qemu/tcg/arm/tcg-target.c.inc
Richard Henderson eafecf0805 tcg: Remove tcg_out_op
All integer opcodes are now converted to TCGOutOp.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2025-04-28 13:40:17 -07:00

3488 lines
104 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008 Andrzej Zaborowski
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "elf.h"
int arm_arch = __ARM_ARCH;
#ifndef use_idiv_instructions
bool use_idiv_instructions;
#endif
#ifndef use_neon_instructions
bool use_neon_instructions;
#endif
/* Used for function call generation. */
#define TCG_TARGET_STACK_ALIGN 8
#define TCG_TARGET_CALL_STACK_OFFSET 0
#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
#define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN
#define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_EVEN
#define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7",
"%r8", "%r9", "%r10", "%r11", "%r12", "%sp", "%r14", "%pc",
"%q0", "%q1", "%q2", "%q3", "%q4", "%q5", "%q6", "%q7",
"%q8", "%q9", "%q10", "%q11", "%q12", "%q13", "%q14", "%q15",
};
#endif
static const int tcg_target_reg_alloc_order[] = {
TCG_REG_R4,
TCG_REG_R5,
TCG_REG_R6,
TCG_REG_R7,
TCG_REG_R8,
TCG_REG_R9,
TCG_REG_R10,
TCG_REG_R11,
TCG_REG_R13,
TCG_REG_R0,
TCG_REG_R1,
TCG_REG_R2,
TCG_REG_R3,
TCG_REG_R12,
TCG_REG_R14,
TCG_REG_Q0,
TCG_REG_Q1,
TCG_REG_Q2,
TCG_REG_Q3,
/* Q4 - Q7 are call-saved, and skipped. */
TCG_REG_Q8,
TCG_REG_Q9,
TCG_REG_Q10,
TCG_REG_Q11,
TCG_REG_Q12,
TCG_REG_Q13,
TCG_REG_Q14,
TCG_REG_Q15,
};
static const int tcg_target_call_iarg_regs[4] = {
TCG_REG_R0, TCG_REG_R1, TCG_REG_R2, TCG_REG_R3
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
tcg_debug_assert(kind == TCG_CALL_RET_NORMAL);
tcg_debug_assert(slot >= 0 && slot <= 3);
return TCG_REG_R0 + slot;
}
#define TCG_REG_TMP TCG_REG_R12
#define TCG_VEC_TMP TCG_REG_Q15
#define TCG_REG_GUEST_BASE TCG_REG_R11
typedef enum {
COND_EQ = 0x0,
COND_NE = 0x1,
COND_CS = 0x2, /* Unsigned greater or equal */
COND_CC = 0x3, /* Unsigned less than */
COND_MI = 0x4, /* Negative */
COND_PL = 0x5, /* Zero or greater */
COND_VS = 0x6, /* Overflow */
COND_VC = 0x7, /* No overflow */
COND_HI = 0x8, /* Unsigned greater than */
COND_LS = 0x9, /* Unsigned less or equal */
COND_GE = 0xa,
COND_LT = 0xb,
COND_GT = 0xc,
COND_LE = 0xd,
COND_AL = 0xe,
} ARMCond;
#define TO_CPSR (1 << 20)
#define SHIFT_IMM_LSL(im) (((im) << 7) | 0x00)
#define SHIFT_IMM_LSR(im) (((im) << 7) | 0x20)
#define SHIFT_IMM_ASR(im) (((im) << 7) | 0x40)
#define SHIFT_IMM_ROR(im) (((im) << 7) | 0x60)
#define SHIFT_REG_LSL(rs) (((rs) << 8) | 0x10)
#define SHIFT_REG_LSR(rs) (((rs) << 8) | 0x30)
#define SHIFT_REG_ASR(rs) (((rs) << 8) | 0x50)
#define SHIFT_REG_ROR(rs) (((rs) << 8) | 0x70)
typedef enum {
ARITH_AND = 0x0 << 21,
ARITH_EOR = 0x1 << 21,
ARITH_SUB = 0x2 << 21,
ARITH_RSB = 0x3 << 21,
ARITH_ADD = 0x4 << 21,
ARITH_ADC = 0x5 << 21,
ARITH_SBC = 0x6 << 21,
ARITH_RSC = 0x7 << 21,
ARITH_TST = 0x8 << 21 | TO_CPSR,
ARITH_CMP = 0xa << 21 | TO_CPSR,
ARITH_CMN = 0xb << 21 | TO_CPSR,
ARITH_ORR = 0xc << 21,
ARITH_MOV = 0xd << 21,
ARITH_BIC = 0xe << 21,
ARITH_MVN = 0xf << 21,
INSN_B = 0x0a000000,
INSN_CLZ = 0x016f0f10,
INSN_RBIT = 0x06ff0f30,
INSN_LDMIA = 0x08b00000,
INSN_STMDB = 0x09200000,
INSN_LDR_IMM = 0x04100000,
INSN_LDR_REG = 0x06100000,
INSN_STR_IMM = 0x04000000,
INSN_STR_REG = 0x06000000,
INSN_LDRH_IMM = 0x005000b0,
INSN_LDRH_REG = 0x001000b0,
INSN_LDRSH_IMM = 0x005000f0,
INSN_LDRSH_REG = 0x001000f0,
INSN_STRH_IMM = 0x004000b0,
INSN_STRH_REG = 0x000000b0,
INSN_LDRB_IMM = 0x04500000,
INSN_LDRB_REG = 0x06500000,
INSN_LDRSB_IMM = 0x005000d0,
INSN_LDRSB_REG = 0x001000d0,
INSN_STRB_IMM = 0x04400000,
INSN_STRB_REG = 0x06400000,
INSN_LDRD_IMM = 0x004000d0,
INSN_LDRD_REG = 0x000000d0,
INSN_STRD_IMM = 0x004000f0,
INSN_STRD_REG = 0x000000f0,
INSN_DMB_ISH = 0xf57ff05b,
INSN_DMB_MCR = 0xee070fba,
INSN_MSRI_CPSR = 0x0360f000,
/* Architected nop introduced in v6k. */
/* ??? This is an MSR (imm) 0,0,0 insn. Anyone know if this
also Just So Happened to do nothing on pre-v6k so that we
don't need to conditionalize it? */
INSN_NOP_v6k = 0xe320f000,
/* Otherwise the assembler uses mov r0,r0 */
INSN_NOP_v4 = (COND_AL << 28) | ARITH_MOV,
INSN_VADD = 0xf2000800,
INSN_VAND = 0xf2000110,
INSN_VBIC = 0xf2100110,
INSN_VEOR = 0xf3000110,
INSN_VORN = 0xf2300110,
INSN_VORR = 0xf2200110,
INSN_VSUB = 0xf3000800,
INSN_VMUL = 0xf2000910,
INSN_VQADD = 0xf2000010,
INSN_VQADD_U = 0xf3000010,
INSN_VQSUB = 0xf2000210,
INSN_VQSUB_U = 0xf3000210,
INSN_VMAX = 0xf2000600,
INSN_VMAX_U = 0xf3000600,
INSN_VMIN = 0xf2000610,
INSN_VMIN_U = 0xf3000610,
INSN_VABS = 0xf3b10300,
INSN_VMVN = 0xf3b00580,
INSN_VNEG = 0xf3b10380,
INSN_VCEQ0 = 0xf3b10100,
INSN_VCGT0 = 0xf3b10000,
INSN_VCGE0 = 0xf3b10080,
INSN_VCLE0 = 0xf3b10180,
INSN_VCLT0 = 0xf3b10200,
INSN_VCEQ = 0xf3000810,
INSN_VCGE = 0xf2000310,
INSN_VCGT = 0xf2000300,
INSN_VCGE_U = 0xf3000310,
INSN_VCGT_U = 0xf3000300,
INSN_VSHLI = 0xf2800510, /* VSHL (immediate) */
INSN_VSARI = 0xf2800010, /* VSHR.S */
INSN_VSHRI = 0xf3800010, /* VSHR.U */
INSN_VSLI = 0xf3800510,
INSN_VSHL_S = 0xf2000400, /* VSHL.S (register) */
INSN_VSHL_U = 0xf3000400, /* VSHL.U (register) */
INSN_VBSL = 0xf3100110,
INSN_VBIT = 0xf3200110,
INSN_VBIF = 0xf3300110,
INSN_VTST = 0xf2000810,
INSN_VDUP_G = 0xee800b10, /* VDUP (ARM core register) */
INSN_VDUP_S = 0xf3b00c00, /* VDUP (scalar) */
INSN_VLDR_D = 0xed100b00, /* VLDR.64 */
INSN_VLD1 = 0xf4200000, /* VLD1 (multiple single elements) */
INSN_VLD1R = 0xf4a00c00, /* VLD1 (single element to all lanes) */
INSN_VST1 = 0xf4000000, /* VST1 (multiple single elements) */
INSN_VMOVI = 0xf2800010, /* VMOV (immediate) */
} ARMInsn;
#define INSN_NOP (use_armv7_instructions ? INSN_NOP_v6k : INSN_NOP_v4)
static const uint8_t tcg_cond_to_arm_cond[] = {
[TCG_COND_EQ] = COND_EQ,
[TCG_COND_NE] = COND_NE,
[TCG_COND_LT] = COND_LT,
[TCG_COND_GE] = COND_GE,
[TCG_COND_LE] = COND_LE,
[TCG_COND_GT] = COND_GT,
/* unsigned */
[TCG_COND_LTU] = COND_CC,
[TCG_COND_GEU] = COND_CS,
[TCG_COND_LEU] = COND_LS,
[TCG_COND_GTU] = COND_HI,
};
static int encode_imm(uint32_t imm);
/* TCG private relocation type: add with pc+imm8 */
#define R_ARM_PC8 11
/* TCG private relocation type: vldr with imm8 << 2 */
#define R_ARM_PC11 12
static bool reloc_pc24(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t offset = (tcg_ptr_byte_diff(target, src_rx) - 8) >> 2;
if (offset == sextract32(offset, 0, 24)) {
*src_rw = deposit32(*src_rw, 0, 24, offset);
return true;
}
return false;
}
static bool reloc_pc13(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t offset = tcg_ptr_byte_diff(target, src_rx) - 8;
if (offset >= -0xfff && offset <= 0xfff) {
tcg_insn_unit insn = *src_rw;
bool u = (offset >= 0);
if (!u) {
offset = -offset;
}
insn = deposit32(insn, 23, 1, u);
insn = deposit32(insn, 0, 12, offset);
*src_rw = insn;
return true;
}
return false;
}
static bool reloc_pc11(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t offset = (tcg_ptr_byte_diff(target, src_rx) - 8) / 4;
if (offset >= -0xff && offset <= 0xff) {
tcg_insn_unit insn = *src_rw;
bool u = (offset >= 0);
if (!u) {
offset = -offset;
}
insn = deposit32(insn, 23, 1, u);
insn = deposit32(insn, 0, 8, offset);
*src_rw = insn;
return true;
}
return false;
}
static bool reloc_pc8(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t offset = tcg_ptr_byte_diff(target, src_rx) - 8;
int imm12 = encode_imm(offset);
if (imm12 >= 0) {
*src_rw = deposit32(*src_rw, 0, 12, imm12);
return true;
}
return false;
}
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
tcg_debug_assert(addend == 0);
switch (type) {
case R_ARM_PC24:
return reloc_pc24(code_ptr, (const tcg_insn_unit *)value);
case R_ARM_PC13:
return reloc_pc13(code_ptr, (const tcg_insn_unit *)value);
case R_ARM_PC11:
return reloc_pc11(code_ptr, (const tcg_insn_unit *)value);
case R_ARM_PC8:
return reloc_pc8(code_ptr, (const tcg_insn_unit *)value);
default:
g_assert_not_reached();
}
}
#define TCG_CT_CONST_ARM 0x100
#define TCG_CT_CONST_INV 0x200
#define TCG_CT_CONST_NEG 0x400
#define TCG_CT_CONST_ZERO 0x800
#define TCG_CT_CONST_ORRI 0x1000
#define TCG_CT_CONST_ANDI 0x2000
#define ALL_GENERAL_REGS 0xffffu
#define ALL_VECTOR_REGS 0xffff0000u
/*
* r0-r3 will be overwritten when reading the tlb entry (system-mode only);
* r14 will be overwritten by the BLNE branching to the slow path.
*/
#define ALL_QLDST_REGS \
(ALL_GENERAL_REGS & ~((tcg_use_softmmu ? 0xf : 0) | (1 << TCG_REG_R14)))
/*
* ARM immediates for ALU instructions are made of an unsigned 8-bit
* right-rotated by an even amount between 0 and 30.
*
* Return < 0 if @imm cannot be encoded, else the entire imm12 field.
*/
static int encode_imm(uint32_t imm)
{
uint32_t rot, imm8;
/* Simple case, no rotation required. */
if ((imm & ~0xff) == 0) {
return imm;
}
/* Next, try a simple even shift. */
rot = ctz32(imm) & ~1;
imm8 = imm >> rot;
rot = 32 - rot;
if ((imm8 & ~0xff) == 0) {
goto found;
}
/*
* Finally, try harder with rotations.
* The ctz test above will have taken care of rotates >= 8.
*/
for (rot = 2; rot < 8; rot += 2) {
imm8 = rol32(imm, rot);
if ((imm8 & ~0xff) == 0) {
goto found;
}
}
/* Fail: imm cannot be encoded. */
return -1;
found:
/* Note that rot is even, and we discard bit 0 by shifting by 7. */
return rot << 7 | imm8;
}
static int encode_imm_nofail(uint32_t imm)
{
int ret = encode_imm(imm);
tcg_debug_assert(ret >= 0);
return ret;
}
static bool check_fit_imm(uint32_t imm)
{
return encode_imm(imm) >= 0;
}
/* Return true if v16 is a valid 16-bit shifted immediate. */
static bool is_shimm16(uint16_t v16, int *cmode, int *imm8)
{
if (v16 == (v16 & 0xff)) {
*cmode = 0x8;
*imm8 = v16 & 0xff;
return true;
} else if (v16 == (v16 & 0xff00)) {
*cmode = 0xa;
*imm8 = v16 >> 8;
return true;
}
return false;
}
/* Return true if v32 is a valid 32-bit shifted immediate. */
static bool is_shimm32(uint32_t v32, int *cmode, int *imm8)
{
if (v32 == (v32 & 0xff)) {
*cmode = 0x0;
*imm8 = v32 & 0xff;
return true;
} else if (v32 == (v32 & 0xff00)) {
*cmode = 0x2;
*imm8 = (v32 >> 8) & 0xff;
return true;
} else if (v32 == (v32 & 0xff0000)) {
*cmode = 0x4;
*imm8 = (v32 >> 16) & 0xff;
return true;
} else if (v32 == (v32 & 0xff000000)) {
*cmode = 0x6;
*imm8 = v32 >> 24;
return true;
}
return false;
}
/* Return true if v32 is a valid 32-bit shifting ones immediate. */
static bool is_soimm32(uint32_t v32, int *cmode, int *imm8)
{
if ((v32 & 0xffff00ff) == 0xff) {
*cmode = 0xc;
*imm8 = (v32 >> 8) & 0xff;
return true;
} else if ((v32 & 0xff00ffff) == 0xffff) {
*cmode = 0xd;
*imm8 = (v32 >> 16) & 0xff;
return true;
}
return false;
}
/*
* Return non-zero if v32 can be formed by MOVI+ORR.
* Place the parameters for MOVI in (cmode, imm8).
* Return the cmode for ORR; the imm8 can be had via extraction from v32.
*/
static int is_shimm32_pair(uint32_t v32, int *cmode, int *imm8)
{
int i;
for (i = 6; i > 0; i -= 2) {
/* Mask out one byte we can add with ORR. */
uint32_t tmp = v32 & ~(0xffu << (i * 4));
if (is_shimm32(tmp, cmode, imm8) ||
is_soimm32(tmp, cmode, imm8)) {
break;
}
}
return i;
}
/* Return true if V is a valid 16-bit or 32-bit shifted immediate. */
static bool is_shimm1632(uint32_t v32, int *cmode, int *imm8)
{
if (v32 == deposit32(v32, 16, 16, v32)) {
return is_shimm16(v32, cmode, imm8);
} else {
return is_shimm32(v32, cmode, imm8);
}
}
/* Test if a constant matches the constraint.
* TODO: define constraints for:
*
* ldr/str offset: between -0xfff and 0xfff
* ldrh/strh offset: between -0xff and 0xff
* mov operand2: values represented with x << (2 * y), x < 0x100
* add, sub, eor...: ditto
*/
static bool tcg_target_const_match(int64_t val, int ct,
TCGType type, TCGCond cond, int vece)
{
if (ct & TCG_CT_CONST) {
return 1;
} else if ((ct & TCG_CT_CONST_ARM) && check_fit_imm(val)) {
return 1;
} else if ((ct & TCG_CT_CONST_INV) && check_fit_imm(~val)) {
return 1;
} else if ((ct & TCG_CT_CONST_NEG) && check_fit_imm(-val)) {
return 1;
} else if ((ct & TCG_CT_CONST_ZERO) && val == 0) {
return 1;
}
switch (ct & (TCG_CT_CONST_ORRI | TCG_CT_CONST_ANDI)) {
case 0:
break;
case TCG_CT_CONST_ANDI:
val = ~val;
/* fallthru */
case TCG_CT_CONST_ORRI:
if (val == deposit64(val, 32, 32, val)) {
int cmode, imm8;
return is_shimm1632(val, &cmode, &imm8);
}
break;
default:
/* Both bits should not be set for the same insn. */
g_assert_not_reached();
}
return 0;
}
static void tcg_out_b_imm(TCGContext *s, ARMCond cond, int32_t offset)
{
tcg_out32(s, (cond << 28) | INSN_B |
(((offset - 8) >> 2) & 0x00ffffff));
}
static void tcg_out_bl_imm(TCGContext *s, ARMCond cond, int32_t offset)
{
tcg_out32(s, (cond << 28) | 0x0b000000 |
(((offset - 8) >> 2) & 0x00ffffff));
}
static void tcg_out_blx_reg(TCGContext *s, ARMCond cond, TCGReg rn)
{
tcg_out32(s, (cond << 28) | 0x012fff30 | rn);
}
static void tcg_out_blx_imm(TCGContext *s, int32_t offset)
{
tcg_out32(s, 0xfa000000 | ((offset & 2) << 23) |
(((offset - 8) >> 2) & 0x00ffffff));
}
static void tcg_out_dat_reg(TCGContext *s, ARMCond cond, ARMInsn opc,
TCGReg rd, TCGReg rn, TCGReg rm, int shift)
{
tcg_out32(s, (cond << 28) | (0 << 25) | opc |
(rn << 16) | (rd << 12) | shift | rm);
}
static void tcg_out_mov_reg(TCGContext *s, ARMCond cond, TCGReg rd, TCGReg rm)
{
/* Simple reg-reg move, optimising out the 'do nothing' case */
if (rd != rm) {
tcg_out_dat_reg(s, cond, ARITH_MOV, rd, 0, rm, SHIFT_IMM_LSL(0));
}
}
static void tcg_out_bx_reg(TCGContext *s, ARMCond cond, TCGReg rn)
{
tcg_out32(s, (cond << 28) | 0x012fff10 | rn);
}
static void tcg_out_b_reg(TCGContext *s, ARMCond cond, TCGReg rn)
{
/*
* Unless the C portion of QEMU is compiled as thumb, we don't need
* true BX semantics; merely a branch to an address held in a register.
*/
tcg_out_bx_reg(s, cond, rn);
}
static void tcg_out_dat_imm(TCGContext *s, ARMCond cond, ARMInsn opc,
TCGReg rd, TCGReg rn, int im)
{
tcg_out32(s, (cond << 28) | (1 << 25) | opc |
(rn << 16) | (rd << 12) | im);
}
static void tcg_out_ldstm(TCGContext *s, ARMCond cond, ARMInsn opc,
TCGReg rn, uint16_t mask)
{
tcg_out32(s, (cond << 28) | opc | (rn << 16) | mask);
}
/* Note that this routine is used for both LDR and LDRH formats, so we do
not wish to include an immediate shift at this point. */
static void tcg_out_memop_r(TCGContext *s, ARMCond cond, ARMInsn opc, TCGReg rt,
TCGReg rn, TCGReg rm, bool u, bool p, bool w)
{
tcg_out32(s, (cond << 28) | opc | (u << 23) | (p << 24)
| (w << 21) | (rn << 16) | (rt << 12) | rm);
}
static void tcg_out_memop_8(TCGContext *s, ARMCond cond, ARMInsn opc, TCGReg rt,
TCGReg rn, int imm8, bool p, bool w)
{
bool u = 1;
if (imm8 < 0) {
imm8 = -imm8;
u = 0;
}
tcg_out32(s, (cond << 28) | opc | (u << 23) | (p << 24) | (w << 21) |
(rn << 16) | (rt << 12) | ((imm8 & 0xf0) << 4) | (imm8 & 0xf));
}
static void tcg_out_memop_12(TCGContext *s, ARMCond cond, ARMInsn opc,
TCGReg rt, TCGReg rn, int imm12, bool p, bool w)
{
bool u = 1;
if (imm12 < 0) {
imm12 = -imm12;
u = 0;
}
tcg_out32(s, (cond << 28) | opc | (u << 23) | (p << 24) | (w << 21) |
(rn << 16) | (rt << 12) | imm12);
}
static void tcg_out_ld32_12(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm12)
{
tcg_out_memop_12(s, cond, INSN_LDR_IMM, rt, rn, imm12, 1, 0);
}
static void tcg_out_st32_12(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm12)
{
tcg_out_memop_12(s, cond, INSN_STR_IMM, rt, rn, imm12, 1, 0);
}
static void tcg_out_ld32_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDR_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_st32_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_STR_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_ldrd_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_LDRD_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_ldrd_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDRD_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_strd_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_STRD_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_strd_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_STRD_REG, rt, rn, rm, 1, 1, 0);
}
/* Register pre-increment with base writeback. */
static void tcg_out_ld32_rwb(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDR_REG, rt, rn, rm, 1, 1, 1);
}
static void tcg_out_st32_rwb(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_STR_REG, rt, rn, rm, 1, 1, 1);
}
static void tcg_out_ld16u_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_LDRH_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_st16_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_STRH_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_ld16u_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDRH_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_st16_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_STRH_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_ld16s_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_LDRSH_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_ld16s_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDRSH_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_ld8_12(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm12)
{
tcg_out_memop_12(s, cond, INSN_LDRB_IMM, rt, rn, imm12, 1, 0);
}
static void tcg_out_st8_12(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm12)
{
tcg_out_memop_12(s, cond, INSN_STRB_IMM, rt, rn, imm12, 1, 0);
}
static void tcg_out_ld8_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDRB_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_st8_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_STRB_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_ld8s_8(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, int imm8)
{
tcg_out_memop_8(s, cond, INSN_LDRSB_IMM, rt, rn, imm8, 1, 0);
}
static void tcg_out_ld8s_r(TCGContext *s, ARMCond cond, TCGReg rt,
TCGReg rn, TCGReg rm)
{
tcg_out_memop_r(s, cond, INSN_LDRSB_REG, rt, rn, rm, 1, 1, 0);
}
static void tcg_out_movi_pool(TCGContext *s, ARMCond cond,
TCGReg rd, uint32_t arg)
{
new_pool_label(s, arg, R_ARM_PC13, s->code_ptr, 0);
tcg_out_ld32_12(s, cond, rd, TCG_REG_PC, 0);
}
static void tcg_out_movi32(TCGContext *s, ARMCond cond,
TCGReg rd, uint32_t arg)
{
int imm12, diff, opc, sh1, sh2;
uint32_t tt0, tt1, tt2;
/* Check a single MOV/MVN before anything else. */
imm12 = encode_imm(arg);
if (imm12 >= 0) {
tcg_out_dat_imm(s, cond, ARITH_MOV, rd, 0, imm12);
return;
}
imm12 = encode_imm(~arg);
if (imm12 >= 0) {
tcg_out_dat_imm(s, cond, ARITH_MVN, rd, 0, imm12);
return;
}
/* Check for a pc-relative address. This will usually be the TB,
or within the TB, which is immediately before the code block. */
diff = tcg_pcrel_diff(s, (void *)arg) - 8;
if (diff >= 0) {
imm12 = encode_imm(diff);
if (imm12 >= 0) {
tcg_out_dat_imm(s, cond, ARITH_ADD, rd, TCG_REG_PC, imm12);
return;
}
} else {
imm12 = encode_imm(-diff);
if (imm12 >= 0) {
tcg_out_dat_imm(s, cond, ARITH_SUB, rd, TCG_REG_PC, imm12);
return;
}
}
/* Use movw + movt. */
if (use_armv7_instructions) {
/* movw */
tcg_out32(s, (cond << 28) | 0x03000000 | (rd << 12)
| ((arg << 4) & 0x000f0000) | (arg & 0xfff));
if (arg & 0xffff0000) {
/* movt */
tcg_out32(s, (cond << 28) | 0x03400000 | (rd << 12)
| ((arg >> 12) & 0x000f0000) | ((arg >> 16) & 0xfff));
}
return;
}
/* Look for sequences of two insns. If we have lots of 1's, we can
shorten the sequence by beginning with mvn and then clearing
higher bits with eor. */
tt0 = arg;
opc = ARITH_MOV;
if (ctpop32(arg) > 16) {
tt0 = ~arg;
opc = ARITH_MVN;
}
sh1 = ctz32(tt0) & ~1;
tt1 = tt0 & ~(0xff << sh1);
sh2 = ctz32(tt1) & ~1;
tt2 = tt1 & ~(0xff << sh2);
if (tt2 == 0) {
int rot;
rot = ((32 - sh1) << 7) & 0xf00;
tcg_out_dat_imm(s, cond, opc, rd, 0, ((tt0 >> sh1) & 0xff) | rot);
rot = ((32 - sh2) << 7) & 0xf00;
tcg_out_dat_imm(s, cond, ARITH_EOR, rd, rd,
((tt0 >> sh2) & 0xff) | rot);
return;
}
/* Otherwise, drop it into the constant pool. */
tcg_out_movi_pool(s, cond, rd, arg);
}
/*
* Emit either the reg,imm or reg,reg form of a data-processing insn.
* rhs must satisfy the "rI" constraint.
*/
static void tcg_out_dat_rI(TCGContext *s, ARMCond cond, ARMInsn opc,
TCGReg dst, TCGReg lhs, TCGArg rhs, int rhs_is_const)
{
if (rhs_is_const) {
tcg_out_dat_imm(s, cond, opc, dst, lhs, encode_imm_nofail(rhs));
} else {
tcg_out_dat_reg(s, cond, opc, dst, lhs, rhs, SHIFT_IMM_LSL(0));
}
}
/*
* Emit either the reg,imm or reg,reg form of a data-processing insn.
* rhs must satisfy the "rIK" constraint.
*/
static void tcg_out_dat_IK(TCGContext *s, ARMCond cond, ARMInsn opc,
ARMInsn opinv, TCGReg dst, TCGReg lhs, TCGArg rhs)
{
int imm12 = encode_imm(rhs);
if (imm12 < 0) {
imm12 = encode_imm_nofail(~rhs);
opc = opinv;
}
tcg_out_dat_imm(s, cond, opc, dst, lhs, imm12);
}
static void tcg_out_dat_rIK(TCGContext *s, ARMCond cond, ARMInsn opc,
ARMInsn opinv, TCGReg dst, TCGReg lhs, TCGArg rhs,
bool rhs_is_const)
{
if (rhs_is_const) {
tcg_out_dat_IK(s, cond, opc, opinv, dst, lhs, rhs);
} else {
tcg_out_dat_reg(s, cond, opc, dst, lhs, rhs, SHIFT_IMM_LSL(0));
}
}
static void tcg_out_dat_IN(TCGContext *s, ARMCond cond, ARMInsn opc,
ARMInsn opneg, TCGReg dst, TCGReg lhs, TCGArg rhs)
{
int imm12 = encode_imm(rhs);
if (imm12 < 0) {
imm12 = encode_imm_nofail(-rhs);
opc = opneg;
}
tcg_out_dat_imm(s, cond, opc, dst, lhs, imm12);
}
static void tcg_out_dat_rIN(TCGContext *s, ARMCond cond, ARMInsn opc,
ARMInsn opneg, TCGReg dst, TCGReg lhs, TCGArg rhs,
bool rhs_is_const)
{
/* Emit either the reg,imm or reg,reg form of a data-processing insn.
* rhs must satisfy the "rIN" constraint.
*/
if (rhs_is_const) {
tcg_out_dat_IN(s, cond, opc, opneg, dst, lhs, rhs);
} else {
tcg_out_dat_reg(s, cond, opc, dst, lhs, rhs, SHIFT_IMM_LSL(0));
}
}
static void tcg_out_ext8s(TCGContext *s, TCGType t, TCGReg rd, TCGReg rn)
{
/* sxtb */
tcg_out32(s, 0x06af0070 | (COND_AL << 28) | (rd << 12) | rn);
}
static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rn)
{
tcg_out_dat_imm(s, COND_AL, ARITH_AND, rd, rn, 0xff);
}
static void tcg_out_ext16s(TCGContext *s, TCGType t, TCGReg rd, TCGReg rn)
{
/* sxth */
tcg_out32(s, 0x06bf0070 | (COND_AL << 28) | (rd << 12) | rn);
}
static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rn)
{
/* uxth */
tcg_out32(s, 0x06ff0070 | (COND_AL << 28) | (rd << 12) | rn);
}
static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rn)
{
g_assert_not_reached();
}
static void tcg_out_ext32u(TCGContext *s, TCGReg rd, TCGReg rn)
{
g_assert_not_reached();
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn)
{
g_assert_not_reached();
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rn)
{
g_assert_not_reached();
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rn)
{
g_assert_not_reached();
}
static void tgen_deposit(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
TCGReg a2, unsigned ofs, unsigned len)
{
/* bfi/bfc */
tcg_out32(s, 0x07c00010 | (COND_AL << 28) | (a0 << 12) | a1
| (ofs << 7) | ((ofs + len - 1) << 16));
}
static void tgen_depositi(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1,
tcg_target_long a2, unsigned ofs, unsigned len)
{
/* bfi becomes bfc with rn == 15. */
tgen_deposit(s, type, a0, a1, 15, ofs, len);
}
static const TCGOutOpDeposit outop_deposit = {
.base.static_constraint = C_O1_I2(r, 0, rZ),
.out_rrr = tgen_deposit,
.out_rri = tgen_depositi,
};
static void tgen_extract(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn,
unsigned ofs, unsigned len)
{
/* According to gcc, AND can be faster. */
if (ofs == 0 && len <= 8) {
tcg_out_dat_imm(s, COND_AL, ARITH_AND, rd, rn,
encode_imm_nofail((1 << len) - 1));
return;
}
if (use_armv7_instructions) {
/* ubfx */
tcg_out32(s, 0x07e00050 | (COND_AL << 28) | (rd << 12) | rn
| (ofs << 7) | ((len - 1) << 16));
return;
}
assert(ofs % 8 == 0);
switch (len) {
case 8:
/* uxtb */
tcg_out32(s, 0x06ef0070 | (COND_AL << 28) |
(rd << 12) | (ofs << 7) | rn);
break;
case 16:
/* uxth */
tcg_out32(s, 0x06ff0070 | (COND_AL << 28) |
(rd << 12) | (ofs << 7) | rn);
break;
default:
g_assert_not_reached();
}
}
static const TCGOutOpExtract outop_extract = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_extract,
};
static void tgen_sextract(TCGContext *s, TCGType type, TCGReg rd, TCGReg rn,
unsigned ofs, unsigned len)
{
if (use_armv7_instructions) {
/* sbfx */
tcg_out32(s, 0x07a00050 | (COND_AL << 28) | (rd << 12) | rn
| (ofs << 7) | ((len - 1) << 16));
return;
}
assert(ofs % 8 == 0);
switch (len) {
case 8:
/* sxtb */
tcg_out32(s, 0x06af0070 | (COND_AL << 28) |
(rd << 12) | (ofs << 7) | rn);
break;
case 16:
/* sxth */
tcg_out32(s, 0x06bf0070 | (COND_AL << 28) |
(rd << 12) | (ofs << 7) | rn);
break;
default:
g_assert_not_reached();
}
}
static const TCGOutOpExtract outop_sextract = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_sextract,
};
static void tcg_out_ld32u(TCGContext *s, ARMCond cond,
TCGReg rd, TCGReg rn, int32_t offset)
{
if (offset > 0xfff || offset < -0xfff) {
tcg_out_movi32(s, cond, TCG_REG_TMP, offset);
tcg_out_ld32_r(s, cond, rd, rn, TCG_REG_TMP);
} else
tcg_out_ld32_12(s, cond, rd, rn, offset);
}
static void tcg_out_st32(TCGContext *s, ARMCond cond,
TCGReg rd, TCGReg rn, int32_t offset)
{
if (offset > 0xfff || offset < -0xfff) {
tcg_out_movi32(s, cond, TCG_REG_TMP, offset);
tcg_out_st32_r(s, cond, rd, rn, TCG_REG_TMP);
} else
tcg_out_st32_12(s, cond, rd, rn, offset);
}
/*
* The _goto case is normally between TBs within the same code buffer, and
* with the code buffer limited to 16MB we wouldn't need the long case.
* But we also use it for the tail-call to the qemu_ld/st helpers, which does.
*/
static void tcg_out_goto(TCGContext *s, ARMCond cond, const tcg_insn_unit *addr)
{
intptr_t addri = (intptr_t)addr;
ptrdiff_t disp = tcg_pcrel_diff(s, addr);
bool arm_mode = !(addri & 1);
if (arm_mode && disp - 8 < 0x01fffffd && disp - 8 > -0x01fffffd) {
tcg_out_b_imm(s, cond, disp);
return;
}
/* LDR is interworking from v5t. */
tcg_out_movi_pool(s, cond, TCG_REG_PC, addri);
}
/*
* The call case is mostly used for helpers - so it's not unreasonable
* for them to be beyond branch range.
*/
static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *addr)
{
intptr_t addri = (intptr_t)addr;
ptrdiff_t disp = tcg_pcrel_diff(s, addr);
bool arm_mode = !(addri & 1);
if (disp - 8 < 0x02000000 && disp - 8 >= -0x02000000) {
if (arm_mode) {
tcg_out_bl_imm(s, COND_AL, disp);
} else {
tcg_out_blx_imm(s, disp);
}
return;
}
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, addri);
tcg_out_blx_reg(s, COND_AL, TCG_REG_TMP);
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *addr,
const TCGHelperInfo *info)
{
tcg_out_call_int(s, addr);
}
static void tcg_out_goto_label(TCGContext *s, ARMCond cond, TCGLabel *l)
{
if (l->has_value) {
tcg_out_goto(s, cond, l->u.value_ptr);
} else {
tcg_out_reloc(s, s->code_ptr, R_ARM_PC24, l, 0);
tcg_out_b_imm(s, cond, 0);
}
}
static void tcg_out_br(TCGContext *s, TCGLabel *l)
{
tcg_out_goto_label(s, COND_AL, l);
}
static void tcg_out_mb(TCGContext *s, unsigned a0)
{
if (use_armv7_instructions) {
tcg_out32(s, INSN_DMB_ISH);
} else {
tcg_out32(s, INSN_DMB_MCR);
}
}
static TCGCond tgen_cmp(TCGContext *s, TCGCond cond, TCGReg a, TCGReg b)
{
if (is_tst_cond(cond)) {
tcg_out_dat_reg(s, COND_AL, ARITH_TST, 0, a, b, SHIFT_IMM_LSL(0));
return tcg_tst_eqne_cond(cond);
}
tcg_out_dat_reg(s, COND_AL, ARITH_CMP, 0, a, b, SHIFT_IMM_LSL(0));
return cond;
}
static TCGCond tgen_cmpi(TCGContext *s, TCGCond cond, TCGReg a, TCGArg b)
{
int imm12;
if (!is_tst_cond(cond)) {
tcg_out_dat_IN(s, COND_AL, ARITH_CMP, ARITH_CMN, 0, a, b);
return cond;
}
/*
* The compare constraints allow rIN, but TST does not support N.
* Be prepared to load the constant into a scratch register.
*/
imm12 = encode_imm(b);
if (imm12 >= 0) {
tcg_out_dat_imm(s, COND_AL, ARITH_TST, 0, a, imm12);
} else {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, b);
tcg_out_dat_reg(s, COND_AL, ARITH_TST, 0,
a, TCG_REG_TMP, SHIFT_IMM_LSL(0));
}
return tcg_tst_eqne_cond(cond);
}
static TCGCond tcg_out_cmp(TCGContext *s, TCGCond cond, TCGReg a,
TCGArg b, int b_const)
{
if (b_const) {
return tgen_cmpi(s, cond, a, b);
} else {
return tgen_cmp(s, cond, a, b);
}
}
static TCGCond tcg_out_cmp2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah,
TCGArg bl, bool const_bl, TCGArg bh, bool const_bh)
{
switch (cond) {
case TCG_COND_EQ:
case TCG_COND_NE:
case TCG_COND_LTU:
case TCG_COND_LEU:
case TCG_COND_GTU:
case TCG_COND_GEU:
/*
* We perform a conditional comparison. If the high half is
* equal, then overwrite the flags with the comparison of the
* low half. The resulting flags cover the whole.
*/
tcg_out_dat_rI(s, COND_AL, ARITH_CMP, 0, ah, bh, const_bh);
tcg_out_dat_rI(s, COND_EQ, ARITH_CMP, 0, al, bl, const_bl);
return cond;
case TCG_COND_TSTEQ:
case TCG_COND_TSTNE:
/* Similar, but with TST instead of CMP. */
tcg_out_dat_rI(s, COND_AL, ARITH_TST, 0, ah, bh, const_bh);
tcg_out_dat_rI(s, COND_EQ, ARITH_TST, 0, al, bl, const_bl);
return tcg_tst_eqne_cond(cond);
case TCG_COND_LT:
case TCG_COND_GE:
/* We perform a double-word subtraction and examine the result.
We do not actually need the result of the subtract, so the
low part "subtract" is a compare. For the high half we have
no choice but to compute into a temporary. */
tcg_out_dat_rI(s, COND_AL, ARITH_CMP, 0, al, bl, const_bl);
tcg_out_dat_rI(s, COND_AL, ARITH_SBC | TO_CPSR,
TCG_REG_TMP, ah, bh, const_bh);
return cond;
case TCG_COND_LE:
case TCG_COND_GT:
/* Similar, but with swapped arguments, via reversed subtract. */
tcg_out_dat_rI(s, COND_AL, ARITH_RSB | TO_CPSR,
TCG_REG_TMP, al, bl, const_bl);
tcg_out_dat_rI(s, COND_AL, ARITH_RSC | TO_CPSR,
TCG_REG_TMP, ah, bh, const_bh);
return tcg_swap_cond(cond);
default:
g_assert_not_reached();
}
}
/*
* Note that TCGReg references Q-registers.
* Q-regno = 2 * D-regno, so shift left by 1 while inserting.
*/
static uint32_t encode_vd(TCGReg rd)
{
tcg_debug_assert(rd >= TCG_REG_Q0);
return (extract32(rd, 3, 1) << 22) | (extract32(rd, 0, 3) << 13);
}
static uint32_t encode_vn(TCGReg rn)
{
tcg_debug_assert(rn >= TCG_REG_Q0);
return (extract32(rn, 3, 1) << 7) | (extract32(rn, 0, 3) << 17);
}
static uint32_t encode_vm(TCGReg rm)
{
tcg_debug_assert(rm >= TCG_REG_Q0);
return (extract32(rm, 3, 1) << 5) | (extract32(rm, 0, 3) << 1);
}
static void tcg_out_vreg2(TCGContext *s, ARMInsn insn, int q, int vece,
TCGReg d, TCGReg m)
{
tcg_out32(s, insn | (vece << 18) | (q << 6) |
encode_vd(d) | encode_vm(m));
}
static void tcg_out_vreg3(TCGContext *s, ARMInsn insn, int q, int vece,
TCGReg d, TCGReg n, TCGReg m)
{
tcg_out32(s, insn | (vece << 20) | (q << 6) |
encode_vd(d) | encode_vn(n) | encode_vm(m));
}
static void tcg_out_vmovi(TCGContext *s, TCGReg rd,
int q, int op, int cmode, uint8_t imm8)
{
tcg_out32(s, INSN_VMOVI | encode_vd(rd) | (q << 6) | (op << 5)
| (cmode << 8) | extract32(imm8, 0, 4)
| (extract32(imm8, 4, 3) << 16)
| (extract32(imm8, 7, 1) << 24));
}
static void tcg_out_vshifti(TCGContext *s, ARMInsn insn, int q,
TCGReg rd, TCGReg rm, int l_imm6)
{
tcg_out32(s, insn | (q << 6) | encode_vd(rd) | encode_vm(rm) |
(extract32(l_imm6, 6, 1) << 7) |
(extract32(l_imm6, 0, 6) << 16));
}
static void tcg_out_vldst(TCGContext *s, ARMInsn insn,
TCGReg rd, TCGReg rn, int offset)
{
if (offset != 0) {
if (check_fit_imm(offset) || check_fit_imm(-offset)) {
tcg_out_dat_rIN(s, COND_AL, ARITH_ADD, ARITH_SUB,
TCG_REG_TMP, rn, offset, true);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_TMP, offset);
tcg_out_dat_reg(s, COND_AL, ARITH_ADD,
TCG_REG_TMP, TCG_REG_TMP, rn, 0);
}
rn = TCG_REG_TMP;
}
tcg_out32(s, insn | (rn << 16) | encode_vd(rd) | 0xf);
}
typedef struct {
ARMCond cond;
TCGReg base;
int index;
bool index_scratch;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
return false;
}
static TCGReg ldst_ra_gen(TCGContext *s, const TCGLabelQemuLdst *l, int arg)
{
/* We arrive at the slow path via "BLNE", so R14 contains l->raddr. */
return TCG_REG_R14;
}
static const TCGLdstHelperParam ldst_helper_param = {
.ra_gen = ldst_ra_gen,
.ntmp = 1,
.tmp = { TCG_REG_TMP },
};
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!reloc_pc24(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_ld_helper_args(s, lb, &ldst_helper_param);
tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SIZE]);
tcg_out_ld_helper_ret(s, lb, false, &ldst_helper_param);
tcg_out_goto(s, COND_AL, lb->raddr);
return true;
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *lb)
{
MemOp opc = get_memop(lb->oi);
if (!reloc_pc24(lb->label_ptr[0], tcg_splitwx_to_rx(s->code_ptr))) {
return false;
}
tcg_out_st_helper_args(s, lb, &ldst_helper_param);
/* Tail-call to the helper, which will return to the fast path. */
tcg_out_goto(s, COND_AL, qemu_st_helpers[opc & MO_SIZE]);
return true;
}
/* We expect to use an 9-bit sign-magnitude negative offset from ENV. */
#define MIN_TLB_MASK_TABLE_OFS -256
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addr, MemOpIdx oi, bool is_ld)
{
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
unsigned a_mask;
if (tcg_use_softmmu) {
*h = (HostAddress){
.cond = COND_AL,
.base = addr,
.index = TCG_REG_R1,
.index_scratch = true,
};
} else {
*h = (HostAddress){
.cond = COND_AL,
.base = addr,
.index = guest_base ? TCG_REG_GUEST_BASE : -1,
.index_scratch = false,
};
}
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, false);
a_mask = (1 << h->aa.align) - 1;
if (tcg_use_softmmu) {
int mem_index = get_mmuidx(oi);
int cmp_off = is_ld ? offsetof(CPUTLBEntry, addr_read)
: offsetof(CPUTLBEntry, addr_write);
int fast_off = tlb_mask_table_ofs(s, mem_index);
unsigned s_mask = (1 << (opc & MO_SIZE)) - 1;
TCGReg t_addr;
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
/* Load cpu->neg.tlb.f[mmu_idx].{mask,table} into {r0,r1}. */
QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, mask) != 0);
QEMU_BUILD_BUG_ON(offsetof(CPUTLBDescFast, table) != 4);
tcg_out_ldrd_8(s, COND_AL, TCG_REG_R0, TCG_AREG0, fast_off);
/* Extract the tlb index from the address into R0. */
tcg_out_dat_reg(s, COND_AL, ARITH_AND, TCG_REG_R0, TCG_REG_R0, addr,
SHIFT_IMM_LSR(s->page_bits - CPU_TLB_ENTRY_BITS));
/*
* Add the tlb_table pointer, creating the CPUTLBEntry address in R1.
* Load the tlb comparator into R2 and the fast path addend into R1.
*/
if (cmp_off == 0) {
tcg_out_ld32_rwb(s, COND_AL, TCG_REG_R2, TCG_REG_R1, TCG_REG_R0);
} else {
tcg_out_dat_reg(s, COND_AL, ARITH_ADD,
TCG_REG_R1, TCG_REG_R1, TCG_REG_R0, 0);
tcg_out_ld32_12(s, COND_AL, TCG_REG_R2, TCG_REG_R1, cmp_off);
}
/* Load the tlb addend. */
tcg_out_ld32_12(s, COND_AL, TCG_REG_R1, TCG_REG_R1,
offsetof(CPUTLBEntry, addend));
/*
* Check alignment, check comparators.
* Do this in 2-4 insns. Use MOVW for v7, if possible,
* to reduce the number of sequential conditional instructions.
* Almost all guests have at least 4k pages, which means that we need
* to clear at least 9 bits even for an 8-byte memory, which means it
* isn't worth checking for an immediate operand for BIC.
*
* For unaligned accesses, test the page of the last unit of alignment.
* This leaves the least significant alignment bits unchanged, and of
* course must be zero.
*/
t_addr = addr;
if (a_mask < s_mask) {
t_addr = TCG_REG_R0;
tcg_out_dat_imm(s, COND_AL, ARITH_ADD, t_addr,
addr, s_mask - a_mask);
}
if (use_armv7_instructions && s->page_bits <= 16) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, ~(s->page_mask | a_mask));
tcg_out_dat_reg(s, COND_AL, ARITH_BIC, TCG_REG_TMP,
t_addr, TCG_REG_TMP, 0);
tcg_out_dat_reg(s, COND_AL, ARITH_CMP, 0,
TCG_REG_R2, TCG_REG_TMP, 0);
} else {
if (a_mask) {
tcg_debug_assert(a_mask <= 0xff);
tcg_out_dat_imm(s, COND_AL, ARITH_TST, 0, addr, a_mask);
}
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, TCG_REG_TMP, 0, t_addr,
SHIFT_IMM_LSR(s->page_bits));
tcg_out_dat_reg(s, (a_mask ? COND_EQ : COND_AL), ARITH_CMP,
0, TCG_REG_R2, TCG_REG_TMP,
SHIFT_IMM_LSL(s->page_bits));
}
} else if (a_mask) {
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
/* We are expecting alignment to max out at 7 */
tcg_debug_assert(a_mask <= 0xff);
/* tst addr, #mask */
tcg_out_dat_imm(s, COND_AL, ARITH_TST, 0, addr, a_mask);
}
return ldst;
}
static void tcg_out_qemu_ld_direct(TCGContext *s, MemOp opc, TCGReg datalo,
TCGReg datahi, HostAddress h)
{
TCGReg base;
/* Byte swapping is left to middle-end expansion. */
tcg_debug_assert((opc & MO_BSWAP) == 0);
switch (opc & MO_SSIZE) {
case MO_UB:
if (h.index < 0) {
tcg_out_ld8_12(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_ld8_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_SB:
if (h.index < 0) {
tcg_out_ld8s_8(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_ld8s_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_UW:
if (h.index < 0) {
tcg_out_ld16u_8(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_ld16u_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_SW:
if (h.index < 0) {
tcg_out_ld16s_8(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_ld16s_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_UL:
if (h.index < 0) {
tcg_out_ld32_12(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_ld32_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_UQ:
/* We used pair allocation for datalo, so already should be aligned. */
tcg_debug_assert((datalo & 1) == 0);
tcg_debug_assert(datahi == datalo + 1);
/* LDRD requires alignment; double-check that. */
if (memop_alignment_bits(opc) >= MO_64) {
if (h.index < 0) {
tcg_out_ldrd_8(s, h.cond, datalo, h.base, 0);
break;
}
/*
* Rm (the second address op) must not overlap Rt or Rt + 1.
* Since datalo is aligned, we can simplify the test via alignment.
* Flip the two address arguments if that works.
*/
if ((h.index & ~1) != datalo) {
tcg_out_ldrd_r(s, h.cond, datalo, h.base, h.index);
break;
}
if ((h.base & ~1) != datalo) {
tcg_out_ldrd_r(s, h.cond, datalo, h.index, h.base);
break;
}
}
if (h.index < 0) {
base = h.base;
if (datalo == h.base) {
tcg_out_mov_reg(s, h.cond, TCG_REG_TMP, base);
base = TCG_REG_TMP;
}
} else if (h.index_scratch) {
tcg_out_ld32_rwb(s, h.cond, datalo, h.index, h.base);
tcg_out_ld32_12(s, h.cond, datahi, h.index, 4);
break;
} else {
tcg_out_dat_reg(s, h.cond, ARITH_ADD, TCG_REG_TMP,
h.base, h.index, SHIFT_IMM_LSL(0));
base = TCG_REG_TMP;
}
tcg_out_ld32_12(s, h.cond, datalo, base, 0);
tcg_out_ld32_12(s, h.cond, datahi, base, 4);
break;
default:
g_assert_not_reached();
}
}
static void tgen_qemu_ld(TCGContext *s, TCGType type, TCGReg data,
TCGReg addr, MemOpIdx oi)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, true);
if (ldst) {
ldst->type = type;
ldst->datalo_reg = data;
ldst->datahi_reg = -1;
/*
* This a conditional BL only to load a pointer within this
* opcode into LR for the slow path. We will not be using
* the value for a tail call.
*/
ldst->label_ptr[0] = s->code_ptr;
tcg_out_bl_imm(s, COND_NE, 0);
}
tcg_out_qemu_ld_direct(s, opc, data, -1, h);
if (ldst) {
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static const TCGOutOpQemuLdSt outop_qemu_ld = {
.base.static_constraint = C_O1_I1(r, q),
.out = tgen_qemu_ld,
};
static void tgen_qemu_ld2(TCGContext *s, TCGType type, TCGReg datalo,
TCGReg datahi, TCGReg addr, MemOpIdx oi)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, true);
if (ldst) {
ldst->type = type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
/*
* This a conditional BL only to load a pointer within this
* opcode into LR for the slow path. We will not be using
* the value for a tail call.
*/
ldst->label_ptr[0] = s->code_ptr;
tcg_out_bl_imm(s, COND_NE, 0);
}
tcg_out_qemu_ld_direct(s, opc, datalo, datahi, h);
if (ldst) {
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static const TCGOutOpQemuLdSt2 outop_qemu_ld2 = {
.base.static_constraint = C_O2_I1(e, p, q),
.out = tgen_qemu_ld2,
};
static void tcg_out_qemu_st_direct(TCGContext *s, MemOp opc, TCGReg datalo,
TCGReg datahi, HostAddress h)
{
/* Byte swapping is left to middle-end expansion. */
tcg_debug_assert((opc & MO_BSWAP) == 0);
switch (opc & MO_SIZE) {
case MO_8:
if (h.index < 0) {
tcg_out_st8_12(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_st8_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_16:
if (h.index < 0) {
tcg_out_st16_8(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_st16_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_32:
if (h.index < 0) {
tcg_out_st32_12(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_st32_r(s, h.cond, datalo, h.base, h.index);
}
break;
case MO_64:
/* We used pair allocation for datalo, so already should be aligned. */
tcg_debug_assert((datalo & 1) == 0);
tcg_debug_assert(datahi == datalo + 1);
/* STRD requires alignment; double-check that. */
if (memop_alignment_bits(opc) >= MO_64) {
if (h.index < 0) {
tcg_out_strd_8(s, h.cond, datalo, h.base, 0);
} else {
tcg_out_strd_r(s, h.cond, datalo, h.base, h.index);
}
} else if (h.index < 0) {
tcg_out_st32_12(s, h.cond, datalo, h.base, 0);
tcg_out_st32_12(s, h.cond, datahi, h.base, 4);
} else if (h.index_scratch) {
tcg_out_st32_rwb(s, h.cond, datalo, h.index, h.base);
tcg_out_st32_12(s, h.cond, datahi, h.index, 4);
} else {
tcg_out_dat_reg(s, h.cond, ARITH_ADD, TCG_REG_TMP,
h.base, h.index, SHIFT_IMM_LSL(0));
tcg_out_st32_12(s, h.cond, datalo, TCG_REG_TMP, 0);
tcg_out_st32_12(s, h.cond, datahi, TCG_REG_TMP, 4);
}
break;
default:
g_assert_not_reached();
}
}
static void tgen_qemu_st(TCGContext *s, TCGType type, TCGReg data,
TCGReg addr, MemOpIdx oi)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, false);
if (ldst) {
ldst->type = type;
ldst->datalo_reg = data;
ldst->datahi_reg = -1;
h.cond = COND_EQ;
tcg_out_qemu_st_direct(s, opc, data, -1, h);
/* The conditional call is last, as we're going to return here. */
ldst->label_ptr[0] = s->code_ptr;
tcg_out_bl_imm(s, COND_NE, 0);
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
} else {
tcg_out_qemu_st_direct(s, opc, data, -1, h);
}
}
static const TCGOutOpQemuLdSt outop_qemu_st = {
.base.static_constraint = C_O0_I2(q, q),
.out = tgen_qemu_st,
};
static void tgen_qemu_st2(TCGContext *s, TCGType type, TCGReg datalo,
TCGReg datahi, TCGReg addr, MemOpIdx oi)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, false);
if (ldst) {
ldst->type = type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
h.cond = COND_EQ;
tcg_out_qemu_st_direct(s, opc, datalo, datahi, h);
/* The conditional call is last, as we're going to return here. */
ldst->label_ptr[0] = s->code_ptr;
tcg_out_bl_imm(s, COND_NE, 0);
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
} else {
tcg_out_qemu_st_direct(s, opc, datalo, datahi, h);
}
}
static const TCGOutOpQemuLdSt2 outop_qemu_st2 = {
.base.static_constraint = C_O0_I3(Q, p, q),
.out = tgen_qemu_st2,
};
static void tcg_out_epilogue(TCGContext *s);
static void tcg_out_exit_tb(TCGContext *s, uintptr_t arg)
{
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, arg);
tcg_out_epilogue(s);
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
uintptr_t i_addr;
intptr_t i_disp;
/* Direct branch will be patched by tb_target_set_jmp_target. */
set_jmp_insn_offset(s, which);
tcg_out32(s, INSN_NOP);
/* When branch is out of range, fall through to indirect. */
i_addr = get_jmp_target_addr(s, which);
i_disp = tcg_pcrel_diff(s, (void *)i_addr) - 8;
tcg_debug_assert(i_disp < 0);
if (i_disp >= -0xfff) {
tcg_out_ld32_12(s, COND_AL, TCG_REG_PC, TCG_REG_PC, i_disp);
} else {
/*
* The TB is close, but outside the 12 bits addressable by
* the load. We can extend this to 20 bits with a sub of a
* shifted immediate from pc.
*/
int h = -i_disp;
int l = -(h & 0xfff);
h = encode_imm_nofail(h + l);
tcg_out_dat_imm(s, COND_AL, ARITH_SUB, TCG_REG_R0, TCG_REG_PC, h);
tcg_out_ld32_12(s, COND_AL, TCG_REG_PC, TCG_REG_R0, l);
}
set_jmp_reset_offset(s, which);
}
static void tcg_out_goto_ptr(TCGContext *s, TCGReg a0)
{
tcg_out_b_reg(s, COND_AL, a0);
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
uintptr_t addr = tb->jmp_target_addr[n];
ptrdiff_t offset = addr - (jmp_rx + 8);
tcg_insn_unit insn;
/* Either directly branch, or fall through to indirect branch. */
if (offset == sextract64(offset, 0, 26)) {
/* B <addr> */
insn = deposit32((COND_AL << 28) | INSN_B, 0, 24, offset >> 2);
} else {
insn = INSN_NOP;
}
qatomic_set((uint32_t *)jmp_rw, insn);
flush_idcache_range(jmp_rx, jmp_rw, 4);
}
static void tgen_add(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_ADD, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_addi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IN(s, COND_AL, ARITH_ADD, ARITH_SUB, a0, a1, a2);
}
static const TCGOutOpBinary outop_add = {
.base.static_constraint = C_O1_I2(r, r, rIN),
.out_rrr = tgen_add,
.out_rri = tgen_addi,
};
static void tgen_addco(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_ADD | TO_CPSR,
a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_addco_imm(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IN(s, COND_AL, ARITH_ADD | TO_CPSR, ARITH_SUB | TO_CPSR,
a0, a1, a2);
}
static const TCGOutOpBinary outop_addco = {
.base.static_constraint = C_O1_I2(r, r, rIN),
.out_rrr = tgen_addco,
.out_rri = tgen_addco_imm,
};
static void tgen_addci(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_ADC, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_addci_imm(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IK(s, COND_AL, ARITH_ADC, ARITH_SBC, a0, a1, a2);
}
static const TCGOutOpAddSubCarry outop_addci = {
.base.static_constraint = C_O1_I2(r, r, rIK),
.out_rrr = tgen_addci,
.out_rri = tgen_addci_imm,
};
static void tgen_addcio(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_ADC | TO_CPSR,
a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_addcio_imm(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IK(s, COND_AL, ARITH_ADC | TO_CPSR, ARITH_SBC | TO_CPSR,
a0, a1, a2);
}
static const TCGOutOpBinary outop_addcio = {
.base.static_constraint = C_O1_I2(r, r, rIK),
.out_rrr = tgen_addcio,
.out_rri = tgen_addcio_imm,
};
/* Set C to @c; NZVQ all set to 0. */
static void tcg_out_movi_apsr_c(TCGContext *s, bool c)
{
int imm12 = encode_imm_nofail(c << 29);
tcg_out32(s, (COND_AL << 28) | INSN_MSRI_CPSR | 0x80000 | imm12);
}
static void tcg_out_set_carry(TCGContext *s)
{
tcg_out_movi_apsr_c(s, 1);
}
static void tgen_and(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_AND, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_andi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IK(s, COND_AL, ARITH_AND, ARITH_BIC, a0, a1, a2);
}
static const TCGOutOpBinary outop_and = {
.base.static_constraint = C_O1_I2(r, r, rIK),
.out_rrr = tgen_and,
.out_rri = tgen_andi,
};
static void tgen_andc(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_BIC, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static const TCGOutOpBinary outop_andc = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_andc,
};
static void tgen_clz(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_CMP, 0, a1, 0);
tcg_out_dat_reg(s, COND_NE, INSN_CLZ, a0, 0, a1, 0);
tcg_out_mov_reg(s, COND_EQ, a0, a2);
}
static void tgen_clzi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
if (a2 == 32) {
tcg_out_dat_reg(s, COND_AL, INSN_CLZ, a0, 0, a1, 0);
} else {
tcg_out_dat_imm(s, COND_AL, ARITH_CMP, 0, a1, 0);
tcg_out_dat_reg(s, COND_NE, INSN_CLZ, a0, 0, a1, 0);
tcg_out_movi32(s, COND_EQ, a0, a2);
}
}
static const TCGOutOpBinary outop_clz = {
.base.static_constraint = C_O1_I2(r, r, rIK),
.out_rrr = tgen_clz,
.out_rri = tgen_clzi,
};
static const TCGOutOpUnary outop_ctpop = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_ctz(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, INSN_RBIT, TCG_REG_TMP, 0, a1, 0);
tgen_clz(s, TCG_TYPE_I32, a0, TCG_REG_TMP, a2);
}
static void tgen_ctzi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_reg(s, COND_AL, INSN_RBIT, TCG_REG_TMP, 0, a1, 0);
tgen_clzi(s, TCG_TYPE_I32, a0, TCG_REG_TMP, a2);
}
static TCGConstraintSetIndex cset_ctz(TCGType type, unsigned flags)
{
return use_armv7_instructions ? C_O1_I2(r, r, rIK) : C_NotImplemented;
}
static const TCGOutOpBinary outop_ctz = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_ctz,
.out_rrr = tgen_ctz,
.out_rri = tgen_ctzi,
};
static TCGConstraintSetIndex cset_idiv(TCGType type, unsigned flags)
{
return use_idiv_instructions ? C_O1_I2(r, r, r) : C_NotImplemented;
}
static void tgen_divs(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
/* sdiv */
tcg_out32(s, 0x0710f010 | (COND_AL << 28) | (a0 << 16) | a1 | (a2 << 8));
}
static const TCGOutOpBinary outop_divs = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_idiv,
.out_rrr = tgen_divs,
};
static const TCGOutOpDivRem outop_divs2 = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_divu(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
/* udiv */
tcg_out32(s, 0x0730f010 | (COND_AL << 28) | (a0 << 16) | a1 | (a2 << 8));
}
static const TCGOutOpBinary outop_divu = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_idiv,
.out_rrr = tgen_divu,
};
static const TCGOutOpDivRem outop_divu2 = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_eqv = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_mul(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
/* mul */
tcg_out32(s, (COND_AL << 28) | 0x90 | (a0 << 16) | (a1 << 8) | a2);
}
static const TCGOutOpBinary outop_mul = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_mul,
};
static void tgen_muls2(TCGContext *s, TCGType type,
TCGReg rd0, TCGReg rd1, TCGReg rn, TCGReg rm)
{
/* smull */
tcg_out32(s, (COND_AL << 28) | 0x00c00090 |
(rd1 << 16) | (rd0 << 12) | (rm << 8) | rn);
}
static const TCGOutOpMul2 outop_muls2 = {
.base.static_constraint = C_O2_I2(r, r, r, r),
.out_rrrr = tgen_muls2,
};
static const TCGOutOpBinary outop_mulsh = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_mulu2(TCGContext *s, TCGType type,
TCGReg rd0, TCGReg rd1, TCGReg rn, TCGReg rm)
{
/* umull */
tcg_out32(s, (COND_AL << 28) | 0x00800090 |
(rd1 << 16) | (rd0 << 12) | (rm << 8) | rn);
}
static const TCGOutOpMul2 outop_mulu2 = {
.base.static_constraint = C_O2_I2(r, r, r, r),
.out_rrrr = tgen_mulu2,
};
static const TCGOutOpBinary outop_muluh = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_nand = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_nor = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_or(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_ORR, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_ori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_ORR, a0, a1, encode_imm_nofail(a2));
}
static const TCGOutOpBinary outop_or = {
.base.static_constraint = C_O1_I2(r, r, rI),
.out_rrr = tgen_or,
.out_rri = tgen_ori,
};
static const TCGOutOpBinary outop_orc = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_rems = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_remu = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_rotl = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_rotr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1, SHIFT_REG_ROR(a2));
}
static void tgen_rotri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1, SHIFT_IMM_ROR(a2 & 0x1f));
}
static const TCGOutOpBinary outop_rotr = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_rotr,
.out_rri = tgen_rotri,
};
static void tgen_sar(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1, SHIFT_REG_ASR(a2));
}
static void tgen_sari(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1,
SHIFT_IMM_ASR(a2 & 0x1f));
}
static const TCGOutOpBinary outop_sar = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_sar,
.out_rri = tgen_sari,
};
static void tgen_shl(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1, SHIFT_REG_LSL(a2));
}
static void tgen_shli(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1,
SHIFT_IMM_LSL(a2 & 0x1f));
}
static const TCGOutOpBinary outop_shl = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_shl,
.out_rri = tgen_shli,
};
static void tgen_shr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1, SHIFT_REG_LSR(a2));
}
static void tgen_shri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MOV, a0, 0, a1,
SHIFT_IMM_LSR(a2 & 0x1f));
}
static const TCGOutOpBinary outop_shr = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_shr,
.out_rri = tgen_shri,
};
static void tgen_sub(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_SUB, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_subfi(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, TCGReg a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_RSB, a0, a2, encode_imm_nofail(a1));
}
static const TCGOutOpSubtract outop_sub = {
.base.static_constraint = C_O1_I2(r, rI, r),
.out_rrr = tgen_sub,
.out_rir = tgen_subfi,
};
static void tgen_subbo_rrr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_SUB | TO_CPSR,
a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_subbo_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IN(s, COND_AL, ARITH_SUB | TO_CPSR, ARITH_ADD | TO_CPSR,
a0, a1, a2);
}
static void tgen_subbo_rir(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, TCGReg a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_RSB | TO_CPSR,
a0, a2, encode_imm_nofail(a1));
}
static void tgen_subbo_rii(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, tcg_target_long a2)
{
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_TMP, a2);
tgen_subbo_rir(s, TCG_TYPE_I32, a0, a1, TCG_REG_TMP);
}
static const TCGOutOpAddSubCarry outop_subbo = {
.base.static_constraint = C_O1_I2(r, rI, rIN),
.out_rrr = tgen_subbo_rrr,
.out_rri = tgen_subbo_rri,
.out_rir = tgen_subbo_rir,
.out_rii = tgen_subbo_rii,
};
static void tgen_subbi_rrr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_SBC,
a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_subbi_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IK(s, COND_AL, ARITH_SBC, ARITH_ADC, a0, a1, a2);
}
static void tgen_subbi_rir(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, TCGReg a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_RSC, a0, a2, encode_imm_nofail(a1));
}
static void tgen_subbi_rii(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, tcg_target_long a2)
{
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_TMP, a2);
tgen_subbi_rir(s, TCG_TYPE_I32, a0, a1, TCG_REG_TMP);
}
static const TCGOutOpAddSubCarry outop_subbi = {
.base.static_constraint = C_O1_I2(r, rI, rIK),
.out_rrr = tgen_subbi_rrr,
.out_rri = tgen_subbi_rri,
.out_rir = tgen_subbi_rir,
.out_rii = tgen_subbi_rii,
};
static void tgen_subbio_rrr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_SBC | TO_CPSR,
a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_subbio_rri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_IK(s, COND_AL, ARITH_SBC | TO_CPSR, ARITH_ADC | TO_CPSR,
a0, a1, a2);
}
static void tgen_subbio_rir(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, TCGReg a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_RSC | TO_CPSR,
a0, a2, encode_imm_nofail(a1));
}
static void tgen_subbio_rii(TCGContext *s, TCGType type,
TCGReg a0, tcg_target_long a1, tcg_target_long a2)
{
tcg_out_movi(s, TCG_TYPE_I32, TCG_REG_TMP, a2);
tgen_subbio_rir(s, TCG_TYPE_I32, a0, a1, TCG_REG_TMP);
}
static const TCGOutOpAddSubCarry outop_subbio = {
.base.static_constraint = C_O1_I2(r, rI, rIK),
.out_rrr = tgen_subbio_rrr,
.out_rri = tgen_subbio_rri,
.out_rir = tgen_subbio_rir,
.out_rii = tgen_subbio_rii,
};
static void tcg_out_set_borrow(TCGContext *s)
{
tcg_out_movi_apsr_c(s, 0); /* borrow = !carry */
}
static void tgen_xor(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_dat_reg(s, COND_AL, ARITH_EOR, a0, a1, a2, SHIFT_IMM_LSL(0));
}
static void tgen_xori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_dat_imm(s, COND_AL, ARITH_EOR, a0, a1, encode_imm_nofail(a2));
}
static const TCGOutOpBinary outop_xor = {
.base.static_constraint = C_O1_I2(r, r, rI),
.out_rrr = tgen_xor,
.out_rri = tgen_xori,
};
static void tgen_bswap16(TCGContext *s, TCGType type,
TCGReg rd, TCGReg rn, unsigned flags)
{
if (flags & TCG_BSWAP_OS) {
/* revsh */
tcg_out32(s, 0x06ff0fb0 | (COND_AL << 28) | (rd << 12) | rn);
return;
}
/* rev16 */
tcg_out32(s, 0x06bf0fb0 | (COND_AL << 28) | (rd << 12) | rn);
if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_ext16u(s, rd, rd);
}
}
static const TCGOutOpBswap outop_bswap16 = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_bswap16,
};
static void tgen_bswap32(TCGContext *s, TCGType type,
TCGReg rd, TCGReg rn, unsigned flags)
{
/* rev */
tcg_out32(s, 0x06bf0f30 | (COND_AL << 28) | (rd << 12) | rn);
}
static const TCGOutOpBswap outop_bswap32 = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_bswap32,
};
static const TCGOutOpUnary outop_bswap64 = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
tgen_subfi(s, type, a0, 0, a1);
}
static const TCGOutOpUnary outop_neg = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_neg,
};
static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
tcg_out_dat_reg(s, COND_AL, ARITH_MVN, a0, 0, a1, SHIFT_IMM_LSL(0));
}
static const TCGOutOpUnary outop_not = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_not,
};
static void tgen_brcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, TCGReg a1, TCGLabel *l)
{
cond = tgen_cmp(s, cond, a0, a1);
tcg_out_goto_label(s, tcg_cond_to_arm_cond[cond], l);
}
static void tgen_brcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, tcg_target_long a1, TCGLabel *l)
{
cond = tgen_cmpi(s, cond, a0, a1);
tcg_out_goto_label(s, tcg_cond_to_arm_cond[cond], l);
}
static const TCGOutOpBrcond outop_brcond = {
.base.static_constraint = C_O0_I2(r, rIN),
.out_rr = tgen_brcond,
.out_ri = tgen_brcondi,
};
static void finish_setcond(TCGContext *s, TCGCond cond, TCGReg ret, bool neg)
{
tcg_out_movi32(s, tcg_cond_to_arm_cond[tcg_invert_cond(cond)], ret, 0);
tcg_out_movi32(s, tcg_cond_to_arm_cond[cond], ret, neg ? -1 : 1);
}
static void tgen_setcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, TCGReg a1, TCGReg a2)
{
cond = tgen_cmp(s, cond, a1, a2);
finish_setcond(s, cond, a0, false);
}
static void tgen_setcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
cond = tgen_cmpi(s, cond, a1, a2);
finish_setcond(s, cond, a0, false);
}
static const TCGOutOpSetcond outop_setcond = {
.base.static_constraint = C_O1_I2(r, r, rIN),
.out_rrr = tgen_setcond,
.out_rri = tgen_setcondi,
};
static void tgen_negsetcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, TCGReg a1, TCGReg a2)
{
cond = tgen_cmp(s, cond, a1, a2);
finish_setcond(s, cond, a0, true);
}
static void tgen_negsetcondi(TCGContext *s, TCGType type, TCGCond cond,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
cond = tgen_cmpi(s, cond, a1, a2);
finish_setcond(s, cond, a0, true);
}
static const TCGOutOpSetcond outop_negsetcond = {
.base.static_constraint = C_O1_I2(r, r, rIN),
.out_rrr = tgen_negsetcond,
.out_rri = tgen_negsetcondi,
};
static void tgen_movcond(TCGContext *s, TCGType type, TCGCond cond,
TCGReg ret, TCGReg c1, TCGArg c2, bool const_c2,
TCGArg vt, bool const_vt, TCGArg vf, bool consf_vf)
{
cond = tcg_out_cmp(s, cond, c1, c2, const_c2);
tcg_out_dat_rIK(s, tcg_cond_to_arm_cond[cond], ARITH_MOV, ARITH_MVN,
ret, 0, vt, const_vt);
}
static const TCGOutOpMovcond outop_movcond = {
.base.static_constraint = C_O1_I4(r, r, rIN, rIK, 0),
.out = tgen_movcond,
};
static void tgen_brcond2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah,
TCGArg bl, bool const_bl, TCGArg bh, bool const_bh,
TCGLabel *l)
{
cond = tcg_out_cmp2(s, cond, al, ah, bl, const_bl, bh, const_bh);
tcg_out_goto_label(s, tcg_cond_to_arm_cond[cond], l);
}
static const TCGOutOpBrcond2 outop_brcond2 = {
.base.static_constraint = C_O0_I4(r, r, rI, rI),
.out = tgen_brcond2,
};
static void tgen_setcond2(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg al, TCGReg ah,
TCGArg bl, bool const_bl,
TCGArg bh, bool const_bh)
{
cond = tcg_out_cmp2(s, cond, al, ah, bl, const_bl, bh, const_bh);
finish_setcond(s, cond, ret, false);
}
static const TCGOutOpSetcond2 outop_setcond2 = {
.base.static_constraint = C_O1_I4(r, r, r, rI, rI),
.out = tgen_setcond2,
};
static void tgen_extract2(TCGContext *s, TCGType type, TCGReg a0,
TCGReg a1, TCGReg a2, unsigned shr)
{
/* We can do extract2 in 2 insns, vs the 3 required otherwise. */
tgen_shli(s, TCG_TYPE_I32, TCG_REG_TMP, a2, 32 - shr);
tcg_out_dat_reg(s, COND_AL, ARITH_ORR, a0, TCG_REG_TMP,
a1, SHIFT_IMM_LSR(shr));
}
static const TCGOutOpExtract2 outop_extract2 = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_extract2,
};
static void tgen_ld8u(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xfff || offset < -0xfff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_ld8_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_ld8_12(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpLoad outop_ld8u = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld8u,
};
static void tgen_ld8s(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xff || offset < -0xff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_ld8s_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_ld8s_8(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpLoad outop_ld8s = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld8s,
};
static void tgen_ld16u(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xff || offset < -0xff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_ld16u_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_ld16u_8(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpLoad outop_ld16u = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld16u,
};
static void tgen_ld16s(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xff || offset < -0xff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_ld16s_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_ld16s_8(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpLoad outop_ld16s = {
.base.static_constraint = C_O1_I1(r, r),
.out = tgen_ld16s,
};
static void tgen_st8(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xfff || offset < -0xfff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_st8_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_st8_12(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpStore outop_st8 = {
.base.static_constraint = C_O0_I2(r, r),
.out_r = tgen_st8,
};
static void tgen_st16(TCGContext *s, TCGType type, TCGReg rd,
TCGReg rn, ptrdiff_t offset)
{
if (offset > 0xff || offset < -0xff) {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, offset);
tcg_out_st16_r(s, COND_AL, rd, rn, TCG_REG_TMP);
} else {
tcg_out_st16_8(s, COND_AL, rd, rn, offset);
}
}
static const TCGOutOpStore outop_st16 = {
.base.static_constraint = C_O0_I2(r, r),
.out_r = tgen_st16,
};
static const TCGOutOpStore outop_st = {
.base.static_constraint = C_O0_I2(r, r),
.out_r = tcg_out_st,
};
static TCGConstraintSetIndex
tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
{
switch (op) {
case INDEX_op_st_vec:
return C_O0_I2(w, r);
case INDEX_op_ld_vec:
case INDEX_op_dupm_vec:
return C_O1_I1(w, r);
case INDEX_op_dup_vec:
return C_O1_I1(w, wr);
case INDEX_op_abs_vec:
case INDEX_op_neg_vec:
case INDEX_op_not_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_sari_vec:
return C_O1_I1(w, w);
case INDEX_op_dup2_vec:
case INDEX_op_add_vec:
case INDEX_op_mul_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_sub_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
case INDEX_op_usadd_vec:
case INDEX_op_ussub_vec:
case INDEX_op_xor_vec:
case INDEX_op_arm_sshl_vec:
case INDEX_op_arm_ushl_vec:
return C_O1_I2(w, w, w);
case INDEX_op_arm_sli_vec:
return C_O1_I2(w, 0, w);
case INDEX_op_or_vec:
case INDEX_op_andc_vec:
return C_O1_I2(w, w, wO);
case INDEX_op_and_vec:
case INDEX_op_orc_vec:
return C_O1_I2(w, w, wV);
case INDEX_op_cmp_vec:
return C_O1_I2(w, w, wZ);
case INDEX_op_bitsel_vec:
return C_O1_I3(w, w, w, w);
default:
return C_NotImplemented;
}
}
static void tcg_target_init(TCGContext *s)
{
/*
* Only probe for the platform and capabilities if we haven't already
* determined maximum values at compile time.
*/
#if !defined(use_idiv_instructions) || !defined(use_neon_instructions)
{
unsigned long hwcap = qemu_getauxval(AT_HWCAP);
#ifndef use_idiv_instructions
use_idiv_instructions = (hwcap & HWCAP_ARM_IDIVA) != 0;
#endif
#ifndef use_neon_instructions
use_neon_instructions = (hwcap & HWCAP_ARM_NEON) != 0;
#endif
}
#endif
if (__ARM_ARCH < 7) {
const char *pl = (const char *)qemu_getauxval(AT_PLATFORM);
if (pl != NULL && pl[0] == 'v' && pl[1] >= '4' && pl[1] <= '9') {
arm_arch = pl[1] - '0';
}
if (arm_arch < 6) {
error_report("TCG: ARMv%d is unsupported; exiting", arm_arch);
exit(EXIT_FAILURE);
}
}
tcg_target_available_regs[TCG_TYPE_I32] = ALL_GENERAL_REGS;
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R12);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_R14);
if (use_neon_instructions) {
tcg_target_available_regs[TCG_TYPE_V64] = ALL_VECTOR_REGS;
tcg_target_available_regs[TCG_TYPE_V128] = ALL_VECTOR_REGS;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q8);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q9);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q10);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q11);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q12);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q13);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q14);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_Q15);
}
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_CALL_STACK);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TMP);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_PC);
tcg_regset_set_reg(s->reserved_regs, TCG_VEC_TMP);
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
switch (type) {
case TCG_TYPE_I32:
tcg_out_ld32u(s, COND_AL, arg, arg1, arg2);
return;
case TCG_TYPE_V64:
/* regs 1; size 8; align 8 */
tcg_out_vldst(s, INSN_VLD1 | 0x7d0, arg, arg1, arg2);
return;
case TCG_TYPE_V128:
/*
* We have only 8-byte alignment for the stack per the ABI.
* Rather than dynamically re-align the stack, it's easier
* to simply not request alignment beyond that. So:
* regs 2; size 8; align 8
*/
tcg_out_vldst(s, INSN_VLD1 | 0xad0, arg, arg1, arg2);
return;
default:
g_assert_not_reached();
}
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
switch (type) {
case TCG_TYPE_I32:
tcg_out_st32(s, COND_AL, arg, arg1, arg2);
return;
case TCG_TYPE_V64:
/* regs 1; size 8; align 8 */
tcg_out_vldst(s, INSN_VST1 | 0x7d0, arg, arg1, arg2);
return;
case TCG_TYPE_V128:
/* See tcg_out_ld re alignment: regs 2; size 8; align 8 */
tcg_out_vldst(s, INSN_VST1 | 0xad0, arg, arg1, arg2);
return;
default:
g_assert_not_reached();
}
}
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
return false;
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
if (ret == arg) {
return true;
}
switch (type) {
case TCG_TYPE_I32:
if (ret < TCG_REG_Q0 && arg < TCG_REG_Q0) {
tcg_out_mov_reg(s, COND_AL, ret, arg);
return true;
}
return false;
case TCG_TYPE_V64:
case TCG_TYPE_V128:
/* "VMOV D,N" is an alias for "VORR D,N,N". */
tcg_out_vreg3(s, INSN_VORR, type - TCG_TYPE_V64, 0, ret, arg, arg);
return true;
default:
g_assert_not_reached();
}
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
tcg_debug_assert(type == TCG_TYPE_I32);
tcg_debug_assert(ret < TCG_REG_Q0);
tcg_out_movi32(s, COND_AL, ret, arg);
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
return false;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
int enc, opc = ARITH_ADD;
/* All of the easiest immediates to encode are positive. */
if (imm < 0) {
imm = -imm;
opc = ARITH_SUB;
}
enc = encode_imm(imm);
if (enc >= 0) {
tcg_out_dat_imm(s, COND_AL, opc, rd, rs, enc);
} else {
tcg_out_movi32(s, COND_AL, TCG_REG_TMP, imm);
tcg_out_dat_reg(s, COND_AL, opc, rd, rs,
TCG_REG_TMP, SHIFT_IMM_LSL(0));
}
}
/* Type is always V128, with I64 elements. */
static void tcg_out_dup2_vec(TCGContext *s, TCGReg rd, TCGReg rl, TCGReg rh)
{
/* Move high element into place first. */
/* VMOV Dd+1, Ds */
tcg_out_vreg3(s, INSN_VORR | (1 << 12), 0, 0, rd, rh, rh);
/* Move low element into place; tcg_out_mov will check for nop. */
tcg_out_mov(s, TCG_TYPE_V64, rd, rl);
}
static bool tcg_out_dup_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg rd, TCGReg rs)
{
int q = type - TCG_TYPE_V64;
if (vece == MO_64) {
if (type == TCG_TYPE_V128) {
tcg_out_dup2_vec(s, rd, rs, rs);
} else {
tcg_out_mov(s, TCG_TYPE_V64, rd, rs);
}
} else if (rs < TCG_REG_Q0) {
int b = (vece == MO_8);
int e = (vece == MO_16);
tcg_out32(s, INSN_VDUP_G | (b << 22) | (q << 21) | (e << 5) |
encode_vn(rd) | (rs << 12));
} else {
int imm4 = 1 << vece;
tcg_out32(s, INSN_VDUP_S | (imm4 << 16) | (q << 6) |
encode_vd(rd) | encode_vm(rs));
}
return true;
}
static bool tcg_out_dupm_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg rd, TCGReg base, intptr_t offset)
{
if (vece == MO_64) {
tcg_out_ld(s, TCG_TYPE_V64, rd, base, offset);
if (type == TCG_TYPE_V128) {
tcg_out_dup2_vec(s, rd, rd, rd);
}
} else {
int q = type - TCG_TYPE_V64;
tcg_out_vldst(s, INSN_VLD1R | (vece << 6) | (q << 5),
rd, base, offset);
}
return true;
}
static void tcg_out_dupi_vec(TCGContext *s, TCGType type, unsigned vece,
TCGReg rd, int64_t v64)
{
int q = type - TCG_TYPE_V64;
int cmode, imm8, i;
/* Test all bytes equal first. */
if (vece == MO_8) {
tcg_out_vmovi(s, rd, q, 0, 0xe, v64);
return;
}
/*
* Test all bytes 0x00 or 0xff second. This can match cases that
* might otherwise take 2 or 3 insns for MO_16 or MO_32 below.
*/
for (i = imm8 = 0; i < 8; i++) {
uint8_t byte = v64 >> (i * 8);
if (byte == 0xff) {
imm8 |= 1 << i;
} else if (byte != 0) {
goto fail_bytes;
}
}
tcg_out_vmovi(s, rd, q, 1, 0xe, imm8);
return;
fail_bytes:
/*
* Tests for various replications. For each element width, if we
* cannot find an expansion there's no point checking a larger
* width because we already know by replication it cannot match.
*/
if (vece == MO_16) {
uint16_t v16 = v64;
if (is_shimm16(v16, &cmode, &imm8)) {
tcg_out_vmovi(s, rd, q, 0, cmode, imm8);
return;
}
if (is_shimm16(~v16, &cmode, &imm8)) {
tcg_out_vmovi(s, rd, q, 1, cmode, imm8);
return;
}
/*
* Otherwise, all remaining constants can be loaded in two insns:
* rd = v16 & 0xff, rd |= v16 & 0xff00.
*/
tcg_out_vmovi(s, rd, q, 0, 0x8, v16 & 0xff);
tcg_out_vmovi(s, rd, q, 0, 0xb, v16 >> 8); /* VORRI */
return;
}
if (vece == MO_32) {
uint32_t v32 = v64;
if (is_shimm32(v32, &cmode, &imm8) ||
is_soimm32(v32, &cmode, &imm8)) {
tcg_out_vmovi(s, rd, q, 0, cmode, imm8);
return;
}
if (is_shimm32(~v32, &cmode, &imm8) ||
is_soimm32(~v32, &cmode, &imm8)) {
tcg_out_vmovi(s, rd, q, 1, cmode, imm8);
return;
}
/*
* Restrict the set of constants to those we can load with
* two instructions. Others we load from the pool.
*/
i = is_shimm32_pair(v32, &cmode, &imm8);
if (i) {
tcg_out_vmovi(s, rd, q, 0, cmode, imm8);
tcg_out_vmovi(s, rd, q, 0, i | 1, extract32(v32, i * 4, 8));
return;
}
i = is_shimm32_pair(~v32, &cmode, &imm8);
if (i) {
tcg_out_vmovi(s, rd, q, 1, cmode, imm8);
tcg_out_vmovi(s, rd, q, 1, i | 1, extract32(~v32, i * 4, 8));
return;
}
}
/*
* As a last resort, load from the constant pool.
*/
if (!q || vece == MO_64) {
new_pool_l2(s, R_ARM_PC11, s->code_ptr, 0, v64, v64 >> 32);
/* VLDR Dd, [pc + offset] */
tcg_out32(s, INSN_VLDR_D | encode_vd(rd) | (0xf << 16));
if (q) {
tcg_out_dup2_vec(s, rd, rd, rd);
}
} else {
new_pool_label(s, (uint32_t)v64, R_ARM_PC8, s->code_ptr, 0);
/* add tmp, pc, offset */
tcg_out_dat_imm(s, COND_AL, ARITH_ADD, TCG_REG_TMP, TCG_REG_PC, 0);
tcg_out_dupm_vec(s, type, MO_32, rd, TCG_REG_TMP, 0);
}
}
static const ARMInsn vec_cmp_insn[16] = {
[TCG_COND_EQ] = INSN_VCEQ,
[TCG_COND_GT] = INSN_VCGT,
[TCG_COND_GE] = INSN_VCGE,
[TCG_COND_GTU] = INSN_VCGT_U,
[TCG_COND_GEU] = INSN_VCGE_U,
};
static const ARMInsn vec_cmp0_insn[16] = {
[TCG_COND_EQ] = INSN_VCEQ0,
[TCG_COND_GT] = INSN_VCGT0,
[TCG_COND_GE] = INSN_VCGE0,
[TCG_COND_LT] = INSN_VCLT0,
[TCG_COND_LE] = INSN_VCLE0,
};
static void tcg_out_vec_op(TCGContext *s, TCGOpcode opc,
unsigned vecl, unsigned vece,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
TCGType type = vecl + TCG_TYPE_V64;
unsigned q = vecl;
TCGArg a0, a1, a2, a3;
int cmode, imm8;
a0 = args[0];
a1 = args[1];
a2 = args[2];
switch (opc) {
case INDEX_op_ld_vec:
tcg_out_ld(s, type, a0, a1, a2);
return;
case INDEX_op_st_vec:
tcg_out_st(s, type, a0, a1, a2);
return;
case INDEX_op_dupm_vec:
tcg_out_dupm_vec(s, type, vece, a0, a1, a2);
return;
case INDEX_op_dup2_vec:
tcg_out_dup2_vec(s, a0, a1, a2);
return;
case INDEX_op_abs_vec:
tcg_out_vreg2(s, INSN_VABS, q, vece, a0, a1);
return;
case INDEX_op_neg_vec:
tcg_out_vreg2(s, INSN_VNEG, q, vece, a0, a1);
return;
case INDEX_op_not_vec:
tcg_out_vreg2(s, INSN_VMVN, q, 0, a0, a1);
return;
case INDEX_op_add_vec:
tcg_out_vreg3(s, INSN_VADD, q, vece, a0, a1, a2);
return;
case INDEX_op_mul_vec:
tcg_out_vreg3(s, INSN_VMUL, q, vece, a0, a1, a2);
return;
case INDEX_op_smax_vec:
tcg_out_vreg3(s, INSN_VMAX, q, vece, a0, a1, a2);
return;
case INDEX_op_smin_vec:
tcg_out_vreg3(s, INSN_VMIN, q, vece, a0, a1, a2);
return;
case INDEX_op_sub_vec:
tcg_out_vreg3(s, INSN_VSUB, q, vece, a0, a1, a2);
return;
case INDEX_op_ssadd_vec:
tcg_out_vreg3(s, INSN_VQADD, q, vece, a0, a1, a2);
return;
case INDEX_op_sssub_vec:
tcg_out_vreg3(s, INSN_VQSUB, q, vece, a0, a1, a2);
return;
case INDEX_op_umax_vec:
tcg_out_vreg3(s, INSN_VMAX_U, q, vece, a0, a1, a2);
return;
case INDEX_op_umin_vec:
tcg_out_vreg3(s, INSN_VMIN_U, q, vece, a0, a1, a2);
return;
case INDEX_op_usadd_vec:
tcg_out_vreg3(s, INSN_VQADD_U, q, vece, a0, a1, a2);
return;
case INDEX_op_ussub_vec:
tcg_out_vreg3(s, INSN_VQSUB_U, q, vece, a0, a1, a2);
return;
case INDEX_op_xor_vec:
tcg_out_vreg3(s, INSN_VEOR, q, 0, a0, a1, a2);
return;
case INDEX_op_arm_sshl_vec:
/*
* Note that Vm is the data and Vn is the shift count,
* therefore the arguments appear reversed.
*/
tcg_out_vreg3(s, INSN_VSHL_S, q, vece, a0, a2, a1);
return;
case INDEX_op_arm_ushl_vec:
/* See above. */
tcg_out_vreg3(s, INSN_VSHL_U, q, vece, a0, a2, a1);
return;
case INDEX_op_shli_vec:
tcg_out_vshifti(s, INSN_VSHLI, q, a0, a1, a2 + (8 << vece));
return;
case INDEX_op_shri_vec:
tcg_out_vshifti(s, INSN_VSHRI, q, a0, a1, (16 << vece) - a2);
return;
case INDEX_op_sari_vec:
tcg_out_vshifti(s, INSN_VSARI, q, a0, a1, (16 << vece) - a2);
return;
case INDEX_op_arm_sli_vec:
tcg_out_vshifti(s, INSN_VSLI, q, a0, a2, args[3] + (8 << vece));
return;
case INDEX_op_andc_vec:
if (!const_args[2]) {
tcg_out_vreg3(s, INSN_VBIC, q, 0, a0, a1, a2);
return;
}
a2 = ~a2;
/* fall through */
case INDEX_op_and_vec:
if (const_args[2]) {
is_shimm1632(~a2, &cmode, &imm8);
if (a0 == a1) {
tcg_out_vmovi(s, a0, q, 1, cmode | 1, imm8); /* VBICI */
return;
}
tcg_out_vmovi(s, a0, q, 1, cmode, imm8); /* VMVNI */
a2 = a0;
}
tcg_out_vreg3(s, INSN_VAND, q, 0, a0, a1, a2);
return;
case INDEX_op_orc_vec:
if (!const_args[2]) {
tcg_out_vreg3(s, INSN_VORN, q, 0, a0, a1, a2);
return;
}
a2 = ~a2;
/* fall through */
case INDEX_op_or_vec:
if (const_args[2]) {
is_shimm1632(a2, &cmode, &imm8);
if (a0 == a1) {
tcg_out_vmovi(s, a0, q, 0, cmode | 1, imm8); /* VORRI */
return;
}
tcg_out_vmovi(s, a0, q, 0, cmode, imm8); /* VMOVI */
a2 = a0;
}
tcg_out_vreg3(s, INSN_VORR, q, 0, a0, a1, a2);
return;
case INDEX_op_cmp_vec:
{
TCGCond cond = args[3];
ARMInsn insn;
switch (cond) {
case TCG_COND_NE:
if (const_args[2]) {
tcg_out_vreg3(s, INSN_VTST, q, vece, a0, a1, a1);
} else {
tcg_out_vreg3(s, INSN_VCEQ, q, vece, a0, a1, a2);
tcg_out_vreg2(s, INSN_VMVN, q, 0, a0, a0);
}
break;
case TCG_COND_TSTNE:
case TCG_COND_TSTEQ:
if (const_args[2]) {
/* (x & 0) == 0 */
tcg_out_dupi_vec(s, type, MO_8, a0,
-(cond == TCG_COND_TSTEQ));
break;
}
tcg_out_vreg3(s, INSN_VTST, q, vece, a0, a1, a2);
if (cond == TCG_COND_TSTEQ) {
tcg_out_vreg2(s, INSN_VMVN, q, 0, a0, a0);
}
break;
default:
if (const_args[2]) {
insn = vec_cmp0_insn[cond];
if (insn) {
tcg_out_vreg2(s, insn, q, vece, a0, a1);
return;
}
tcg_out_dupi_vec(s, type, MO_8, TCG_VEC_TMP, 0);
a2 = TCG_VEC_TMP;
}
insn = vec_cmp_insn[cond];
if (insn == 0) {
TCGArg t;
t = a1, a1 = a2, a2 = t;
cond = tcg_swap_cond(cond);
insn = vec_cmp_insn[cond];
tcg_debug_assert(insn != 0);
}
tcg_out_vreg3(s, insn, q, vece, a0, a1, a2);
break;
}
}
return;
case INDEX_op_bitsel_vec:
a3 = args[3];
if (a0 == a3) {
tcg_out_vreg3(s, INSN_VBIT, q, 0, a0, a2, a1);
} else if (a0 == a2) {
tcg_out_vreg3(s, INSN_VBIF, q, 0, a0, a3, a1);
} else {
tcg_out_mov(s, type, a0, a1);
tcg_out_vreg3(s, INSN_VBSL, q, 0, a0, a2, a3);
}
return;
case INDEX_op_mov_vec: /* Always emitted via tcg_out_mov. */
case INDEX_op_dup_vec: /* Always emitted via tcg_out_dup_vec. */
default:
g_assert_not_reached();
}
}
int tcg_can_emit_vec_op(TCGOpcode opc, TCGType type, unsigned vece)
{
switch (opc) {
case INDEX_op_add_vec:
case INDEX_op_sub_vec:
case INDEX_op_and_vec:
case INDEX_op_andc_vec:
case INDEX_op_or_vec:
case INDEX_op_orc_vec:
case INDEX_op_xor_vec:
case INDEX_op_not_vec:
case INDEX_op_shli_vec:
case INDEX_op_shri_vec:
case INDEX_op_sari_vec:
case INDEX_op_ssadd_vec:
case INDEX_op_sssub_vec:
case INDEX_op_usadd_vec:
case INDEX_op_ussub_vec:
case INDEX_op_bitsel_vec:
return 1;
case INDEX_op_abs_vec:
case INDEX_op_cmp_vec:
case INDEX_op_mul_vec:
case INDEX_op_neg_vec:
case INDEX_op_smax_vec:
case INDEX_op_smin_vec:
case INDEX_op_umax_vec:
case INDEX_op_umin_vec:
return vece < MO_64;
case INDEX_op_shlv_vec:
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
case INDEX_op_rotli_vec:
case INDEX_op_rotlv_vec:
case INDEX_op_rotrv_vec:
return -1;
default:
return 0;
}
}
void tcg_expand_vec_op(TCGOpcode opc, TCGType type, unsigned vece,
TCGArg a0, ...)
{
va_list va;
TCGv_vec v0, v1, v2, t1, t2, c1;
TCGArg a2;
va_start(va, a0);
v0 = temp_tcgv_vec(arg_temp(a0));
v1 = temp_tcgv_vec(arg_temp(va_arg(va, TCGArg)));
a2 = va_arg(va, TCGArg);
va_end(va);
switch (opc) {
case INDEX_op_shlv_vec:
/*
* Merely propagate shlv_vec to arm_ushl_vec.
* In this way we don't set TCG_TARGET_HAS_shv_vec
* because everything is done via expansion.
*/
v2 = temp_tcgv_vec(arg_temp(a2));
vec_gen_3(INDEX_op_arm_ushl_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(v2));
break;
case INDEX_op_shrv_vec:
case INDEX_op_sarv_vec:
/* Right shifts are negative left shifts for NEON. */
v2 = temp_tcgv_vec(arg_temp(a2));
t1 = tcg_temp_new_vec(type);
tcg_gen_neg_vec(vece, t1, v2);
if (opc == INDEX_op_shrv_vec) {
opc = INDEX_op_arm_ushl_vec;
} else {
opc = INDEX_op_arm_sshl_vec;
}
vec_gen_3(opc, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(t1));
tcg_temp_free_vec(t1);
break;
case INDEX_op_rotli_vec:
t1 = tcg_temp_new_vec(type);
tcg_gen_shri_vec(vece, t1, v1, -a2 & ((8 << vece) - 1));
vec_gen_4(INDEX_op_arm_sli_vec, type, vece,
tcgv_vec_arg(v0), tcgv_vec_arg(t1), tcgv_vec_arg(v1), a2);
tcg_temp_free_vec(t1);
break;
case INDEX_op_rotlv_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
t1 = tcg_temp_new_vec(type);
c1 = tcg_constant_vec(type, vece, 8 << vece);
tcg_gen_sub_vec(vece, t1, v2, c1);
/* Right shifts are negative left shifts for NEON. */
vec_gen_3(INDEX_op_arm_ushl_vec, type, vece, tcgv_vec_arg(t1),
tcgv_vec_arg(v1), tcgv_vec_arg(t1));
vec_gen_3(INDEX_op_arm_ushl_vec, type, vece, tcgv_vec_arg(v0),
tcgv_vec_arg(v1), tcgv_vec_arg(v2));
tcg_gen_or_vec(vece, v0, v0, t1);
tcg_temp_free_vec(t1);
break;
case INDEX_op_rotrv_vec:
v2 = temp_tcgv_vec(arg_temp(a2));
t1 = tcg_temp_new_vec(type);
t2 = tcg_temp_new_vec(type);
c1 = tcg_constant_vec(type, vece, 8 << vece);
tcg_gen_neg_vec(vece, t1, v2);
tcg_gen_sub_vec(vece, t2, c1, v2);
/* Right shifts are negative left shifts for NEON. */
vec_gen_3(INDEX_op_arm_ushl_vec, type, vece, tcgv_vec_arg(t1),
tcgv_vec_arg(v1), tcgv_vec_arg(t1));
vec_gen_3(INDEX_op_arm_ushl_vec, type, vece, tcgv_vec_arg(t2),
tcgv_vec_arg(v1), tcgv_vec_arg(t2));
tcg_gen_or_vec(vece, v0, t1, t2);
tcg_temp_free_vec(t1);
tcg_temp_free_vec(t2);
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
int i;
for (i = 0; i < count; ++i) {
p[i] = INSN_NOP;
}
}
/* Compute frame size via macros, to share between tcg_target_qemu_prologue
and tcg_register_jit. */
#define PUSH_SIZE ((11 - 4 + 1 + 1) * sizeof(tcg_target_long))
#define FRAME_SIZE \
((PUSH_SIZE \
+ TCG_STATIC_CALL_ARGS_SIZE \
+ CPU_TEMP_BUF_NLONGS * sizeof(long) \
+ TCG_TARGET_STACK_ALIGN - 1) \
& -TCG_TARGET_STACK_ALIGN)
#define STACK_ADDEND (FRAME_SIZE - PUSH_SIZE)
static void tcg_target_qemu_prologue(TCGContext *s)
{
/* Calling convention requires us to save r4-r11 and lr. */
/* stmdb sp!, { r4 - r11, lr } */
tcg_out_ldstm(s, COND_AL, INSN_STMDB, TCG_REG_CALL_STACK,
(1 << TCG_REG_R4) | (1 << TCG_REG_R5) | (1 << TCG_REG_R6) |
(1 << TCG_REG_R7) | (1 << TCG_REG_R8) | (1 << TCG_REG_R9) |
(1 << TCG_REG_R10) | (1 << TCG_REG_R11) | (1 << TCG_REG_R14));
/* Reserve callee argument and tcg temp space. */
tcg_out_dat_rI(s, COND_AL, ARITH_SUB, TCG_REG_CALL_STACK,
TCG_REG_CALL_STACK, STACK_ADDEND, 1);
tcg_set_frame(s, TCG_REG_CALL_STACK, TCG_STATIC_CALL_ARGS_SIZE,
CPU_TEMP_BUF_NLONGS * sizeof(long));
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
if (!tcg_use_softmmu && guest_base) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_GUEST_BASE, guest_base);
tcg_regset_set_reg(s->reserved_regs, TCG_REG_GUEST_BASE);
}
tcg_out_b_reg(s, COND_AL, tcg_target_call_iarg_regs[1]);
/*
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
* and fall through to the rest of the epilogue.
*/
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_R0, 0);
tcg_out_epilogue(s);
}
static void tcg_out_epilogue(TCGContext *s)
{
/* Release local stack frame. */
tcg_out_dat_rI(s, COND_AL, ARITH_ADD, TCG_REG_CALL_STACK,
TCG_REG_CALL_STACK, STACK_ADDEND, 1);
/* ldmia sp!, { r4 - r11, pc } */
tcg_out_ldstm(s, COND_AL, INSN_LDMIA, TCG_REG_CALL_STACK,
(1 << TCG_REG_R4) | (1 << TCG_REG_R5) | (1 << TCG_REG_R6) |
(1 << TCG_REG_R7) | (1 << TCG_REG_R8) | (1 << TCG_REG_R9) |
(1 << TCG_REG_R10) | (1 << TCG_REG_R11) | (1 << TCG_REG_PC));
}
static void tcg_out_tb_start(TCGContext *s)
{
/* nothing to do */
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[18];
} DebugFrame;
#define ELF_HOST_MACHINE EM_ARM
/* We're expecting a 2 byte uleb128 encoded value. */
QEMU_BUILD_BUG_ON(FRAME_SIZE >= (1 << 14));
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE)-4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = 0x7c, /* sleb128 -4 */
.h.cie.return_column = 14,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, 13, /* DW_CFA_def_cfa sp, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
/* The following must match the stmdb in the prologue. */
0x8e, 1, /* DW_CFA_offset, lr, -4 */
0x8b, 2, /* DW_CFA_offset, r11, -8 */
0x8a, 3, /* DW_CFA_offset, r10, -12 */
0x89, 4, /* DW_CFA_offset, r9, -16 */
0x88, 5, /* DW_CFA_offset, r8, -20 */
0x87, 6, /* DW_CFA_offset, r7, -24 */
0x86, 7, /* DW_CFA_offset, r6, -28 */
0x85, 8, /* DW_CFA_offset, r5, -32 */
0x84, 9, /* DW_CFA_offset, r4, -36 */
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}