qemu/migration/vmstate-types.c
Steve Sistare 624e6e654e migration: cpr-transfer mode
Add the cpr-transfer migration mode, which allows the user to transfer
a guest to a new QEMU instance on the same host with minimal guest pause
time, by preserving guest RAM in place, albeit with new virtual addresses
in new QEMU, and by preserving device file descriptors.  Pages that were
locked in memory for DMA in old QEMU remain locked in new QEMU, because the
descriptor of the device that locked them remains open.

cpr-transfer preserves memory and devices descriptors by sending them to
new QEMU over a unix domain socket using SCM_RIGHTS.  Such CPR state cannot
be sent over the normal migration channel, because devices and backends
are created prior to reading the channel, so this mode sends CPR state
over a second "cpr" migration channel.  New QEMU reads the cpr channel
prior to creating devices or backends.  The user specifies the cpr channel
in the channel arguments on the outgoing side, and in a second -incoming
command-line parameter on the incoming side.

The user must start old QEMU with the the '-machine aux-ram-share=on' option,
which allows anonymous memory to be transferred in place to the new process
by transferring a memory descriptor for each ram block.  Memory-backend
objects must have the share=on attribute, but memory-backend-epc is not
supported.

The user starts new QEMU on the same host as old QEMU, with command-line
arguments to create the same machine, plus the -incoming option for the
main migration channel, like normal live migration.  In addition, the user
adds a second -incoming option with channel type "cpr".  This CPR channel
must support file descriptor transfer with SCM_RIGHTS, i.e. it must be a
UNIX domain socket.

To initiate CPR, the user issues a migrate command to old QEMU, adding
a second migration channel of type "cpr" in the channels argument.
Old QEMU stops the VM, saves state to the migration channels, and enters
the postmigrate state.  New QEMU mmap's memory descriptors, and execution
resumes.

The implementation splits qmp_migrate into start and finish functions.
Start sends CPR state to new QEMU, which responds by closing the CPR
channel.  Old QEMU detects the HUP then calls finish, which connects the
main migration channel.

In summary, the usage is:

  qemu-system-$arch -machine aux-ram-share=on ...

  start new QEMU with "-incoming <main-uri> -incoming <cpr-channel>"

  Issue commands to old QEMU:
    migrate_set_parameter mode cpr-transfer

    {"execute": "migrate", ...
        {"channel-type": "main"...}, {"channel-type": "cpr"...} ... }

Signed-off-by: Steve Sistare <steven.sistare@oracle.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Link: https://lore.kernel.org/r/1736967650-129648-17-git-send-email-steven.sistare@oracle.com
Signed-off-by: Fabiano Rosas <farosas@suse.de>
2025-01-29 11:56:24 -03:00

918 lines
23 KiB
C

/*
* VMStateInfo's for basic typse
*
* Copyright (c) 2009-2017 Red Hat Inc
*
* Authors:
* Juan Quintela <quintela@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/cpu-float.h"
#include "qemu-file.h"
#include "migration.h"
#include "migration/vmstate.h"
#include "migration/client-options.h"
#include "qemu/error-report.h"
#include "qemu/queue.h"
#include "trace.h"
/* bool */
static int get_bool(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
bool *v = pv;
*v = qemu_get_byte(f);
return 0;
}
static int put_bool(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
bool *v = pv;
qemu_put_byte(f, *v);
return 0;
}
const VMStateInfo vmstate_info_bool = {
.name = "bool",
.get = get_bool,
.put = put_bool,
};
/* 8 bit int */
static int get_int8(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int8_t *v = pv;
qemu_get_s8s(f, v);
return 0;
}
static int put_int8(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int8_t *v = pv;
qemu_put_s8s(f, v);
return 0;
}
const VMStateInfo vmstate_info_int8 = {
.name = "int8",
.get = get_int8,
.put = put_int8,
};
/* 16 bit int */
static int get_int16(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int16_t *v = pv;
qemu_get_sbe16s(f, v);
return 0;
}
static int put_int16(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int16_t *v = pv;
qemu_put_sbe16s(f, v);
return 0;
}
const VMStateInfo vmstate_info_int16 = {
.name = "int16",
.get = get_int16,
.put = put_int16,
};
/* 32 bit int */
static int get_int32(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int32_t *v = pv;
qemu_get_sbe32s(f, v);
return 0;
}
static int put_int32(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int32_t *v = pv;
qemu_put_sbe32s(f, v);
return 0;
}
const VMStateInfo vmstate_info_int32 = {
.name = "int32",
.get = get_int32,
.put = put_int32,
};
/* 32 bit int. See that the received value is the same than the one
in the field */
static int get_int32_equal(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int32_t *v = pv;
int32_t v2;
qemu_get_sbe32s(f, &v2);
if (*v == v2) {
return 0;
}
error_report("%" PRIx32 " != %" PRIx32, *v, v2);
if (field->err_hint) {
error_printf("%s\n", field->err_hint);
}
return -EINVAL;
}
const VMStateInfo vmstate_info_int32_equal = {
.name = "int32 equal",
.get = get_int32_equal,
.put = put_int32,
};
/* 32 bit int. Check that the received value is non-negative
* and less than or equal to the one in the field.
*/
static int get_int32_le(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int32_t *cur = pv;
int32_t loaded;
qemu_get_sbe32s(f, &loaded);
if (loaded >= 0 && loaded <= *cur) {
*cur = loaded;
return 0;
}
error_report("Invalid value %" PRId32
" expecting positive value <= %" PRId32,
loaded, *cur);
return -EINVAL;
}
const VMStateInfo vmstate_info_int32_le = {
.name = "int32 le",
.get = get_int32_le,
.put = put_int32,
};
/* 64 bit int */
static int get_int64(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int64_t *v = pv;
qemu_get_sbe64s(f, v);
return 0;
}
static int put_int64(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int64_t *v = pv;
qemu_put_sbe64s(f, v);
return 0;
}
const VMStateInfo vmstate_info_int64 = {
.name = "int64",
.get = get_int64,
.put = put_int64,
};
/* 8 bit unsigned int */
static int get_uint8(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint8_t *v = pv;
qemu_get_8s(f, v);
return 0;
}
static int put_uint8(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
uint8_t *v = pv;
qemu_put_8s(f, v);
return 0;
}
const VMStateInfo vmstate_info_uint8 = {
.name = "uint8",
.get = get_uint8,
.put = put_uint8,
};
/* 16 bit unsigned int */
static int get_uint16(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint16_t *v = pv;
qemu_get_be16s(f, v);
return 0;
}
static int put_uint16(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
uint16_t *v = pv;
qemu_put_be16s(f, v);
return 0;
}
const VMStateInfo vmstate_info_uint16 = {
.name = "uint16",
.get = get_uint16,
.put = put_uint16,
};
/* 32 bit unsigned int */
static int get_uint32(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint32_t *v = pv;
qemu_get_be32s(f, v);
return 0;
}
static int put_uint32(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
uint32_t *v = pv;
qemu_put_be32s(f, v);
return 0;
}
const VMStateInfo vmstate_info_uint32 = {
.name = "uint32",
.get = get_uint32,
.put = put_uint32,
};
/* 32 bit uint. See that the received value is the same than the one
in the field */
static int get_uint32_equal(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint32_t *v = pv;
uint32_t v2;
qemu_get_be32s(f, &v2);
if (*v == v2) {
return 0;
}
error_report("%" PRIx32 " != %" PRIx32, *v, v2);
if (field->err_hint) {
error_printf("%s\n", field->err_hint);
}
return -EINVAL;
}
const VMStateInfo vmstate_info_uint32_equal = {
.name = "uint32 equal",
.get = get_uint32_equal,
.put = put_uint32,
};
/* 64 bit unsigned int */
static int get_uint64(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint64_t *v = pv;
qemu_get_be64s(f, v);
return 0;
}
static int put_uint64(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
uint64_t *v = pv;
qemu_put_be64s(f, v);
return 0;
}
const VMStateInfo vmstate_info_uint64 = {
.name = "uint64",
.get = get_uint64,
.put = put_uint64,
};
/* File descriptor communicated via SCM_RIGHTS */
static int get_fd(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int32_t *v = pv;
*v = qemu_file_get_fd(f);
return 0;
}
static int put_fd(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
int32_t *v = pv;
return qemu_file_put_fd(f, *v);
}
const VMStateInfo vmstate_info_fd = {
.name = "fd",
.get = get_fd,
.put = put_fd,
};
static int get_nullptr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
if (qemu_get_byte(f) == VMS_NULLPTR_MARKER) {
return 0;
}
error_report("vmstate: get_nullptr expected VMS_NULLPTR_MARKER");
return -EINVAL;
}
static int put_nullptr(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
if (pv == NULL) {
qemu_put_byte(f, VMS_NULLPTR_MARKER);
return 0;
}
error_report("vmstate: put_nullptr must be called with pv == NULL");
return -EINVAL;
}
const VMStateInfo vmstate_info_nullptr = {
.name = "nullptr",
.get = get_nullptr,
.put = put_nullptr,
};
/* 64 bit unsigned int. See that the received value is the same than the one
in the field */
static int get_uint64_equal(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint64_t *v = pv;
uint64_t v2;
qemu_get_be64s(f, &v2);
if (*v == v2) {
return 0;
}
error_report("%" PRIx64 " != %" PRIx64, *v, v2);
if (field->err_hint) {
error_printf("%s\n", field->err_hint);
}
return -EINVAL;
}
const VMStateInfo vmstate_info_uint64_equal = {
.name = "int64 equal",
.get = get_uint64_equal,
.put = put_uint64,
};
/* 8 bit int. See that the received value is the same than the one
in the field */
static int get_uint8_equal(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint8_t *v = pv;
uint8_t v2;
qemu_get_8s(f, &v2);
if (*v == v2) {
return 0;
}
error_report("%x != %x", *v, v2);
if (field->err_hint) {
error_printf("%s\n", field->err_hint);
}
return -EINVAL;
}
const VMStateInfo vmstate_info_uint8_equal = {
.name = "uint8 equal",
.get = get_uint8_equal,
.put = put_uint8,
};
/* 16 bit unsigned int int. See that the received value is the same than the one
in the field */
static int get_uint16_equal(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint16_t *v = pv;
uint16_t v2;
qemu_get_be16s(f, &v2);
if (*v == v2) {
return 0;
}
error_report("%x != %x", *v, v2);
if (field->err_hint) {
error_printf("%s\n", field->err_hint);
}
return -EINVAL;
}
const VMStateInfo vmstate_info_uint16_equal = {
.name = "uint16 equal",
.get = get_uint16_equal,
.put = put_uint16,
};
/* CPU_DoubleU type */
static int get_cpudouble(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
CPU_DoubleU *v = pv;
qemu_get_be32s(f, &v->l.upper);
qemu_get_be32s(f, &v->l.lower);
return 0;
}
static int put_cpudouble(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
CPU_DoubleU *v = pv;
qemu_put_be32s(f, &v->l.upper);
qemu_put_be32s(f, &v->l.lower);
return 0;
}
const VMStateInfo vmstate_info_cpudouble = {
.name = "CPU_Double_U",
.get = get_cpudouble,
.put = put_cpudouble,
};
/* uint8_t buffers */
static int get_buffer(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint8_t *v = pv;
qemu_get_buffer(f, v, size);
return 0;
}
static int put_buffer(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
uint8_t *v = pv;
qemu_put_buffer(f, v, size);
return 0;
}
const VMStateInfo vmstate_info_buffer = {
.name = "buffer",
.get = get_buffer,
.put = put_buffer,
};
/* unused buffers: space that was used for some fields that are
not useful anymore */
static int get_unused_buffer(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
uint8_t buf[1024];
int block_len;
while (size > 0) {
block_len = MIN(sizeof(buf), size);
size -= block_len;
qemu_get_buffer(f, buf, block_len);
}
return 0;
}
static int put_unused_buffer(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
static const uint8_t buf[1024];
int block_len;
while (size > 0) {
block_len = MIN(sizeof(buf), size);
size -= block_len;
qemu_put_buffer(f, buf, block_len);
}
return 0;
}
const VMStateInfo vmstate_info_unused_buffer = {
.name = "unused_buffer",
.get = get_unused_buffer,
.put = put_unused_buffer,
};
/* vmstate_info_tmp, see VMSTATE_WITH_TMP, the idea is that we allocate
* a temporary buffer and the pre_load/pre_save methods in the child vmsd
* copy stuff from the parent into the child and do calculations to fill
* in fields that don't really exist in the parent but need to be in the
* stream.
*/
static int get_tmp(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
int ret;
const VMStateDescription *vmsd = field->vmsd;
int version_id = field->version_id;
void *tmp = g_malloc(size);
/* Writes the parent field which is at the start of the tmp */
*(void **)tmp = pv;
ret = vmstate_load_state(f, vmsd, tmp, version_id);
g_free(tmp);
return ret;
}
static int put_tmp(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
const VMStateDescription *vmsd = field->vmsd;
void *tmp = g_malloc(size);
int ret;
/* Writes the parent field which is at the start of the tmp */
*(void **)tmp = pv;
ret = vmstate_save_state(f, vmsd, tmp, vmdesc);
g_free(tmp);
return ret;
}
const VMStateInfo vmstate_info_tmp = {
.name = "tmp",
.get = get_tmp,
.put = put_tmp,
};
/* bitmaps (as defined by bitmap.h). Note that size here is the size
* of the bitmap in bits. The on-the-wire format of a bitmap is 64
* bit words with the bits in big endian order. The in-memory format
* is an array of 'unsigned long', which may be either 32 or 64 bits.
*/
/* This is the number of 64 bit words sent over the wire */
#define BITS_TO_U64S(nr) DIV_ROUND_UP(nr, 64)
static int get_bitmap(QEMUFile *f, void *pv, size_t size,
const VMStateField *field)
{
unsigned long *bmp = pv;
int i, idx = 0;
for (i = 0; i < BITS_TO_U64S(size); i++) {
uint64_t w = qemu_get_be64(f);
bmp[idx++] = w;
if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
bmp[idx++] = w >> 32;
}
}
return 0;
}
static int put_bitmap(QEMUFile *f, void *pv, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
unsigned long *bmp = pv;
int i, idx = 0;
for (i = 0; i < BITS_TO_U64S(size); i++) {
uint64_t w = bmp[idx++];
if (sizeof(unsigned long) == 4 && idx < BITS_TO_LONGS(size)) {
w |= ((uint64_t)bmp[idx++]) << 32;
}
qemu_put_be64(f, w);
}
return 0;
}
const VMStateInfo vmstate_info_bitmap = {
.name = "bitmap",
.get = get_bitmap,
.put = put_bitmap,
};
/* get for QTAILQ
* meta data about the QTAILQ is encoded in a VMStateField structure
*/
static int get_qtailq(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field)
{
int ret = 0;
const VMStateDescription *vmsd = field->vmsd;
/* size of a QTAILQ element */
size_t size = field->size;
/* offset of the QTAILQ entry in a QTAILQ element */
size_t entry_offset = field->start;
int version_id = field->version_id;
void *elm;
trace_get_qtailq(vmsd->name, version_id);
if (version_id > vmsd->version_id) {
error_report("%s %s", vmsd->name, "too new");
trace_get_qtailq_end(vmsd->name, "too new", -EINVAL);
return -EINVAL;
}
if (version_id < vmsd->minimum_version_id) {
error_report("%s %s", vmsd->name, "too old");
trace_get_qtailq_end(vmsd->name, "too old", -EINVAL);
return -EINVAL;
}
while (qemu_get_byte(f)) {
elm = g_malloc(size);
ret = vmstate_load_state(f, vmsd, elm, version_id);
if (ret) {
return ret;
}
QTAILQ_RAW_INSERT_TAIL(pv, elm, entry_offset);
}
trace_get_qtailq_end(vmsd->name, "end", ret);
return ret;
}
/* put for QTAILQ */
static int put_qtailq(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field, JSONWriter *vmdesc)
{
const VMStateDescription *vmsd = field->vmsd;
/* offset of the QTAILQ entry in a QTAILQ element*/
size_t entry_offset = field->start;
void *elm;
int ret;
trace_put_qtailq(vmsd->name, vmsd->version_id);
QTAILQ_RAW_FOREACH(elm, pv, entry_offset) {
qemu_put_byte(f, true);
ret = vmstate_save_state(f, vmsd, elm, vmdesc);
if (ret) {
return ret;
}
}
qemu_put_byte(f, false);
trace_put_qtailq_end(vmsd->name, "end");
return 0;
}
const VMStateInfo vmstate_info_qtailq = {
.name = "qtailq",
.get = get_qtailq,
.put = put_qtailq,
};
struct put_gtree_data {
QEMUFile *f;
const VMStateDescription *key_vmsd;
const VMStateDescription *val_vmsd;
JSONWriter *vmdesc;
int ret;
};
static gboolean put_gtree_elem(gpointer key, gpointer value, gpointer data)
{
struct put_gtree_data *capsule = (struct put_gtree_data *)data;
QEMUFile *f = capsule->f;
int ret;
qemu_put_byte(f, true);
/* put the key */
if (!capsule->key_vmsd) {
qemu_put_be64(f, (uint64_t)(uintptr_t)(key)); /* direct key */
} else {
ret = vmstate_save_state(f, capsule->key_vmsd, key, capsule->vmdesc);
if (ret) {
capsule->ret = ret;
return true;
}
}
/* put the data */
ret = vmstate_save_state(f, capsule->val_vmsd, value, capsule->vmdesc);
if (ret) {
capsule->ret = ret;
return true;
}
return false;
}
static int put_gtree(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field, JSONWriter *vmdesc)
{
bool direct_key = (!field->start);
const VMStateDescription *key_vmsd = direct_key ? NULL : &field->vmsd[1];
const VMStateDescription *val_vmsd = &field->vmsd[0];
const char *key_vmsd_name = direct_key ? "direct" : key_vmsd->name;
struct put_gtree_data capsule = {
.f = f,
.key_vmsd = key_vmsd,
.val_vmsd = val_vmsd,
.vmdesc = vmdesc,
.ret = 0};
GTree **pval = pv;
GTree *tree = *pval;
uint32_t nnodes = g_tree_nnodes(tree);
int ret;
trace_put_gtree(field->name, key_vmsd_name, val_vmsd->name, nnodes);
qemu_put_be32(f, nnodes);
g_tree_foreach(tree, put_gtree_elem, (gpointer)&capsule);
qemu_put_byte(f, false);
ret = capsule.ret;
if (ret) {
error_report("%s : failed to save gtree (%d)", field->name, ret);
}
trace_put_gtree_end(field->name, key_vmsd_name, val_vmsd->name, ret);
return ret;
}
static int get_gtree(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field)
{
bool direct_key = (!field->start);
const VMStateDescription *key_vmsd = direct_key ? NULL : &field->vmsd[1];
const VMStateDescription *val_vmsd = &field->vmsd[0];
const char *key_vmsd_name = direct_key ? "direct" : key_vmsd->name;
int version_id = field->version_id;
size_t key_size = field->start;
size_t val_size = field->size;
int nnodes, count = 0;
GTree **pval = pv;
GTree *tree = *pval;
void *key, *val;
int ret = 0;
/* in case of direct key, the key vmsd can be {}, ie. check fields */
if (!direct_key && version_id > key_vmsd->version_id) {
error_report("%s %s", key_vmsd->name, "too new");
return -EINVAL;
}
if (!direct_key && version_id < key_vmsd->minimum_version_id) {
error_report("%s %s", key_vmsd->name, "too old");
return -EINVAL;
}
if (version_id > val_vmsd->version_id) {
error_report("%s %s", val_vmsd->name, "too new");
return -EINVAL;
}
if (version_id < val_vmsd->minimum_version_id) {
error_report("%s %s", val_vmsd->name, "too old");
return -EINVAL;
}
nnodes = qemu_get_be32(f);
trace_get_gtree(field->name, key_vmsd_name, val_vmsd->name, nnodes);
while (qemu_get_byte(f)) {
if ((++count) > nnodes) {
ret = -EINVAL;
break;
}
if (direct_key) {
key = (void *)(uintptr_t)qemu_get_be64(f);
} else {
key = g_malloc0(key_size);
ret = vmstate_load_state(f, key_vmsd, key, version_id);
if (ret) {
error_report("%s : failed to load %s (%d)",
field->name, key_vmsd->name, ret);
goto key_error;
}
}
val = g_malloc0(val_size);
ret = vmstate_load_state(f, val_vmsd, val, version_id);
if (ret) {
error_report("%s : failed to load %s (%d)",
field->name, val_vmsd->name, ret);
goto val_error;
}
g_tree_insert(tree, key, val);
}
if (count != nnodes) {
error_report("%s inconsistent stream when loading the gtree",
field->name);
return -EINVAL;
}
trace_get_gtree_end(field->name, key_vmsd_name, val_vmsd->name, ret);
return ret;
val_error:
g_free(val);
key_error:
if (!direct_key) {
g_free(key);
}
trace_get_gtree_end(field->name, key_vmsd_name, val_vmsd->name, ret);
return ret;
}
const VMStateInfo vmstate_info_gtree = {
.name = "gtree",
.get = get_gtree,
.put = put_gtree,
};
static int put_qlist(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field, JSONWriter *vmdesc)
{
const VMStateDescription *vmsd = field->vmsd;
/* offset of the QTAILQ entry in a QTAILQ element*/
size_t entry_offset = field->start;
void *elm;
int ret;
trace_put_qlist(field->name, vmsd->name, vmsd->version_id);
QLIST_RAW_FOREACH(elm, pv, entry_offset) {
qemu_put_byte(f, true);
ret = vmstate_save_state(f, vmsd, elm, vmdesc);
if (ret) {
error_report("%s: failed to save %s (%d)", field->name,
vmsd->name, ret);
return ret;
}
}
qemu_put_byte(f, false);
trace_put_qlist_end(field->name, vmsd->name);
return 0;
}
static int get_qlist(QEMUFile *f, void *pv, size_t unused_size,
const VMStateField *field)
{
int ret = 0;
const VMStateDescription *vmsd = field->vmsd;
/* size of a QLIST element */
size_t size = field->size;
/* offset of the QLIST entry in a QLIST element */
size_t entry_offset = field->start;
int version_id = field->version_id;
void *elm, *prev = NULL;
trace_get_qlist(field->name, vmsd->name, vmsd->version_id);
if (version_id > vmsd->version_id) {
error_report("%s %s", vmsd->name, "too new");
return -EINVAL;
}
if (version_id < vmsd->minimum_version_id) {
error_report("%s %s", vmsd->name, "too old");
return -EINVAL;
}
while (qemu_get_byte(f)) {
elm = g_malloc(size);
ret = vmstate_load_state(f, vmsd, elm, version_id);
if (ret) {
error_report("%s: failed to load %s (%d)", field->name,
vmsd->name, ret);
g_free(elm);
return ret;
}
if (!prev) {
QLIST_RAW_INSERT_HEAD(pv, elm, entry_offset);
} else {
QLIST_RAW_INSERT_AFTER(pv, prev, elm, entry_offset);
}
prev = elm;
}
trace_get_qlist_end(field->name, vmsd->name);
return ret;
}
const VMStateInfo vmstate_info_qlist = {
.name = "qlist",
.get = get_qlist,
.put = put_qlist,
};