qemu/target/avr/helper.c
Philippe Mathieu-Daudé 98db62318a accel/tcg: Include 'accel/tcg/getpc.h' in 'exec/helper-proto'
Most files including "exec/helper-proto.h" call GETPC().
Include it there (in the common part) instead of the
unspecific "exec/exec-all.h" header.

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20250424202412.91612-10-philmd@linaro.org>
2025-04-30 12:45:05 -07:00

322 lines
8.7 KiB
C

/*
* QEMU AVR CPU helpers
*
* Copyright (c) 2016-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "cpu.h"
#include "accel/tcg/cpu-ops.h"
#include "exec/cputlb.h"
#include "exec/page-protection.h"
#include "exec/target_page.h"
#include "accel/tcg/cpu-ldst.h"
#include "exec/helper-proto.h"
bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUAVRState *env = cpu_env(cs);
/*
* We cannot separate a skip from the next instruction,
* as the skip would not be preserved across the interrupt.
* Separating the two insn normally only happens at page boundaries.
*/
if (env->skip) {
return false;
}
if (interrupt_request & CPU_INTERRUPT_RESET) {
if (cpu_interrupts_enabled(env)) {
cs->exception_index = EXCP_RESET;
avr_cpu_do_interrupt(cs);
cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
return true;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
int index = ctz64(env->intsrc);
cs->exception_index = EXCP_INT(index);
avr_cpu_do_interrupt(cs);
env->intsrc &= env->intsrc - 1; /* clear the interrupt */
if (!env->intsrc) {
cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
}
return true;
}
}
return false;
}
static void do_stb(CPUAVRState *env, uint32_t addr, uint8_t data, uintptr_t ra)
{
cpu_stb_mmuidx_ra(env, addr, data, MMU_DATA_IDX, ra);
}
void avr_cpu_do_interrupt(CPUState *cs)
{
CPUAVRState *env = cpu_env(cs);
uint32_t ret = env->pc_w;
int vector = 0;
int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
int base = 0;
if (cs->exception_index == EXCP_RESET) {
vector = 0;
} else if (env->intsrc != 0) {
vector = ctz64(env->intsrc) + 1;
}
if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
do_stb(env, env->sp--, ret, 0);
do_stb(env, env->sp--, ret >> 8, 0);
do_stb(env, env->sp--, ret >> 16, 0);
} else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
do_stb(env, env->sp--, ret, 0);
do_stb(env, env->sp--, ret >> 8, 0);
} else {
do_stb(env, env->sp--, ret, 0);
}
env->pc_w = base + vector * size;
env->sregI = 0; /* clear Global Interrupt Flag */
cs->exception_index = -1;
}
hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
return addr; /* I assume 1:1 address correspondence */
}
bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
int prot;
uint32_t paddr;
address &= TARGET_PAGE_MASK;
if (mmu_idx == MMU_CODE_IDX) {
/* Access to code in flash. */
paddr = OFFSET_CODE + address;
prot = PAGE_READ | PAGE_EXEC;
if (paddr >= OFFSET_DATA) {
/*
* This should not be possible via any architectural operations.
* There is certainly not an exception that we can deliver.
* Accept probing that might come from generic code.
*/
if (probe) {
return false;
}
error_report("execution left flash memory");
abort();
}
} else {
/* Access to memory. */
paddr = OFFSET_DATA + address;
prot = PAGE_READ | PAGE_WRITE;
}
tlb_set_page(cs, address, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/*
* helpers
*/
void helper_sleep(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_HLT;
cpu_loop_exit(cs);
}
void helper_unsupported(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
/*
* I count not find what happens on the real platform, so
* it's EXCP_DEBUG for meanwhile
*/
cs->exception_index = EXCP_DEBUG;
if (qemu_loglevel_mask(LOG_UNIMP)) {
qemu_log("UNSUPPORTED\n");
cpu_dump_state(cs, stderr, 0);
}
cpu_loop_exit(cs);
}
void helper_debug(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_break(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_wdr(CPUAVRState *env)
{
qemu_log_mask(LOG_UNIMP, "WDG reset (not implemented)\n");
}
/*
* The first 32 bytes of the data space are mapped to the cpu regs.
* We cannot write these from normal store operations because TCG
* does not expect global temps to be modified -- a global may be
* live in a host cpu register across the store. We can however
* read these, as TCG does make sure the global temps are saved
* in case the load operation traps.
*/
static uint64_t avr_cpu_reg1_read(void *opaque, hwaddr addr, unsigned size)
{
CPUAVRState *env = opaque;
assert(addr < 32);
return env->r[addr];
}
/*
* The range 0x38-0x3f of the i/o space is mapped to cpu regs.
* As above, we cannot write these from normal store operations.
*/
static uint64_t avr_cpu_reg2_read(void *opaque, hwaddr addr, unsigned size)
{
CPUAVRState *env = opaque;
switch (addr) {
case REG_38_RAMPD:
return 0xff & (env->rampD >> 16);
case REG_38_RAMPX:
return 0xff & (env->rampX >> 16);
case REG_38_RAMPY:
return 0xff & (env->rampY >> 16);
case REG_38_RAMPZ:
return 0xff & (env->rampZ >> 16);
case REG_38_EIDN:
return 0xff & (env->eind >> 16);
case REG_38_SPL:
return env->sp & 0x00ff;
case REG_38_SPH:
return 0xff & (env->sp >> 8);
case REG_38_SREG:
return cpu_get_sreg(env);
}
g_assert_not_reached();
}
static void avr_cpu_trap_write(void *opaque, hwaddr addr,
uint64_t data64, unsigned size)
{
CPUAVRState *env = opaque;
CPUState *cs = env_cpu(env);
env->fullacc = true;
cpu_loop_exit_restore(cs, cs->mem_io_pc);
}
const MemoryRegionOps avr_cpu_reg1 = {
.read = avr_cpu_reg1_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
const MemoryRegionOps avr_cpu_reg2 = {
.read = avr_cpu_reg2_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
/*
* this function implements ST instruction when there is a possibility to write
* into a CPU register
*/
void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
{
env->fullacc = false;
switch (addr) {
case 0 ... 31:
/* CPU registers */
env->r[addr] = data;
break;
case REG_38_RAMPD + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = data << 16;
}
break;
case REG_38_RAMPX + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = data << 16;
}
break;
case REG_38_RAMPY + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = data << 16;
}
break;
case REG_38_RAMPZ + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = data << 16;
}
break;
case REG_38_EIDN + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->eind = data << 16;
break;
case REG_38_SPL + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->sp = (env->sp & 0xff00) | data;
break;
case REG_38_SPH + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case REG_38_SREG + 0x38 + NUMBER_OF_CPU_REGISTERS:
cpu_set_sreg(env, data);
break;
default:
do_stb(env, addr, data, GETPC());
break;
}
}