qemu/hw/mem/memory-device.c
David Hildenbrand 766aa0a654 memory-device,vhost: Support memory devices that dynamically consume memslots
We want to support memory devices that have a dynamically managed memory
region container as device memory region. This device memory region maps
multiple RAM memory subregions (e.g., aliases to the same RAM memory
region), whereby these subregions can be (un)mapped on demand.

Each RAM subregion will consume a memslot in KVM and vhost, resulting in
such a new device consuming memslots dynamically, and initially usually
0. We already track the number of used vs. required memslots for all
memslots. From that, we can derive the number of reserved memslots that
must not be used otherwise.

The target use case is virtio-mem and the hyper-v balloon, which will
dynamically map aliases to RAM memory region into their device memory
region container.

Properly document what's supported and what's not and extend the vhost
memslot check accordingly.

Message-ID: <20230926185738.277351-10-david@redhat.com>
Reviewed-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
2023-10-12 14:15:22 +02:00

430 lines
14 KiB
C

/*
* Memory Device Interface
*
* Copyright ProfitBricks GmbH 2012
* Copyright (C) 2014 Red Hat Inc
* Copyright (c) 2018 Red Hat Inc
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "hw/mem/memory-device.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "qemu/range.h"
#include "hw/virtio/vhost.h"
#include "sysemu/kvm.h"
#include "exec/address-spaces.h"
#include "trace.h"
static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
{
const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
const uint64_t addr_a = mdc_a->get_addr(md_a);
const uint64_t addr_b = mdc_b->get_addr(md_b);
if (addr_a > addr_b) {
return 1;
} else if (addr_a < addr_b) {
return -1;
}
return 0;
}
static int memory_device_build_list(Object *obj, void *opaque)
{
GSList **list = opaque;
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
DeviceState *dev = DEVICE(obj);
if (dev->realized) { /* only realized memory devices matter */
*list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
}
}
object_child_foreach(obj, memory_device_build_list, opaque);
return 0;
}
static unsigned int memory_device_get_memslots(MemoryDeviceState *md)
{
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
if (mdc->get_memslots) {
return mdc->get_memslots(md);
}
return 1;
}
/*
* Memslots that are reserved by memory devices (required but still reported
* as free from KVM / vhost).
*/
static unsigned int get_reserved_memslots(MachineState *ms)
{
if (ms->device_memory->used_memslots >
ms->device_memory->required_memslots) {
/* This is unexpected, and we warned already in the memory notifier. */
return 0;
}
return ms->device_memory->required_memslots -
ms->device_memory->used_memslots;
}
unsigned int memory_devices_get_reserved_memslots(void)
{
if (!current_machine->device_memory) {
return 0;
}
return get_reserved_memslots(current_machine);
}
static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md,
MemoryRegion *mr, Error **errp)
{
const uint64_t used_region_size = ms->device_memory->used_region_size;
const uint64_t size = memory_region_size(mr);
const unsigned int required_memslots = memory_device_get_memslots(md);
const unsigned int reserved_memslots = get_reserved_memslots(ms);
/* we will need memory slots for kvm and vhost */
if (kvm_enabled() &&
kvm_get_free_memslots() < required_memslots + reserved_memslots) {
error_setg(errp, "hypervisor has not enough free memory slots left");
return;
}
if (vhost_get_free_memslots() < required_memslots + reserved_memslots) {
error_setg(errp, "a used vhost backend has not enough free memory slots left");
return;
}
/* will we exceed the total amount of memory specified */
if (used_region_size + size < used_region_size ||
used_region_size + size > ms->maxram_size - ms->ram_size) {
error_setg(errp, "not enough space, currently 0x%" PRIx64
" in use of total space for memory devices 0x" RAM_ADDR_FMT,
used_region_size, ms->maxram_size - ms->ram_size);
return;
}
}
static uint64_t memory_device_get_free_addr(MachineState *ms,
const uint64_t *hint,
uint64_t align, uint64_t size,
Error **errp)
{
GSList *list = NULL, *item;
Range as, new = range_empty;
range_init_nofail(&as, ms->device_memory->base,
memory_region_size(&ms->device_memory->mr));
/* start of address space indicates the maximum alignment we expect */
if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
" maximum alignment, memory will get fragmented and not"
" all 'maxmem' might be usable for memory devices.",
align);
}
if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
align);
return 0;
}
if (!QEMU_IS_ALIGNED(size, align)) {
error_setg(errp, "backend memory size must be multiple of 0x%"
PRIx64, align);
return 0;
}
if (hint) {
if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
"], usable range for memory devices [0x%" PRIx64 ":0x%"
PRIx64 "]", *hint, size, range_lob(&as),
range_size(&as));
return 0;
}
} else {
if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
error_setg(errp, "can't add memory device, device too big");
return 0;
}
}
/* find address range that will fit new memory device */
object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
for (item = list; item; item = g_slist_next(item)) {
const MemoryDeviceState *md = item->data;
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
uint64_t next_addr;
Range tmp;
range_init_nofail(&tmp, mdc->get_addr(md),
memory_device_get_region_size(md, &error_abort));
if (range_overlaps_range(&tmp, &new)) {
if (hint) {
const DeviceState *d = DEVICE(md);
error_setg(errp, "address range conflicts with memory device"
" id='%s'", d->id ? d->id : "(unnamed)");
goto out;
}
next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
range_make_empty(&new);
break;
}
} else if (range_lob(&tmp) > range_upb(&new)) {
break;
}
}
if (!range_contains_range(&as, &new)) {
error_setg(errp, "could not find position in guest address space for "
"memory device - memory fragmented due to alignments");
}
out:
g_slist_free(list);
return range_lob(&new);
}
MemoryDeviceInfoList *qmp_memory_device_list(void)
{
GSList *devices = NULL, *item;
MemoryDeviceInfoList *list = NULL, **tail = &list;
object_child_foreach(qdev_get_machine(), memory_device_build_list,
&devices);
for (item = devices; item; item = g_slist_next(item)) {
const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
mdc->fill_device_info(md, info);
QAPI_LIST_APPEND(tail, info);
}
g_slist_free(devices);
return list;
}
static int memory_device_plugged_size(Object *obj, void *opaque)
{
uint64_t *size = opaque;
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
const DeviceState *dev = DEVICE(obj);
const MemoryDeviceState *md = MEMORY_DEVICE(obj);
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
if (dev->realized) {
*size += mdc->get_plugged_size(md, &error_abort);
}
}
object_child_foreach(obj, memory_device_plugged_size, opaque);
return 0;
}
uint64_t get_plugged_memory_size(void)
{
uint64_t size = 0;
memory_device_plugged_size(qdev_get_machine(), &size);
return size;
}
void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
const uint64_t *legacy_align, Error **errp)
{
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
Error *local_err = NULL;
uint64_t addr, align = 0;
MemoryRegion *mr;
if (!ms->device_memory) {
error_setg(errp, "the configuration is not prepared for memory devices"
" (e.g., for memory hotplug), consider specifying the"
" maxmem option");
return;
}
mr = mdc->get_memory_region(md, &local_err);
if (local_err) {
goto out;
}
memory_device_check_addable(ms, md, mr, &local_err);
if (local_err) {
goto out;
}
if (legacy_align) {
align = *legacy_align;
} else {
if (mdc->get_min_alignment) {
align = mdc->get_min_alignment(md);
}
align = MAX(align, memory_region_get_alignment(mr));
}
addr = mdc->get_addr(md);
addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
memory_region_size(mr), &local_err);
if (local_err) {
goto out;
}
mdc->set_addr(md, addr, &local_err);
if (!local_err) {
trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
addr);
}
out:
error_propagate(errp, local_err);
}
void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
{
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
const uint64_t addr = mdc->get_addr(md);
MemoryRegion *mr;
/*
* We expect that a previous call to memory_device_pre_plug() succeeded, so
* it can't fail at this point.
*/
mr = mdc->get_memory_region(md, &error_abort);
g_assert(ms->device_memory);
ms->device_memory->used_region_size += memory_region_size(mr);
ms->device_memory->required_memslots += memory_device_get_memslots(md);
memory_region_add_subregion(&ms->device_memory->mr,
addr - ms->device_memory->base, mr);
trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
}
void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
{
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
MemoryRegion *mr;
/*
* We expect that a previous call to memory_device_pre_plug() succeeded, so
* it can't fail at this point.
*/
mr = mdc->get_memory_region(md, &error_abort);
g_assert(ms->device_memory);
memory_region_del_subregion(&ms->device_memory->mr, mr);
ms->device_memory->used_region_size -= memory_region_size(mr);
ms->device_memory->required_memslots -= memory_device_get_memslots(md);
trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
mdc->get_addr(md));
}
uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
Error **errp)
{
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
MemoryRegion *mr;
/* dropping const here is fine as we don't touch the memory region */
mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
if (!mr) {
return 0;
}
return memory_region_size(mr);
}
static void memory_devices_region_mod(MemoryListener *listener,
MemoryRegionSection *mrs, bool add)
{
DeviceMemoryState *dms = container_of(listener, DeviceMemoryState,
listener);
if (!memory_region_is_ram(mrs->mr)) {
warn_report("Unexpected memory region mapped into device memory region.");
return;
}
/*
* The expectation is that each distinct RAM memory region section in
* our region for memory devices consumes exactly one memslot in KVM
* and in vhost. For vhost, this is true, except:
* * ROM memory regions don't consume a memslot. These get used very
* rarely for memory devices (R/O NVDIMMs).
* * Memslots without a fd (memory-backend-ram) don't necessarily
* consume a memslot. Such setups are quite rare and possibly bogus:
* the memory would be inaccessible by such vhost devices.
*
* So for vhost, in corner cases we might over-estimate the number of
* memslots that are currently used or that might still be reserved
* (required - used).
*/
dms->used_memslots += add ? 1 : -1;
if (dms->used_memslots > dms->required_memslots) {
warn_report("Memory devices use more memory slots than indicated as required.");
}
}
static void memory_devices_region_add(MemoryListener *listener,
MemoryRegionSection *mrs)
{
return memory_devices_region_mod(listener, mrs, true);
}
static void memory_devices_region_del(MemoryListener *listener,
MemoryRegionSection *mrs)
{
return memory_devices_region_mod(listener, mrs, false);
}
void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size)
{
g_assert(size);
g_assert(!ms->device_memory);
ms->device_memory = g_new0(DeviceMemoryState, 1);
ms->device_memory->base = base;
memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory",
size);
address_space_init(&ms->device_memory->as, &ms->device_memory->mr,
"device-memory");
memory_region_add_subregion(get_system_memory(), ms->device_memory->base,
&ms->device_memory->mr);
/* Track the number of memslots used by memory devices. */
ms->device_memory->listener.region_add = memory_devices_region_add;
ms->device_memory->listener.region_del = memory_devices_region_del;
memory_listener_register(&ms->device_memory->listener,
&ms->device_memory->as);
}
static const TypeInfo memory_device_info = {
.name = TYPE_MEMORY_DEVICE,
.parent = TYPE_INTERFACE,
.class_size = sizeof(MemoryDeviceClass),
};
static void memory_device_register_types(void)
{
type_register_static(&memory_device_info);
}
type_init(memory_device_register_types)