qemu/hw/ppc/pnv_occ.c
Nicholas Piggin 70bc5c2498 ppc/pnv: Make HOMER memory a RAM region
The HOMER is a region of memory used by host and firmware and
microconrollers. It has very little logic by itself, just some BAR
registers. Users of this memory should operate on it rather than
have HOMER implement them with MMIO registers, which is not the
right model.

This change switches the implementation of HOMER from MMIO to RAM,
and moves the OCC register implementation to in-memory structure
accesses performed by the OCC model.

This has the downside that access to unimplemented regions of HOMER
are no longer flagged. Perhaps that could be done by adding a memory
region for HOMER, and ram subregions under that for each implemented
part. But for now this takes the simpler approach.

Note: This brings some data structure definitions from skiboot, which
does not match QEMU coding style but is not changed to make comparisons
and updates simpler.

Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
2025-03-11 22:43:30 +10:00

743 lines
24 KiB
C

/*
* QEMU PowerPC PowerNV Emulation of a few OCC related registers
*
* Copyright (c) 2015-2017, IBM Corporation.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License, version 2, as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_chip.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/pnv_occ.h"
#define P8_HOMER_OPAL_DATA_OFFSET 0x1F8000
#define P9_HOMER_OPAL_DATA_OFFSET 0x0E2000
#define OCB_OCI_OCCMISC 0x4020
#define OCB_OCI_OCCMISC_AND 0x4021
#define OCB_OCI_OCCMISC_OR 0x4022
#define OCCMISC_PSI_IRQ PPC_BIT(0)
/* OCC sensors */
#define OCC_SENSOR_DATA_BLOCK_OFFSET 0x0000
#define OCC_SENSOR_DATA_VALID 0x0001
#define OCC_SENSOR_DATA_VERSION 0x0002
#define OCC_SENSOR_DATA_READING_VERSION 0x0004
#define OCC_SENSOR_DATA_NR_SENSORS 0x0008
#define OCC_SENSOR_DATA_NAMES_OFFSET 0x0010
#define OCC_SENSOR_DATA_READING_PING_OFFSET 0x0014
#define OCC_SENSOR_DATA_READING_PONG_OFFSET 0x000c
#define OCC_SENSOR_DATA_NAME_LENGTH 0x000d
#define OCC_SENSOR_NAME_STRUCTURE_TYPE 0x0023
#define OCC_SENSOR_LOC_CORE 0x0022
#define OCC_SENSOR_LOC_GPU 0x0020
#define OCC_SENSOR_TYPE_POWER 0x0003
#define OCC_SENSOR_NAME 0x0005
#define HWMON_SENSORS_MASK 0x001e
static void pnv_occ_set_misc(PnvOCC *occ, uint64_t val)
{
val &= PPC_BITMASK(0, 18); /* Mask out unimplemented bits */
occ->occmisc = val;
/*
* OCCMISC IRQ bit triggers the interrupt on a 0->1 edge, but not clear
* how that is handled in PSI so it is level-triggered here, which is not
* really correct (but skiboot is okay with it).
*/
qemu_set_irq(occ->psi_irq, !!(val & OCCMISC_PSI_IRQ));
}
static uint64_t pnv_occ_power8_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power8_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case OCB_OCI_OCCMISC_AND:
pnv_occ_set_misc(occ, occ->occmisc & val);
break;
case OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static uint64_t pnv_occ_common_area_read(void *opaque, hwaddr addr,
unsigned width)
{
switch (addr) {
/*
* occ-sensor sanity check that asserts the sensor
* header block
*/
case OCC_SENSOR_DATA_BLOCK_OFFSET:
case OCC_SENSOR_DATA_VALID:
case OCC_SENSOR_DATA_VERSION:
case OCC_SENSOR_DATA_READING_VERSION:
case OCC_SENSOR_DATA_NR_SENSORS:
case OCC_SENSOR_DATA_NAMES_OFFSET:
case OCC_SENSOR_DATA_READING_PING_OFFSET:
case OCC_SENSOR_DATA_READING_PONG_OFFSET:
case OCC_SENSOR_NAME_STRUCTURE_TYPE:
return 1;
case OCC_SENSOR_DATA_NAME_LENGTH:
return 0x30;
case OCC_SENSOR_LOC_CORE:
return 0x0040;
case OCC_SENSOR_TYPE_POWER:
return 0x0080;
case OCC_SENSOR_NAME:
return 0x1000;
case HWMON_SENSORS_MASK:
case OCC_SENSOR_LOC_GPU:
return 0x8e00;
}
return 0;
}
static void pnv_occ_common_area_write(void *opaque, hwaddr addr,
uint64_t val, unsigned width)
{
/* callback function defined to occ common area write */
return;
}
static const MemoryRegionOps pnv_occ_power8_xscom_ops = {
.read = pnv_occ_power8_xscom_read,
.write = pnv_occ_power8_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
const MemoryRegionOps pnv_occ_sram_ops = {
.read = pnv_occ_common_area_read,
.write = pnv_occ_common_area_write,
.valid.min_access_size = 1,
.valid.max_access_size = 8,
.impl.min_access_size = 1,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power8_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER8)";
poc->opal_shared_memory_offset = P8_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x02;
poc->xscom_size = PNV_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power8_xscom_ops;
}
static const TypeInfo pnv_occ_power8_type_info = {
.name = TYPE_PNV8_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power8_class_init,
};
#define P9_OCB_OCI_OCCMISC 0x6080
#define P9_OCB_OCI_OCCMISC_CLEAR 0x6081
#define P9_OCB_OCI_OCCMISC_OR 0x6082
static uint64_t pnv_occ_power9_xscom_read(void *opaque, hwaddr addr,
unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset) {
case P9_OCB_OCI_OCCMISC:
val = occ->occmisc;
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
return val;
}
static void pnv_occ_power9_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvOCC *occ = PNV_OCC(opaque);
uint32_t offset = addr >> 3;
switch (offset) {
case P9_OCB_OCI_OCCMISC_CLEAR:
pnv_occ_set_misc(occ, 0);
break;
case P9_OCB_OCI_OCCMISC_OR:
pnv_occ_set_misc(occ, occ->occmisc | val);
break;
case P9_OCB_OCI_OCCMISC:
pnv_occ_set_misc(occ, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "OCC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr >> 3);
}
}
static const MemoryRegionOps pnv_occ_power9_xscom_ops = {
.read = pnv_occ_power9_xscom_read,
.write = pnv_occ_power9_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_occ_power9_class_init(ObjectClass *klass, void *data)
{
PnvOCCClass *poc = PNV_OCC_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER9)";
poc->opal_shared_memory_offset = P9_HOMER_OPAL_DATA_OFFSET;
poc->opal_shared_memory_version = 0x90;
poc->xscom_size = PNV9_XSCOM_OCC_SIZE;
poc->xscom_ops = &pnv_occ_power9_xscom_ops;
assert(!dc->user_creatable);
}
static const TypeInfo pnv_occ_power9_type_info = {
.name = TYPE_PNV9_OCC,
.parent = TYPE_PNV_OCC,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_power9_class_init,
};
static void pnv_occ_power10_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "PowerNV OCC Controller (POWER10)";
}
static const TypeInfo pnv_occ_power10_type_info = {
.name = TYPE_PNV10_OCC,
.parent = TYPE_PNV9_OCC,
.class_init = pnv_occ_power10_class_init,
};
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp);
static void pnv_occ_realize(DeviceState *dev, Error **errp)
{
PnvOCC *occ = PNV_OCC(dev);
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
assert(homer);
if (!occ_init_homer_memory(occ, errp)) {
return;
}
occ->occmisc = 0;
/* XScom region for OCC registers */
pnv_xscom_region_init(&occ->xscom_regs, OBJECT(dev), poc->xscom_ops,
occ, "xscom-occ", poc->xscom_size);
/* OCC common area mmio region for OCC SRAM registers */
memory_region_init_io(&occ->sram_regs, OBJECT(dev), &pnv_occ_sram_ops,
occ, "occ-common-area",
PNV_OCC_SENSOR_DATA_BLOCK_SIZE);
qdev_init_gpio_out(dev, &occ->psi_irq, 1);
}
static const Property pnv_occ_properties[] = {
DEFINE_PROP_LINK("homer", PnvOCC, homer, TYPE_PNV_HOMER, PnvHomer *),
};
static void pnv_occ_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pnv_occ_realize;
device_class_set_props(dc, pnv_occ_properties);
dc->user_creatable = false;
}
static const TypeInfo pnv_occ_type_info = {
.name = TYPE_PNV_OCC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvOCC),
.class_init = pnv_occ_class_init,
.class_size = sizeof(PnvOCCClass),
.abstract = true,
};
static void pnv_occ_register_types(void)
{
type_register_static(&pnv_occ_type_info);
type_register_static(&pnv_occ_power8_type_info);
type_register_static(&pnv_occ_power9_type_info);
type_register_static(&pnv_occ_power10_type_info);
}
type_init(pnv_occ_register_types);
/* From skiboot/hw/occ.c with tab to space conversion */
/* OCC Communication Area for PStates */
#define OPAL_DYNAMIC_DATA_OFFSET 0x0B80
/* relative to HOMER_OPAL_DATA_OFFSET */
#define MAX_PSTATES 256
#define MAX_P8_CORES 12
#define MAX_P9_CORES 24
#define MAX_P10_CORES 32
#define MAX_OPAL_CMD_DATA_LENGTH 4090
#define MAX_OCC_RSP_DATA_LENGTH 8698
#define P8_PIR_CORE_MASK 0xFFF8
#define P9_PIR_QUAD_MASK 0xFFF0
#define P10_PIR_CHIP_MASK 0x0000
#define FREQ_MAX_IN_DOMAIN 0
#define FREQ_MOST_RECENTLY_SET 1
#define u8 uint8_t
#define s8 int8_t
#define u16 uint16_t
#define s16 int16_t
#define u32 uint32_t
#define s32 int32_t
#define u64 uint64_t
#define s64 int64_t
#define __be16 uint16_t
#define __be32 uint32_t
#define __packed QEMU_PACKED
/**
* OCC-OPAL Shared Memory Region
*
* Reference document :
* https://github.com/open-power/docs/blob/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
*
* Supported layout versions:
* - 0x01, 0x02 : P8
* https://github.com/open-power/occ/blob/master_p8/src/occ/proc/proc_pstate.h
*
* - 0x90 : P9
* https://github.com/open-power/occ/blob/master/src/occ_405/proc/proc_pstate.h
* In 0x90 the data is separated into :-
* -- Static Data (struct occ_pstate_table): Data is written once by OCC
* -- Dynamic Data (struct occ_dynamic_data): Data is updated at runtime
*
* struct occ_pstate_table - Pstate table layout
* @valid: Indicates if data is valid
* @version: Layout version [Major/Minor]
* @v2.throttle: Reason for limiting the max pstate
* @v9.occ_role: OCC role (Master/Slave)
* @v#.pstate_min: Minimum pstate ever allowed
* @v#.pstate_nom: Nominal pstate
* @v#.pstate_turbo: Maximum turbo pstate
* @v#.pstate_ultra_turbo: Maximum ultra turbo pstate and the maximum
* pstate ever allowed
* @v#.pstates: Pstate-id and frequency list from Pmax to Pmin
* @v#.pstates.id: Pstate-id
* @v#.pstates.flags: Pstate-flag(reserved)
* @v2.pstates.vdd: Voltage Identifier
* @v2.pstates.vcs: Voltage Identifier
* @v#.pstates.freq_khz: Frequency in KHz
* @v#.core_max[1..N]: Max pstate with N active cores
* @spare/reserved/pad: Unused data
*/
struct occ_pstate_table {
u8 valid;
u8 version;
union __packed {
struct __packed { /* Version 0x01 and 0x02 */
u8 throttle;
s8 pstate_min;
s8 pstate_nom;
s8 pstate_turbo;
s8 pstate_ultra_turbo;
u8 spare;
u64 reserved;
struct __packed {
s8 id;
u8 flags;
u8 vdd;
u8 vcs;
__be32 freq_khz;
} pstates[MAX_PSTATES];
s8 core_max[MAX_P8_CORES];
u8 pad[100];
} v2;
struct __packed { /* Version 0x90 */
u8 occ_role;
u8 pstate_min;
u8 pstate_nom;
u8 pstate_turbo;
u8 pstate_ultra_turbo;
u8 spare;
u64 reserved1;
u64 reserved2;
struct __packed {
u8 id;
u8 flags;
u16 reserved;
__be32 freq_khz;
} pstates[MAX_PSTATES];
u8 core_max[MAX_P9_CORES];
u8 pad[56];
} v9;
struct __packed { /* Version 0xA0 */
u8 occ_role;
u8 pstate_min;
u8 pstate_fixed_freq;
u8 pstate_base;
u8 pstate_ultra_turbo;
u8 pstate_fmax;
u8 minor;
u8 pstate_bottom_throttle;
u8 spare;
u8 spare1;
u32 reserved_32;
u64 reserved_64;
struct __packed {
u8 id;
u8 valid;
u16 reserved;
__be32 freq_khz;
} pstates[MAX_PSTATES];
u8 core_max[MAX_P10_CORES];
u8 pad[48];
} v10;
};
} __packed;
/**
* OPAL-OCC Command Response Interface
*
* OPAL-OCC Command Buffer
*
* ---------------------------------------------------------------------
* | OPAL | Cmd | OPAL | | Cmd Data | Cmd Data | OPAL |
* | Cmd | Request | OCC | Reserved | Length | Length | Cmd |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Command Data up to max of Cmd Data Length 4090 bytes |
* | |
* ---------------------------------------------------------------------
*
* OPAL Command Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* |Cmd | | | | | | | |
* |Ready | | | | | | | |
* -----------------------------------------------------------------
*
* struct opal_command_buffer - Defines the layout of OPAL command buffer
* @flag: Provides general status of the command
* @request_id: Token to identify request
* @cmd: Command sent
* @data_size: Command data length
* @data: Command specific data
* @spare: Unused byte
*/
struct opal_command_buffer {
u8 flag;
u8 request_id;
u8 cmd;
u8 spare;
__be16 data_size;
u8 data[MAX_OPAL_CMD_DATA_LENGTH];
} __packed;
/**
* OPAL-OCC Response Buffer
*
* ---------------------------------------------------------------------
* | OCC | Cmd | OPAL | Response | Rsp Data | Rsp Data | OPAL |
* | Rsp | Request | OCC | Status | Length | Length | Rsp |
* | Flags | ID | Cmd | | (MSB) | (LSB) | Data... |
* ---------------------------------------------------------------------
* | ….OPAL Response Data up to max of Rsp Data Length 8698 bytes |
* | |
* ---------------------------------------------------------------------
*
* OCC Response Flag
*
* -----------------------------------------------------------------
* | Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
* | (msb) | | | | | | | (lsb) |
* -----------------------------------------------------------------
* | | | | | | |OCC in | Rsp |
* | | | | | | |progress|Ready |
* -----------------------------------------------------------------
*
* struct occ_response_buffer - Defines the layout of OCC response buffer
* @flag: Provides general status of the response
* @request_id: Token to identify request
* @cmd: Command requested
* @status: Indicates success/failure status of
* the command
* @data_size: Response data length
* @data: Response specific data
*/
struct occ_response_buffer {
u8 flag;
u8 request_id;
u8 cmd;
u8 status;
__be16 data_size;
u8 data[MAX_OCC_RSP_DATA_LENGTH];
} __packed;
/**
* OCC-OPAL Shared Memory Interface Dynamic Data Vx90
*
* struct occ_dynamic_data - Contains runtime attributes
* @occ_state: Current state of OCC
* @major_version: Major version number
* @minor_version: Minor version number (backwards compatible)
* Version 1 indicates GPU presence populated
* @gpus_present: Bitmask of GPUs present (on systems where GPU
* presence is detected through APSS)
* @cpu_throttle: Reason for limiting the max pstate
* @mem_throttle: Reason for throttling memory
* @quick_pwr_drop: Indicates if QPD is asserted
* @pwr_shifting_ratio: Indicates the current percentage of power to
* take away from the CPU vs GPU when shifting
* power to maintain a power cap. Value of 100
* means take all power from CPU.
* @pwr_cap_type: Indicates type of power cap in effect
* @hard_min_pwr_cap: Hard minimum system power cap in Watts.
* Guaranteed unless hardware failure
* @max_pwr_cap: Maximum allowed system power cap in Watts
* @cur_pwr_cap: Current system power cap
* @soft_min_pwr_cap: Soft powercap minimum. OCC may or may not be
* able to maintain this
* @spare/reserved: Unused data
* @cmd: Opal Command Buffer
* @rsp: OCC Response Buffer
*/
struct occ_dynamic_data {
u8 occ_state;
u8 major_version;
u8 minor_version;
u8 gpus_present;
union __packed {
struct __packed { /* Version 0x90 */
u8 spare1;
} v9;
struct __packed { /* Version 0xA0 */
u8 wof_enabled;
} v10;
};
u8 cpu_throttle;
u8 mem_throttle;
u8 quick_pwr_drop;
u8 pwr_shifting_ratio;
u8 pwr_cap_type;
__be16 hard_min_pwr_cap;
__be16 max_pwr_cap;
__be16 cur_pwr_cap;
__be16 soft_min_pwr_cap;
u8 pad[110];
struct opal_command_buffer cmd;
struct occ_response_buffer rsp;
} __packed;
enum occ_response_status {
OCC_RSP_SUCCESS = 0x00,
OCC_RSP_INVALID_COMMAND = 0x11,
OCC_RSP_INVALID_CMD_DATA_LENGTH = 0x12,
OCC_RSP_INVALID_DATA = 0x13,
OCC_RSP_INTERNAL_ERROR = 0x15,
};
#define OCC_ROLE_SLAVE 0x00
#define OCC_ROLE_MASTER 0x01
#define OCC_FLAG_RSP_READY 0x01
#define OCC_FLAG_CMD_IN_PROGRESS 0x02
#define OPAL_FLAG_CMD_READY 0x80
#define PCAP_MAX_POWER_W 100
#define PCAP_SOFT_MIN_POWER_W 20
#define PCAP_HARD_MIN_POWER_W 10
static bool occ_write_static_data(PnvOCC *occ,
struct occ_pstate_table *static_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
MemTxResult ret;
ret = address_space_write(&address_space_memory, static_addr,
MEMTXATTRS_UNSPECIFIED, static_data,
sizeof(*static_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL static data");
return false;
}
return true;
}
static bool occ_write_dynamic_data(PnvOCC *occ,
struct occ_dynamic_data *dynamic_data,
Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
hwaddr static_addr = homer->base + poc->opal_shared_memory_offset;
hwaddr dynamic_addr = static_addr + OPAL_DYNAMIC_DATA_OFFSET;
MemTxResult ret;
ret = address_space_write(&address_space_memory, dynamic_addr,
MEMTXATTRS_UNSPECIFIED, dynamic_data,
sizeof(*dynamic_data));
if (ret != MEMTX_OK) {
error_setg(errp, "OCC: cannot write OCC-OPAL dynamic data");
return false;
}
return true;
}
static bool occ_init_homer_memory(PnvOCC *occ, Error **errp)
{
PnvOCCClass *poc = PNV_OCC_GET_CLASS(occ);
PnvHomer *homer = occ->homer;
PnvChip *chip = homer->chip;
struct occ_pstate_table static_data;
struct occ_dynamic_data dynamic_data;
int i;
memset(&static_data, 0, sizeof(static_data));
static_data.valid = 1;
static_data.version = poc->opal_shared_memory_version;
switch (poc->opal_shared_memory_version) {
case 0x02:
static_data.v2.throttle = 0;
static_data.v2.pstate_min = -2;
static_data.v2.pstate_nom = -1;
static_data.v2.pstate_turbo = -1;
static_data.v2.pstate_ultra_turbo = 0;
static_data.v2.pstates[0].id = 0;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(3000);
static_data.v2.pstates[1].id = -1;
static_data.v2.pstates[1].freq_khz = cpu_to_be32(3000);
static_data.v2.pstates[2].id = -2;
static_data.v2.pstates[2].freq_khz = cpu_to_be32(3000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v2.core_max[i] = 1;
}
break;
case 0x90:
if (chip->chip_id == 0) {
static_data.v9.occ_role = OCC_ROLE_MASTER;
} else {
static_data.v9.occ_role = OCC_ROLE_SLAVE;
}
static_data.v9.pstate_min = 2;
static_data.v9.pstate_nom = 1;
static_data.v9.pstate_turbo = 1;
static_data.v9.pstate_ultra_turbo = 0;
static_data.v9.pstates[0].id = 0;
static_data.v9.pstates[0].freq_khz = cpu_to_be32(3000);
static_data.v9.pstates[1].id = 1;
static_data.v9.pstates[1].freq_khz = cpu_to_be32(3000);
static_data.v9.pstates[2].id = 2;
static_data.v9.pstates[2].freq_khz = cpu_to_be32(3000);
for (i = 0; i < chip->nr_cores; i++) {
static_data.v9.core_max[i] = 1;
}
break;
default:
g_assert_not_reached();
}
if (!occ_write_static_data(occ, &static_data, errp)) {
return false;
}
memset(&dynamic_data, 0, sizeof(dynamic_data));
dynamic_data.occ_state = 0x3; /* active */
dynamic_data.major_version = 0x0;
dynamic_data.hard_min_pwr_cap = cpu_to_be16(PCAP_HARD_MIN_POWER_W);
dynamic_data.max_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.cur_pwr_cap = cpu_to_be16(PCAP_MAX_POWER_W);
dynamic_data.soft_min_pwr_cap = cpu_to_be16(PCAP_SOFT_MIN_POWER_W);
switch (poc->opal_shared_memory_version) {
case 0x90:
dynamic_data.minor_version = 0x1;
break;
case 0x02:
dynamic_data.minor_version = 0x0;
break;
default:
g_assert_not_reached();
}
if (!occ_write_dynamic_data(occ, &dynamic_data, errp)) {
return false;
}
return true;
}