qemu/rust/qemu-api/src/definitions.rs
Paolo Bonzini 6dd818fbbb rust: qom: put class_init together from multiple ClassInitImpl<>
Parameterize the implementation of ClassInitImpl so that it is
possible to call up the chain of implementations, one superclass at
a time starting at ClassInitImpl<Self::Class>.

In order to avoid having to implement (for example)
ClassInitImpl<PL011Class>, also remove the dummy PL011Class and
PL011LuminaryClass structs and specify the same ObjectType::Class as
the superclass.  In the future this default behavior can be handled by
a procedural macro, by looking at the first field in the struct.

Note that the new trait is safe: the calls are started by
rust_class_init<>(), which is not public and can convert the class
pointer to a Rust reference.

Since CLASS_BASE_INIT applies to the type that is being defined,
and only to it, move it to ObjectImpl.

Reviewed-by: Zhao Liu <zhao1.liu@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-12-19 19:36:37 +01:00

237 lines
9.6 KiB
Rust

// Copyright 2024, Linaro Limited
// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
// SPDX-License-Identifier: GPL-2.0-or-later
//! Definitions required by QEMU when registering a device.
use std::{ffi::CStr, os::raw::c_void};
use crate::bindings::{Object, ObjectClass, TypeInfo};
unsafe extern "C" fn rust_instance_init<T: ObjectImpl>(obj: *mut Object) {
// SAFETY: obj is an instance of T, since rust_instance_init<T>
// is called from QOM core as the instance_init function
// for class T
unsafe { T::INSTANCE_INIT.unwrap()(&mut *obj.cast::<T>()) }
}
unsafe extern "C" fn rust_instance_post_init<T: ObjectImpl>(obj: *mut Object) {
// SAFETY: obj is an instance of T, since rust_instance_post_init<T>
// is called from QOM core as the instance_post_init function
// for class T
//
// FIXME: it's not really guaranteed that there are no backpointers to
// obj; it's quite possible that they have been created by instance_init().
// The receiver should be &self, not &mut self.
T::INSTANCE_POST_INIT.unwrap()(unsafe { &mut *obj.cast::<T>() })
}
unsafe extern "C" fn rust_class_init<T: ObjectType + ClassInitImpl<T::Class>>(
klass: *mut ObjectClass,
_data: *mut c_void,
) {
// SAFETY: klass is a T::Class, since rust_class_init<T>
// is called from QOM core as the class_init function
// for class T
T::class_init(unsafe { &mut *klass.cast::<T::Class>() })
}
/// Trait exposed by all structs corresponding to QOM objects.
///
/// # Safety
///
/// For classes declared in C:
///
/// - `Class` and `TYPE` must match the data in the `TypeInfo`;
///
/// - the first field of the struct must be of the instance type corresponding
/// to the superclass, as declared in the `TypeInfo`
///
/// - likewise, the first field of the `Class` struct must be of the class type
/// corresponding to the superclass
///
/// For classes declared in Rust and implementing [`ObjectImpl`]:
///
/// - the struct must be `#[repr(C)]`;
///
/// - the first field of the struct must be of the instance struct corresponding
/// to the superclass, which is `ObjectImpl::ParentType`
///
/// - likewise, the first field of the `Class` must be of the class struct
/// corresponding to the superclass, which is `ObjectImpl::ParentType::Class`.
pub unsafe trait ObjectType: Sized {
/// The QOM class object corresponding to this struct. This is used
/// to automatically generate a `class_init` method.
type Class;
/// The name of the type, which can be passed to `object_new()` to
/// generate an instance of this type.
const TYPE_NAME: &'static CStr;
}
/// Trait a type must implement to be registered with QEMU.
pub trait ObjectImpl: ObjectType + ClassInitImpl<Self::Class> {
/// The parent of the type. This should match the first field of
/// the struct that implements `ObjectImpl`:
type ParentType: ObjectType;
/// Whether the object can be instantiated
const ABSTRACT: bool = false;
const INSTANCE_FINALIZE: Option<unsafe extern "C" fn(obj: *mut Object)> = None;
/// Function that is called to initialize an object. The parent class will
/// have already been initialized so the type is only responsible for
/// initializing its own members.
///
/// FIXME: The argument is not really a valid reference. `&mut
/// MaybeUninit<Self>` would be a better description.
const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = None;
/// Function that is called to finish initialization of an object, once
/// `INSTANCE_INIT` functions have been called.
const INSTANCE_POST_INIT: Option<fn(&mut Self)> = None;
/// Called on descendent classes after all parent class initialization
/// has occurred, but before the class itself is initialized. This
/// is only useful if a class is not a leaf, and can be used to undo
/// the effects of copying the contents of the parent's class struct
/// to the descendants.
const CLASS_BASE_INIT: Option<
unsafe extern "C" fn(klass: *mut ObjectClass, data: *mut c_void),
> = None;
const TYPE_INFO: TypeInfo = TypeInfo {
name: Self::TYPE_NAME.as_ptr(),
parent: Self::ParentType::TYPE_NAME.as_ptr(),
instance_size: core::mem::size_of::<Self>(),
instance_align: core::mem::align_of::<Self>(),
instance_init: match Self::INSTANCE_INIT {
None => None,
Some(_) => Some(rust_instance_init::<Self>),
},
instance_post_init: match Self::INSTANCE_POST_INIT {
None => None,
Some(_) => Some(rust_instance_post_init::<Self>),
},
instance_finalize: Self::INSTANCE_FINALIZE,
abstract_: Self::ABSTRACT,
class_size: core::mem::size_of::<Self::Class>(),
class_init: Some(rust_class_init::<Self>),
class_base_init: Self::CLASS_BASE_INIT,
class_data: core::ptr::null_mut(),
interfaces: core::ptr::null_mut(),
};
}
/// Internal trait used to automatically fill in a class struct.
///
/// Each QOM class that has virtual methods describes them in a
/// _class struct_. Class structs include a parent field corresponding
/// to the vtable of the parent class, all the way up to [`ObjectClass`].
/// Each QOM type has one such class struct; this trait takes care of
/// initializing the `T` part of the class struct, for the type that
/// implements the trait.
///
/// Each struct will implement this trait with `T` equal to each
/// superclass. For example, a device should implement at least
/// `ClassInitImpl<`[`DeviceClass`](crate::bindings::DeviceClass)`>`.
/// Such implementations are made in one of two ways.
///
/// For most superclasses, `ClassInitImpl` is provided by the `qemu-api`
/// crate itself. The Rust implementation of methods will come from a
/// trait like [`ObjectImpl`] or
/// [`DeviceImpl`](crate::device_class::DeviceImpl), and `ClassInitImpl` is
/// provided by blanket implementations that operate on all implementors of the
/// `*Impl`* trait. For example:
///
/// ```ignore
/// impl<T> ClassInitImpl<DeviceClass> for T
/// where
/// T: DeviceImpl,
/// ```
///
/// The other case is when manual implementation of the trait is needed.
/// This covers the following cases:
///
/// * if a class implements a QOM interface, the Rust code _has_ to define its
/// own class struct `FooClass` and implement `ClassInitImpl<FooClass>`.
/// `ClassInitImpl<FooClass>`'s `class_init` method will then forward to
/// multiple other `class_init`s, for the interfaces as well as the
/// superclass. (Note that there is no Rust example yet for using interfaces).
///
/// * for classes implemented outside the ``qemu-api`` crate, it's not possible
/// to add blanket implementations like the above one, due to orphan rules. In
/// that case, the easiest solution is to implement
/// `ClassInitImpl<YourSuperclass>` for each subclass and not have a
/// `YourSuperclassImpl` trait at all.
///
/// ```ignore
/// impl ClassInitImpl<YourSuperclass> for YourSubclass {
/// fn class_init(klass: &mut YourSuperclass) {
/// klass.some_method = Some(Self::some_method);
/// <Self as ClassInitImpl<SysBusDeviceClass>>::class_init(&mut klass.parent_class);
/// }
/// }
/// ```
///
/// While this method incurs a small amount of code duplication,
/// it is generally limited to the recursive call on the last line.
/// This is because classes defined in Rust do not need the same
/// glue code that is needed when the classes are defined in C code.
/// You may consider using a macro if you have many subclasses.
pub trait ClassInitImpl<T> {
/// Initialize `klass` to point to the virtual method implementations
/// for `Self`. On entry, the virtual method pointers are set to
/// the default values coming from the parent classes; the function
/// can change them to override virtual methods of a parent class.
///
/// The virtual method implementations usually come from another
/// trait, for example [`DeviceImpl`](crate::device_class::DeviceImpl)
/// when `T` is [`DeviceClass`](crate::bindings::DeviceClass).
///
/// On entry, `klass`'s parent class is initialized, while the other fields
/// are all zero; it is therefore assumed that all fields in `T` can be
/// zeroed, otherwise it would not be possible to provide the class as a
/// `&mut T`. TODO: add a bound of [`Zeroable`](crate::zeroable::Zeroable)
/// to T; this is more easily done once Zeroable does not require a manual
/// implementation (Rust 1.75.0).
fn class_init(klass: &mut T);
}
#[macro_export]
macro_rules! module_init {
($type:ident => $body:block) => {
const _: () = {
#[used]
#[cfg_attr(
not(any(target_vendor = "apple", target_os = "windows")),
link_section = ".init_array"
)]
#[cfg_attr(target_vendor = "apple", link_section = "__DATA,__mod_init_func")]
#[cfg_attr(target_os = "windows", link_section = ".CRT$XCU")]
pub static LOAD_MODULE: extern "C" fn() = {
extern "C" fn init_fn() {
$body
}
extern "C" fn ctor_fn() {
unsafe {
$crate::bindings::register_module_init(
Some(init_fn),
$crate::bindings::module_init_type::$type,
);
}
}
ctor_fn
};
};
};
// shortcut because it's quite common that $body needs unsafe {}
($type:ident => unsafe $body:block) => {
$crate::module_init! {
$type => { unsafe { $body } }
}
};
}