = umin_insn[vece];
goto gen_simd;
case INDEX_op_smax_vec:
insn = smax_insn[vece];
goto gen_simd;
case INDEX_op_umax_vec:
insn = umax_insn[vece];
goto gen_simd;
case INDEX_op_shlv_vec:
insn = shlv_insn[vece];
goto gen_simd;
case INDEX_op_shrv_vec:
insn = shrv_insn[vece];
goto gen_simd;
case INDEX_op_sarv_vec:
insn = sarv_insn[vece];
goto gen_simd;
case INDEX_op_rotlv_vec:
insn = rotlv_insn[vece];
goto gen_simd;
case INDEX_op_rotrv_vec:
insn = rotrv_insn[vece];
goto gen_simd;
case INDEX_op_shls_vec:
insn = shls_insn[vece];
goto gen_simd;
case INDEX_op_shrs_vec:
insn = shrs_insn[vece];
goto gen_simd;
case INDEX_op_sars_vec:
insn = sars_insn[vece];
goto gen_simd;
case INDEX_op_x86_punpckl_vec:
insn = punpckl_insn[vece];
goto gen_simd;
case INDEX_op_x86_punpckh_vec:
insn = punpckh_insn[vece];
goto gen_simd;
case INDEX_op_x86_packss_vec:
insn = packss_insn[vece];
goto gen_simd;
case INDEX_op_x86_packus_vec:
insn = packus_insn[vece];
goto gen_simd;
case INDEX_op_x86_vpshldv_vec:
insn = vpshldv_insn[vece];
a1 = a2;
a2 = args[3];
goto gen_simd;
case INDEX_op_x86_vpshrdv_vec:
insn = vpshrdv_insn[vece];
a1 = a2;
a2 = args[3];
goto gen_simd;
#if TCG_TARGET_REG_BITS == 32
case INDEX_op_dup2_vec:
/* First merge the two 32-bit inputs to a single 64-bit element. */
tcg_out_vex_modrm(s, OPC_PUNPCKLDQ, a0, a1, a2);
/* Then replicate the 64-bit elements across the rest of the vector. */
if (type != TCG_TYPE_V64) {
tcg_out_dup_vec(s, type, MO_64, a0, a0);
}
break;
#endif
case INDEX_op_abs_vec:
insn = abs_insn[vece];
a2 = a1;
a1 = 0;
goto gen_simd;
gen_simd:
tcg_debug_assert(insn != OPC_UD2);
tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
break;
case INDEX_op_cmp_vec:
tcg_out_cmp_vec(s, type, vece, a0, a1, a2, args[3]);
break;
case INDEX_op_cmpsel_vec:
tcg_out_cmpsel_vec(s, type, vece, a0, a1, a2,
args[3], args[4], args[5]);
break;
case INDEX_op_andc_vec:
insn = OPC_PANDN;
tcg_out_vex_modrm_type(s, insn, a0, a2, a1, type);
break;
case INDEX_op_shli_vec:
insn = shift_imm_insn[vece];
sub = 6;
goto gen_shift;
case INDEX_op_shri_vec:
insn = shift_imm_insn[vece];
sub = 2;
goto gen_shift;
case INDEX_op_sari_vec:
if (vece == MO_64) {
insn = OPC_PSHIFTD_Ib | P_VEXW | P_EVEX;
} else {
insn = shift_imm_insn[vece];
}
sub = 4;
goto gen_shift;
case INDEX_op_rotli_vec:
insn = OPC_PSHIFTD_Ib | P_EVEX; /* VPROL[DQ] */
if (vece == MO_64) {
insn |= P_VEXW;
}
sub = 1;
goto gen_shift;
gen_shift:
tcg_debug_assert(vece != MO_8);
tcg_out_vex_modrm_type(s, insn, sub, a0, a1, type);
tcg_out8(s, a2);
break;
case INDEX_op_ld_vec:
tcg_out_ld(s, type, a0, a1, a2);
break;
case INDEX_op_st_vec:
tcg_out_st(s, type, a0, a1, a2);
break;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
break;
case INDEX_op_x86_shufps_vec:
insn = OPC_SHUFPS;
sub = args[3];
goto gen_simd_imm8;
case INDEX_op_x86_blend_vec:
if (vece == MO_16) {
insn = OPC_PBLENDW;
} else if (vece == MO_32) {
insn = (have_avx2 ? OPC_VPBLENDD : OPC_BLENDPS);
} else {
g_assert_not_reached();
}
sub = args[3];
goto gen_simd_imm8;
case INDEX_op_x86_vperm2i128_vec:
insn = OPC_VPERM2I128;
sub = args[3];
goto gen_simd_imm8;
case INDEX_op_x86_vpshldi_vec:
insn = vpshldi_insn[vece];
sub = args[3];
goto gen_simd_imm8;
case INDEX_op_not_vec:
insn = OPC_VPTERNLOGQ;
a2 = a1;
sub = 0x33; /* !B */
goto gen_simd_imm8;
case INDEX_op_nor_vec:
insn = OPC_VPTERNLOGQ;
sub = 0x11; /* norCB */
goto gen_simd_imm8;
case INDEX_op_nand_vec:
insn = OPC_VPTERNLOGQ;
sub = 0x77; /* nandCB */
goto gen_simd_imm8;
case INDEX_op_eqv_vec:
insn = OPC_VPTERNLOGQ;
sub = 0x99; /* xnorCB */
goto gen_simd_imm8;
case INDEX_op_orc_vec:
insn = OPC_VPTERNLOGQ;
sub = 0xdd; /* orB!C */
goto gen_simd_imm8;
case INDEX_op_bitsel_vec:
insn = OPC_VPTERNLOGQ;
a3 = args[3];
if (a0 == a1) {
a1 = a2;
a2 = a3;
sub = 0xca; /* A?B:C */
} else if (a0 == a2) {
a2 = a3;
sub = 0xe2; /* B?A:C */
} else {
tcg_out_mov(s, type, a0, a3);
sub = 0xb8; /* B?C:A */
}
goto gen_simd_imm8;
gen_simd_imm8:
tcg_debug_assert(insn != OPC_UD2);
tcg_out_vex_modrm_type(s, insn, a0, a1, a2, type);
tcg_out8(s, sub);
break;
case INDEX_op_x86_psrldq_vec:
tcg_out_vex_modrm(s, OPC_GRP14, 3, a0, a1);
tcg_out8(s, a2);
break;
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
default:
g_assert_not_reached();
}
}
static TCGConstraintSetIndex
tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
{
switch (op) {
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
return C_O1_I1(x, r);
case INDEX_op_st_vec:
return C_O0_I2(x, r);
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_mul_vec:
case INDEX_op_and_vec:
case INDEX_op_or_vec:
case INDEX_op_xor_vec:
case INDEX_op_andc_vec:
case INDEX_op_orc_vec:
case INDEX_op_nand_vec:
case INDEX_op_nor_vec:
case INDEX_op_eqv_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_usadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_ussub_vec:
case INDEX_op_smin_vec:
case INDEX_op_umin_vec:
case INDEX_op_smax_vec:
case INDEX_op_umax_vec:
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
case INDEX_op_shls_vec:
case INDEX_op_shrs_vec:
case INDEX_op_sars_vec:
case INDEX_op_cmp_vec:
case INDEX_op_x86_shufps_vec:
case INDEX_op_x86_blend_vec:
case INDEX_op_x86_packss_vec:
case INDEX_op_x86_packus_vec:
case INDEX_op_x86_vperm2i128_vec:
case INDEX_op_x86_punpckl_vec:
case INDEX_op_x86_punpckh_vec:
case INDEX_op_x86_vpshldi_vec:
#if TCG_TARGET_REG_BITS == 32
case INDEX_op_dup2_vec:
#endif
return C_O1_I2(x, x, x);
case INDEX_op_abs_vec:
case INDEX_op_dup_vec:
case INDEX_op_not_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_sari_vec:
case INDEX_op_rotli_vec:
case INDEX_op_x86_psrldq_vec:
return C_O1_I1(x, x);
case INDEX_op_x86_vpshldv_vec:
case INDEX_op_x86_vpshrdv_vec:
return C_O1_I3(x, 0, x, x);
case INDEX_op_bitsel_vec:
return C_O1_I3(x, x, x, x);
case INDEX_op_cmpsel_vec:
return C_O1_I4(x, x, x, xO, x);
default:
return C_NotImplemented;
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_and_vec:
case INDEX_op_or_vec:
case INDEX_op_xor_vec:
case INDEX_op_andc_vec:
case INDEX_op_orc_vec:
case INDEX_op_nand_vec:
case INDEX_op_nor_vec:
case INDEX_op_eqv_vec:
case INDEX_op_not_vec:
case INDEX_op_bitsel_vec:
return 1;
case INDEX_op_cmp_vec:
case INDEX_op_cmpsel_vec:
return -1;
case INDEX_op_rotli_vec:
return have_avx512vl && vece >= MO_32 ? 1 : -1;
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
/* We must expand the operation for MO_8. */
return vece == MO_8 ? -1 : 1;
case INDEX_op_sari_vec:
switch (vece) {
case MO_8:
return -1;
case MO_16:
case MO_32:
return 1;
case MO_64:
if (have_avx512vl) {
return 1;
}
/*
* We can emulate this for MO_64, but it does not pay off
* unless we're producing at least 4 values.
*/
return type >= TCG_TYPE_V256 ? -1 : 0;
}
return 0;
case INDEX_op_shls_vec:
case INDEX_op_shrs_vec:
return vece >= MO_16;
case INDEX_op_sars_vec:
switch (vece) {
case MO_16:
case MO_32:
return 1;
case MO_64:
return have_avx512vl;
}
return 0;
case INDEX_op_rotls_vec:
return vece >= MO_16 ? -1 : 0;
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
switch (vece) {
case MO_16:
return have_avx512bw;
case MO_32:
case MO_64:
return have_avx2;
}
return 0;
case INDEX_op_sarv_vec:
switch (vece) {
case MO_16:
return have_avx512bw;
case MO_32:
return have_avx2;
case MO_64:
return have_avx512vl;
}
return 0;
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
switch (vece) {
case MO_16:
return have_avx512vbmi2 ? -1 : 0;
case MO_32:
case MO_64:
return have_avx512vl ? 1 : have_avx2 ? -1 : 0;
}
return 0;
case INDEX_op_mul_vec:
switch (vece) {
case MO_8:
return -1;
case MO_64:
return have_avx512dq;
}
return 1;
case INDEX_op_ssadd_vec:
case INDEX_op_usadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_ussub_vec:
return vece <= MO_16;
case INDEX_op_smin_vec:
case INDEX_op_smax_vec:
case INDEX_op_umin_vec:
case INDEX_op_umax_vec:
case INDEX_op_abs_vec:
return vece <= MO_32 || have_avx512vl;
default:
return 0;
}
}
static void expand_vec_shi(TCGType type, unsigned vece, bool right,
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
{
uint8_t mask;
tcg_debug_assert(vece == MO_8);
if (right) {
mask = 0xff >> imm;
tcg_gen_shri_vec(MO_16, v0, v1, imm);
} else {
mask = 0xff << imm;
tcg_gen_shli_vec(MO_16, v0, v1, imm);
}
tcg_gen_and_vec(MO_8, v0, v0, tcg_constant_vec(type, MO_8, mask));
}
static void expand_vec_sari(TCGType type, unsigned vece,
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
{
TCGv_vec t1, t2;
switch (vece) {
case MO_8:
/* Unpack to 16-bit, shift, and repack. */
t1 = tcg_temp_new_vec(type);
t2 = tcg_temp_new_vec(type);
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
tcgv_vec_arg(t2), tcgv_vec_arg(v1), tcgv_vec_arg(v1));
tcg_gen_sari_vec(MO_16, t1, t1, imm + 8);
tcg_gen_sari_vec(MO_16, t2, t2, imm + 8);
vec_gen_3(INDEX_op_x86_packss_vec, type, MO_8,
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t2));
tcg_temp_free_vec(t1);
tcg_temp_free_vec(t2);
break;
case MO_64:
t1 = tcg_temp_new_vec(type);
if (imm <= 32) {
/*
* We can emulate a small sign extend by performing an arithmetic
* 32-bit shift and overwriting the high half of a 64-bit logical
* shift. Note that the ISA says shift of 32 is valid, but TCG
* does not, so we have to bound the smaller shift -- we get the
* same result in the high half either way.
*/
tcg_gen_sari_vec(MO_32, t1, v1, MIN(imm, 31));
tcg_gen_shri_vec(MO_64, v0, v1, imm);
vec_gen_4(INDEX_op_x86_blend_vec, type, MO_32,
tcgv_vec_arg(v0), tcgv_vec_arg(v0),
tcgv_vec_arg(t1), 0xaa);
} else {
/* Otherwise we will need to use a compare vs 0 to produce
* the sign-extend, shift and merge.
*/
tcg_gen_cmp_vec(TCG_COND_GT, MO_64, t1,
tcg_constant_vec(type, MO_64, 0), v1);
tcg_gen_shri_vec(MO_64, v0, v1, imm);
tcg_gen_shli_vec(MO_64, t1, t1, 64 - imm);
tcg_gen_or_vec(MO_64, v0, v0, t1);
}
tcg_temp_free_vec(t1);
break;
default:
g_assert_not_reached();
}
}
static void expand_vec_rotli(TCGType type, unsigned vece,
TCGv_vec v0, TCGv_vec v1, TCGArg imm)
{
TCGv_vec t;
if (vece != MO_8 && have_avx512vbmi2) {
vec_gen_4(INDEX_op_x86_vpshldi_vec, type, vece,
tcgv_vec_arg(v0), tcgv_vec_arg(v1), tcgv_vec_arg(v1), imm);
return;
}
t = tcg_temp_new_vec(type);
tcg_gen_shli_vec(vece, t, v1, imm);
tcg_gen_shri_vec(vece, v0, v1, (8 << vece) - imm);
tcg_gen_or_vec(vece, v0, v0, t);
tcg_temp_free_vec(t);
}
static void expand_vec_rotv(TCGType type, unsigned vece, TCGv_vec v0,
TCGv_vec v1, TCGv_vec sh, bool right)
{
TCGv_vec t;
if (have_avx512vbmi2) {
vec_gen_4(right ? INDEX_op_x86_vpshrdv_vec : INDEX_op_x86_vpshldv_vec,
type, vece, tcgv_vec_arg(v0), tcgv_vec_arg(v1),
tcgv_vec_arg(v1), tcgv_vec_arg(sh));
return;
}
t = tcg_temp_new_vec(type);
tcg_gen_dupi_vec(vece, t, 8 << vece);
tcg_gen_sub_vec(vece, t, t, sh);
if (right) {
tcg_gen_shlv_vec(vece, t, v1, t);
tcg_gen_shrv_vec(vece, v0, v1, sh);
} else {
tcg_gen_shrv_vec(vece, t, v1, t);
tcg_gen_shlv_vec(vece, v0, v1, sh);
}
tcg_gen_or_vec(vece, v0, v0, t);
tcg_temp_free_vec(t);
}
static void expand_vec_rotls(TCGType type, unsigned vece,
TCGv_vec v0, TCGv_vec v1, TCGv_i32 lsh)
{
TCGv_vec t = tcg_temp_new_vec(type);
tcg_debug_assert(vece != MO_8);
if (vece >= MO_32 ? have_avx512vl : have_avx512vbmi2) {
tcg_gen_dup_i32_vec(vece, t, lsh);
if (vece >= MO_32) {
tcg_gen_rotlv_vec(vece, v0, v1, t);
} else {
expand_vec_rotv(type, vece, v0, v1, t, false);
}
} else {
TCGv_i32 rsh = tcg_temp_new_i32();
tcg_gen_neg_i32(rsh, lsh);
tcg_gen_andi_i32(rsh, rsh, (8 << vece) - 1);
tcg_gen_shls_vec(vece, t, v1, lsh);
tcg_gen_shrs_vec(vece, v0, v1, rsh);
tcg_gen_or_vec(vece, v0, v0, t);
tcg_temp_free_i32(rsh);
}
tcg_temp_free_vec(t);
}
static void expand_vec_mul(TCGType type, unsigned vece,
TCGv_vec v0, TCGv_vec v1, TCGv_vec v2)
{
TCGv_vec t1, t2, t3, t4, zero;
tcg_debug_assert(vece == MO_8);
/*
* Unpack v1 bytes to words, 0 | x.
* Unpack v2 bytes to words, y | 0.
* This leaves the 8-bit result, x * y, with 8 bits of right padding.
* Shift logical right by 8 bits to clear the high 8 bytes before
* using an unsigned saturated pack.
*
* The difference between the V64, V128 and V256 cases is merely how
* we distribute the expansion between temporaries.
*/
switch (type) {
case TCG_TYPE_V64:
t1 = tcg_temp_new_vec(TCG_TYPE_V128);
t2 = tcg_temp_new_vec(TCG_TYPE_V128);
zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
vec_gen_3(INDEX_op_x86_punpckl_vec, TCG_TYPE_V128, MO_8,
tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
tcg_gen_mul_vec(MO_16, t1, t1, t2);
tcg_gen_shri_vec(MO_16, t1, t1, 8);
vec_gen_3(INDEX_op_x86_packus_vec, TCG_TYPE_V128, MO_8,
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t1));
tcg_temp_free_vec(t1);
tcg_temp_free_vec(t2);
break;
case TCG_TYPE_V128:
case TCG_TYPE_V256:
t1 = tcg_temp_new_vec(type);
t2 = tcg_temp_new_vec(type);
t3 = tcg_temp_new_vec(type);
t4 = tcg_temp_new_vec(type);
zero = tcg_constant_vec(TCG_TYPE_V128, MO_8, 0);
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
tcgv_vec_arg(t1), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
vec_gen_3(INDEX_op_x86_punpckl_vec, type, MO_8,
tcgv_vec_arg(t2), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
tcgv_vec_arg(t3), tcgv_vec_arg(v1), tcgv_vec_arg(zero));
vec_gen_3(INDEX_op_x86_punpckh_vec, type, MO_8,
tcgv_vec_arg(t4), tcgv_vec_arg(zero), tcgv_vec_arg(v2));
tcg_gen_mul_vec(MO_16, t1, t1, t2);
tcg_gen_mul_vec(MO_16, t3, t3, t4);
tcg_gen_shri_vec(MO_16, t1, t1, 8);
tcg_gen_shri_vec(MO_16, t3, t3, 8);
vec_gen_3(INDEX_op_x86_packus_vec, type, MO_8,
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(t3));
tcg_temp_free_vec(t1);
tcg_temp_free_vec(t2);
tcg_temp_free_vec(t3);
tcg_temp_free_vec(t4);
break;
default:
g_assert_not_reached();
}
}
static TCGCond expand_vec_cond(TCGType type, unsigned vece,
TCGArg *a1, TCGArg *a2, TCGCond cond)
{
/*
* Without AVX512, there are no 64-bit unsigned comparisons.
* We must bias the inputs so that they become signed.
* All other swapping and inversion are handled during code generation.
*/
if (vece == MO_64 && !have_avx512dq && is_unsigned_cond(cond)) {
TCGv_vec v1 = temp_tcgv_vec(arg_temp(*a1));
TCGv_vec v2 = temp_tcgv_vec(arg_temp(*a2));
TCGv_vec t1 = tcg_temp_new_vec(type);
TCGv_vec t2 = tcg_temp_new_vec(type);
TCGv_vec t3 = tcg_constant_vec(type, vece, 1ull << ((8 << vece) - 1));
tcg_gen_sub_vec(vece, t1, v1, t3);
tcg_gen_sub_vec(vece, t2, v2, t3);
*a1 = tcgv_vec_arg(t1);
*a2 = tcgv_vec_arg(t2);
cond = tcg_signed_cond(cond);
}
return cond;
}
static void expand_vec_cmp(TCGType type, unsigned vece, TCGArg a0,
TCGArg a1, TCGArg a2, TCGCond cond)
{
cond = expand_vec_cond(type, vece, &a1, &a2, cond);
/* Expand directly; do not recurse. */
vec_gen_4(INDEX_op_cmp_vec, type, vece, a0, a1, a2, cond);
}
static void expand_vec_cmpsel(TCGType type, unsigned vece, TCGArg a0,
TCGArg a1, TCGArg a2,
TCGArg a3, TCGArg a4, TCGCond cond)
{
cond = expand_vec_cond(type, vece, &a1, &a2, cond);
/* Expand directly; do not recurse. */
vec_gen_6(INDEX_op_cmpsel_vec, type, vece, a0, a1, a2, a3, a4, cond);
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
va_list va;
TCGArg a1, a2, a3, a4, a5;
TCGv_vec v0, v1, v2;
va_start(va, a0);
a1 = va_arg(va, TCGArg);
a2 = va_arg(va, TCGArg);
v0 = temp_tcgv_vec(arg_temp(a0));
v1 = temp_tcgv_vec(arg_temp(a1));
switch (opc) {
case INDEX_op_shli_vec:
expand_vec_shi(type, vece, false, v0, v1, a2);
break;
case INDEX_op_shri_vec:
expand_vec_shi(type, vece, true, v0, v1, a2);
break;
case INDEX_op_sari_vec:
expand_vec_sari(type, vece, v0, v1, a2);
break;
case INDEX_op_rotli_vec:
expand_vec_rotli(type, vece, v0, v1, a2);
break;
case INDEX_op_rotls_vec:
expand_vec_rotls(type, vece, v0, v1, temp_tcgv_i32(arg_temp(a2)));
break;
case INDEX_op_rotlv_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
expand_vec_rotv(type, vece, v0, v1, v2, false);
break;
case INDEX_op_rotrv_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
expand_vec_rotv(type, vece, v0, v1, v2, true);
break;
case INDEX_op_mul_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
expand_vec_mul(type, vece, v0, v1, v2);
break;
case INDEX_op_cmp_vec:
a3 = va_arg(va, TCGArg);
expand_vec_cmp(type, vece, a0, a1, a2, a3);
break;
case INDEX_op_cmpsel_vec:
a3 = va_arg(va, TCGArg);
a4 = va_arg(va, TCGArg);
a5 = va_arg(va, TCGArg);
expand_vec_cmpsel(type, vece, a0, a1, a2, a3, a4, a5);
break;
default:
break;
}
va_end(va);
}
static const int tcg_target_callee_save_regs[] = {
#if TCG_TARGET_REG_BITS == 64
TCG_REG_RBP,
TCG_REG_RBX,
#if defined(_WIN64)
TCG_REG_RDI,
TCG_REG_RSI,
#endif
TCG_REG_R12,
TCG_REG_R13,
TCG_REG_R14, /* Currently used for the global env. */
TCG_REG_R15,
#else
TCG_REG_EBP, /* Currently used for the global env. */
TCG_REG_EBX,
TCG_REG_ESI,
TCG_REG_EDI,
#endif
};
/* Compute frame size via macros, to share between tcg_target_qemu_prologue
and tcg_register_jit. */
#define PUSH_SIZE \
((1 + ARRAY_SIZE(tcg_target_callee_save_regs)) \
* (TCG_TARGET_REG_BITS / 8))
#define FRAME_SIZE \
((PUSH_SIZE \
+ TCG_STATIC_CALL_ARGS_SIZE \
+ CPU_TEMP_BUF_NLONGS * sizeof(long) \
+ TCG_TARGET_STACK_ALIGN - 1) \
& ~(TCG_TARGET_STACK_ALIGN - 1))
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int i, stack_addend;
/* TB prologue */
/* Reserve some stack space, also for TCG temps. */
stack_addend = FRAME_SIZE - PUSH_SIZE;
tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
CPU_TEMP_BUF_NLONGS * sizeof(long));
/* Save all callee saved registers. */
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
tcg_out_push(s, tcg_target_callee_save_regs[i]);
}
if (!tcg_use_softmmu && guest_base) {
int seg = setup_guest_base_seg();
if (seg != 0) {
x86_guest_base.seg = seg;
} else if (guest_base == (int32_t)guest_base) {
x86_guest_base.ofs = guest_base;
} else {
assert(TCG_TARGET_REG_BITS == 64);
/* Choose R12 because, as a base, it requires a SIB byte. */
x86_guest_base.index = TCG_REG_R12;
tcg_out_movi(s, TCG_TYPE_PTR, x86_guest_base.index, guest_base);
tcg_regset_set_reg(s->reserved_regs, x86_guest_base.index);
}
}
if (TCG_TARGET_REG_BITS == 32) {
tcg_out_ld(s, TCG_TYPE_PTR, TCG_AREG0, TCG_REG_ESP,
(ARRAY_SIZE(tcg_target_callee_save_regs) + 1) * 4);
tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
/* jmp *tb. */
tcg_out_modrm_offset(s, OPC_GRP5, EXT5_JMPN_Ev, TCG_REG_ESP,
(ARRAY_SIZE(tcg_target_callee_save_regs) + 2) * 4
+ stack_addend);
} else {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
tcg_out_addi(s, TCG_REG_ESP, -stack_addend);
/* jmp *tb. */
tcg_out_modrm(s, OPC_GRP5, EXT5_JMPN_Ev, tcg_target_call_iarg_regs[1]);
}
/*
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
* and fall through to the rest of the epilogue.
*/
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_movi(s, TCG_TYPE_REG, TCG_REG_EAX, 0);
/* TB epilogue */
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_addi(s, TCG_REG_CALL_STACK, stack_addend);
if (have_avx2) {
tcg_out_vex_opc(s, OPC_VZEROUPPER, 0, 0, 0, 0);
}
for (i = ARRAY_SIZE(tcg_target_callee_save_regs) - 1; i >= 0; i--) {
tcg_out_pop(s, tcg_target_callee_save_regs[i]);
}
tcg_out_opc(s, OPC_RET, 0, 0, 0);
}
static void tcg_out_tb_start(TCGContext *s)
{
/* nothing to do */
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
memset(p, 0x90, count);
}
static void tcg_target_init(TCGContext *s)
{
tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
if (TCG_TARGET_REG_BITS == 64) {
tcg_target_available_regs[TCG_TYPE_I64] = ALL_GENERAL_REGS;
}
if (have_avx1) {
tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
}
if (have_avx2) {
tcg_target_available_regs[TCG_TYPE_V256] = ALL_VECTOR_REGS;
}
tcg_target_call_clobber_regs = ALL_VECTOR_REGS;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EAX);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_EDX);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_ECX);
if (TCG_TARGET_REG_BITS == 64) {
#if !defined(_WIN64)
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RDI);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_RSI);
#endif
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R8);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R9);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R10);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R11);
}
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
tcg_regset_set_reg(s->reserved_regs, TCG_TMP_VEC);
#ifdef _WIN64
/* These are call saved, and we don't save them, so don't use them. */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM6);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM7);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM8);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM9);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM10);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM11);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM12);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM13);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM14);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_XMM15);
#endif
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[14];
} DebugFrame;
/* We're expecting a 2 byte uleb128 encoded value. */
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
#if !defined(__ELF__)
/* Host machine without ELF. */
#elif TCG_TARGET_REG_BITS == 64
#define ELF_HOST_MACHINE EM_X86_64
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = 0x78, /* sleb128 -8 */
.h.cie.return_column = 16,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, 7, /* DW_CFA_def_cfa %rsp, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x90, 1, /* DW_CFA_offset, %rip, -8 */
/* The following ordering must match tcg_target_callee_save_regs. */
0x86, 2, /* DW_CFA_offset, %rbp, -16 */
0x83, 3, /* DW_CFA_offset, %rbx, -24 */
0x8c, 4, /* DW_CFA_offset, %r12, -32 */
0x8d, 5, /* DW_CFA_offset, %r13, -40 */
0x8e, 6, /* DW_CFA_offset, %r14, -48 */
0x8f, 7, /* DW_CFA_offset, %r15, -56 */
}
};
#else
#define ELF_HOST_MACHINE EM_386
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = 0x7c, /* sleb128 -4 */
.h.cie.return_column = 8,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, 4, /* DW_CFA_def_cfa %esp, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x88, 1, /* DW_CFA_offset, %eip, -4 */
/* The following ordering must match tcg_target_callee_save_regs. */
0x85, 2, /* DW_CFA_offset, %ebp, -8 */
0x83, 3, /* DW_CFA_offset, %ebx, -12 */
0x86, 4, /* DW_CFA_offset, %esi, -16 */
0x87, 5, /* DW_CFA_offset, %edi, -20 */
}
};
#endif
#if defined(ELF_HOST_MACHINE)
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}
#endif