mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-02 07:13:54 -06:00

Next patch will move all calls to riscv_load_initrd() to riscv_load_kernel(). Machines that want to load initrd will be able to do via an extra flag to riscv_load_kernel(). This change will expose a sign-extend behavior that is happening in load_elf_ram_sym() when running 32 bit guests [1]. This is currently obscured by the fact that riscv_load_initrd() is using the return of riscv_load_kernel(), defined as target_ulong, and this return type will crop the higher 32 bits that would be padded with 1s by the sign extension when running in 32 bit targets. The changes to be done will force riscv_load_initrd() to use an uint64_t instead, exposing it to the padding when dealing with 32 bit CPUs. There is a discussion about whether load_elf_ram_sym() should or should not sign extend the value returned by 'lowaddr'. What we can do is to prevent the behavior change that the next patch will end up doing. riscv_load_initrd() wasn't dealing with 64 bit kernel entries when running 32 bit CPUs, and we want to keep it that way. One way of doing it is to use target_ulong in 'kernel_entry' in riscv_load_kernel() and rely on the fact that this var will not be sign extended for 32 bit targets. Another way is to explictly clear the higher 32 bits when running 32 bit CPUs for all possibilities of kernel_entry. We opted for the later. This will allow us to be clear about the design choices made in the function, while also allowing us to add a small comment about what load_elf_ram_sym() is doing. With this change, the consolation patch can do its job without worrying about unintended behavioral changes. [1] https://lists.gnu.org/archive/html/qemu-devel/2023-01/msg02281.html Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230206140022.2748401-2-dbarboza@ventanamicro.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com> Signed-off-by: Palmer Dabbelt <palmer@rivosinc.com>
692 lines
29 KiB
C
692 lines
29 KiB
C
/*
|
|
* QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
|
|
*
|
|
* Copyright (c) 2020 Wind River Systems, Inc.
|
|
*
|
|
* Author:
|
|
* Bin Meng <bin.meng@windriver.com>
|
|
*
|
|
* Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
|
|
*
|
|
* 0) CLINT (Core Level Interruptor)
|
|
* 1) PLIC (Platform Level Interrupt Controller)
|
|
* 2) eNVM (Embedded Non-Volatile Memory)
|
|
* 3) MMUARTs (Multi-Mode UART)
|
|
* 4) Cadence eMMC/SDHC controller and an SD card connected to it
|
|
* 5) SiFive Platform DMA (Direct Memory Access Controller)
|
|
* 6) GEM (Gigabit Ethernet MAC Controller)
|
|
* 7) DMC (DDR Memory Controller)
|
|
* 8) IOSCB modules
|
|
*
|
|
* This board currently generates devicetree dynamically that indicates at least
|
|
* two harts and up to five harts.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/sysbus.h"
|
|
#include "chardev/char.h"
|
|
#include "hw/cpu/cluster.h"
|
|
#include "target/riscv/cpu.h"
|
|
#include "hw/misc/unimp.h"
|
|
#include "hw/riscv/boot.h"
|
|
#include "hw/riscv/riscv_hart.h"
|
|
#include "hw/riscv/microchip_pfsoc.h"
|
|
#include "hw/intc/riscv_aclint.h"
|
|
#include "hw/intc/sifive_plic.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/sysemu.h"
|
|
|
|
/*
|
|
* The BIOS image used by this machine is called Hart Software Services (HSS).
|
|
* See https://github.com/polarfire-soc/hart-software-services
|
|
*/
|
|
#define BIOS_FILENAME "hss.bin"
|
|
#define RESET_VECTOR 0x20220000
|
|
|
|
/* CLINT timebase frequency */
|
|
#define CLINT_TIMEBASE_FREQ 1000000
|
|
|
|
/* GEM version */
|
|
#define GEM_REVISION 0x0107010c
|
|
|
|
/*
|
|
* The complete description of the whole PolarFire SoC memory map is scattered
|
|
* in different documents. There are several places to look at for memory maps:
|
|
*
|
|
* 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
|
|
* Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
|
|
* https://www.microsemi.com/document-portal/doc_download/
|
|
* 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
|
|
* describes the whole picture of the PolarFire SoC memory map.
|
|
*
|
|
* 2 A zip file for PolarFire soC memory map, which can be downloaded from
|
|
* https://www.microsemi.com/document-portal/doc_download/
|
|
* 1244581-polarfire-soc-register-map, contains the following 2 major parts:
|
|
* - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
|
|
* describes the complete integrated peripherals memory map
|
|
* - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
|
|
* describes the complete IOSCB modules memory maps
|
|
*/
|
|
static const MemMapEntry microchip_pfsoc_memmap[] = {
|
|
[MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
|
|
[MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
|
|
[MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
|
|
[MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
|
|
[MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
|
|
[MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
|
|
[MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
|
|
[MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
|
|
[MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
|
|
[MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
|
|
[MICROCHIP_PFSOC_WDOG0] = { 0x20001000, 0x1000 },
|
|
[MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
|
|
[MICROCHIP_PFSOC_AXISW] = { 0x20004000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
|
|
[MICROCHIP_PFSOC_FMETER] = { 0x20006000, 0x1000 },
|
|
[MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
|
|
[MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
|
|
[MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
|
|
[MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
|
|
[MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
|
|
[MICROCHIP_PFSOC_WDOG1] = { 0x20101000, 0x1000 },
|
|
[MICROCHIP_PFSOC_WDOG2] = { 0x20103000, 0x1000 },
|
|
[MICROCHIP_PFSOC_WDOG3] = { 0x20105000, 0x1000 },
|
|
[MICROCHIP_PFSOC_WDOG4] = { 0x20106000, 0x1000 },
|
|
[MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
|
|
[MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
|
|
[MICROCHIP_PFSOC_I2C0] = { 0x2010a000, 0x1000 },
|
|
[MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
|
|
[MICROCHIP_PFSOC_CAN0] = { 0x2010c000, 0x1000 },
|
|
[MICROCHIP_PFSOC_CAN1] = { 0x2010d000, 0x1000 },
|
|
[MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
|
|
[MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
|
|
[MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
|
|
[MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
|
|
[MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
|
|
[MICROCHIP_PFSOC_RTC] = { 0x20124000, 0x1000 },
|
|
[MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
|
|
[MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
|
|
[MICROCHIP_PFSOC_USB] = { 0x20201000, 0x1000 },
|
|
[MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
|
|
[MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
|
|
[MICROCHIP_PFSOC_FABRIC_FIC0] = { 0x2000000000, 0x1000000000 },
|
|
[MICROCHIP_PFSOC_FABRIC_FIC1] = { 0x3000000000, 0x1000000000 },
|
|
[MICROCHIP_PFSOC_FABRIC_FIC3] = { 0x40000000, 0x20000000 },
|
|
[MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
|
|
[MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
|
|
[MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
|
|
[MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
|
|
|
|
};
|
|
|
|
static void microchip_pfsoc_soc_instance_init(Object *obj)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
|
|
|
|
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
|
|
|
|
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
|
|
TYPE_RISCV_HART_ARRAY);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
|
|
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
|
|
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
|
|
TYPE_RISCV_CPU_SIFIVE_E51);
|
|
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
|
|
|
|
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
|
|
|
|
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
|
|
TYPE_RISCV_HART_ARRAY);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
|
|
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
|
|
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
|
|
TYPE_RISCV_CPU_SIFIVE_U54);
|
|
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
|
|
|
|
object_initialize_child(obj, "dma-controller", &s->dma,
|
|
TYPE_SIFIVE_PDMA);
|
|
|
|
object_initialize_child(obj, "sysreg", &s->sysreg,
|
|
TYPE_MCHP_PFSOC_SYSREG);
|
|
|
|
object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
|
|
TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
|
|
object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
|
|
TYPE_MCHP_PFSOC_DDR_CFG);
|
|
|
|
object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
|
|
object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
|
|
|
|
object_initialize_child(obj, "sd-controller", &s->sdhci,
|
|
TYPE_CADENCE_SDHCI);
|
|
|
|
object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
|
|
}
|
|
|
|
static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
|
|
const MemMapEntry *memmap = microchip_pfsoc_memmap;
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
|
|
MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
|
|
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
|
|
MemoryRegion *envm_data = g_new(MemoryRegion, 1);
|
|
MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
|
|
char *plic_hart_config;
|
|
NICInfo *nd;
|
|
int i;
|
|
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
|
|
/*
|
|
* The cluster must be realized after the RISC-V hart array container,
|
|
* as the container's CPU object is only created on realize, and the
|
|
* CPU must exist and have been parented into the cluster before the
|
|
* cluster is realized.
|
|
*/
|
|
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
|
|
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
|
|
|
|
/* Reserved Memory at address 0 */
|
|
memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
|
|
memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_RSVD0].base,
|
|
rsvd0_mem);
|
|
|
|
/* E51 DTIM */
|
|
memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
|
|
memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_E51_DTIM].base,
|
|
e51_dtim_mem);
|
|
|
|
/* Bus Error Units */
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
|
|
create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
|
|
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
|
|
|
|
/* CLINT */
|
|
riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
|
|
0, ms->smp.cpus, false);
|
|
riscv_aclint_mtimer_create(
|
|
memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
|
|
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
|
|
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
|
|
CLINT_TIMEBASE_FREQ, false);
|
|
|
|
/* L2 cache controller */
|
|
create_unimplemented_device("microchip.pfsoc.l2cc",
|
|
memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
|
|
|
|
/*
|
|
* Add L2-LIM at reset size.
|
|
* This should be reduced in size as the L2 Cache Controller WayEnable
|
|
* register is incremented. Unfortunately I don't see a nice (or any) way
|
|
* to handle reducing or blocking out the L2 LIM while still allowing it
|
|
* be re returned to all enabled after a reset. For the time being, just
|
|
* leave it enabled all the time. This won't break anything, but will be
|
|
* too generous to misbehaving guests.
|
|
*/
|
|
memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
|
|
memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_L2LIM].base,
|
|
l2lim_mem);
|
|
|
|
/* create PLIC hart topology configuration string */
|
|
plic_hart_config = riscv_plic_hart_config_string(ms->smp.cpus);
|
|
|
|
/* PLIC */
|
|
s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
|
|
plic_hart_config, ms->smp.cpus, 0,
|
|
MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
|
|
MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
|
|
MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
|
|
MICROCHIP_PFSOC_PLIC_PENDING_BASE,
|
|
MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
|
|
MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
|
|
MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
|
|
MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
|
|
memmap[MICROCHIP_PFSOC_PLIC].size);
|
|
g_free(plic_hart_config);
|
|
|
|
/* DMA */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
|
|
memmap[MICROCHIP_PFSOC_DMA].base);
|
|
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
|
|
qdev_get_gpio_in(DEVICE(s->plic),
|
|
MICROCHIP_PFSOC_DMA_IRQ0 + i));
|
|
}
|
|
|
|
/* SYSREG */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
|
|
memmap[MICROCHIP_PFSOC_SYSREG].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sysreg), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic),
|
|
MICROCHIP_PFSOC_MAILBOX_IRQ));
|
|
|
|
/* AXISW */
|
|
create_unimplemented_device("microchip.pfsoc.axisw",
|
|
memmap[MICROCHIP_PFSOC_AXISW].base,
|
|
memmap[MICROCHIP_PFSOC_AXISW].size);
|
|
|
|
/* MPUCFG */
|
|
create_unimplemented_device("microchip.pfsoc.mpucfg",
|
|
memmap[MICROCHIP_PFSOC_MPUCFG].base,
|
|
memmap[MICROCHIP_PFSOC_MPUCFG].size);
|
|
|
|
/* FMETER */
|
|
create_unimplemented_device("microchip.pfsoc.fmeter",
|
|
memmap[MICROCHIP_PFSOC_FMETER].base,
|
|
memmap[MICROCHIP_PFSOC_FMETER].size);
|
|
|
|
/* DDR SGMII PHY */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
|
|
memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
|
|
|
|
/* DDR CFG */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
|
|
memmap[MICROCHIP_PFSOC_DDR_CFG].base);
|
|
|
|
/* SDHCI */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
|
|
memmap[MICROCHIP_PFSOC_EMMC_SD].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
|
|
|
|
/* MMUARTs */
|
|
s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART0].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
|
|
serial_hd(0));
|
|
s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART1].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
|
|
serial_hd(1));
|
|
s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART2].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
|
|
serial_hd(2));
|
|
s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART3].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
|
|
serial_hd(3));
|
|
s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
|
|
memmap[MICROCHIP_PFSOC_MMUART4].base,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
|
|
serial_hd(4));
|
|
|
|
/* Watchdogs */
|
|
create_unimplemented_device("microchip.pfsoc.watchdog0",
|
|
memmap[MICROCHIP_PFSOC_WDOG0].base,
|
|
memmap[MICROCHIP_PFSOC_WDOG0].size);
|
|
create_unimplemented_device("microchip.pfsoc.watchdog1",
|
|
memmap[MICROCHIP_PFSOC_WDOG1].base,
|
|
memmap[MICROCHIP_PFSOC_WDOG1].size);
|
|
create_unimplemented_device("microchip.pfsoc.watchdog2",
|
|
memmap[MICROCHIP_PFSOC_WDOG2].base,
|
|
memmap[MICROCHIP_PFSOC_WDOG2].size);
|
|
create_unimplemented_device("microchip.pfsoc.watchdog3",
|
|
memmap[MICROCHIP_PFSOC_WDOG3].base,
|
|
memmap[MICROCHIP_PFSOC_WDOG3].size);
|
|
create_unimplemented_device("microchip.pfsoc.watchdog4",
|
|
memmap[MICROCHIP_PFSOC_WDOG4].base,
|
|
memmap[MICROCHIP_PFSOC_WDOG4].size);
|
|
|
|
/* SPI */
|
|
create_unimplemented_device("microchip.pfsoc.spi0",
|
|
memmap[MICROCHIP_PFSOC_SPI0].base,
|
|
memmap[MICROCHIP_PFSOC_SPI0].size);
|
|
create_unimplemented_device("microchip.pfsoc.spi1",
|
|
memmap[MICROCHIP_PFSOC_SPI1].base,
|
|
memmap[MICROCHIP_PFSOC_SPI1].size);
|
|
|
|
/* I2C */
|
|
create_unimplemented_device("microchip.pfsoc.i2c0",
|
|
memmap[MICROCHIP_PFSOC_I2C0].base,
|
|
memmap[MICROCHIP_PFSOC_I2C0].size);
|
|
create_unimplemented_device("microchip.pfsoc.i2c1",
|
|
memmap[MICROCHIP_PFSOC_I2C1].base,
|
|
memmap[MICROCHIP_PFSOC_I2C1].size);
|
|
|
|
/* CAN */
|
|
create_unimplemented_device("microchip.pfsoc.can0",
|
|
memmap[MICROCHIP_PFSOC_CAN0].base,
|
|
memmap[MICROCHIP_PFSOC_CAN0].size);
|
|
create_unimplemented_device("microchip.pfsoc.can1",
|
|
memmap[MICROCHIP_PFSOC_CAN1].base,
|
|
memmap[MICROCHIP_PFSOC_CAN1].size);
|
|
|
|
/* USB */
|
|
create_unimplemented_device("microchip.pfsoc.usb",
|
|
memmap[MICROCHIP_PFSOC_USB].base,
|
|
memmap[MICROCHIP_PFSOC_USB].size);
|
|
|
|
/* GEMs */
|
|
|
|
nd = &nd_table[0];
|
|
if (nd->used) {
|
|
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
|
|
qdev_set_nic_properties(DEVICE(&s->gem0), nd);
|
|
}
|
|
nd = &nd_table[1];
|
|
if (nd->used) {
|
|
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
|
|
qdev_set_nic_properties(DEVICE(&s->gem1), nd);
|
|
}
|
|
|
|
object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
|
|
object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
|
|
memmap[MICROCHIP_PFSOC_GEM0].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
|
|
|
|
object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
|
|
object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
|
|
memmap[MICROCHIP_PFSOC_GEM1].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
|
|
|
|
/* GPIOs */
|
|
create_unimplemented_device("microchip.pfsoc.gpio0",
|
|
memmap[MICROCHIP_PFSOC_GPIO0].base,
|
|
memmap[MICROCHIP_PFSOC_GPIO0].size);
|
|
create_unimplemented_device("microchip.pfsoc.gpio1",
|
|
memmap[MICROCHIP_PFSOC_GPIO1].base,
|
|
memmap[MICROCHIP_PFSOC_GPIO1].size);
|
|
create_unimplemented_device("microchip.pfsoc.gpio2",
|
|
memmap[MICROCHIP_PFSOC_GPIO2].base,
|
|
memmap[MICROCHIP_PFSOC_GPIO2].size);
|
|
|
|
/* eNVM */
|
|
memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
|
|
envm_data);
|
|
|
|
/* IOSCB */
|
|
sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
|
|
memmap[MICROCHIP_PFSOC_IOSCB].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(&s->ioscb), 0,
|
|
qdev_get_gpio_in(DEVICE(s->plic),
|
|
MICROCHIP_PFSOC_MAILBOX_IRQ));
|
|
|
|
/* FPGA Fabric */
|
|
create_unimplemented_device("microchip.pfsoc.fabricfic3",
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC3].base,
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC3].size);
|
|
/* FPGA Fabric */
|
|
create_unimplemented_device("microchip.pfsoc.fabricfic0",
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC0].base,
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC0].size);
|
|
/* FPGA Fabric */
|
|
create_unimplemented_device("microchip.pfsoc.fabricfic1",
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC1].base,
|
|
memmap[MICROCHIP_PFSOC_FABRIC_FIC1].size);
|
|
|
|
/* QSPI Flash */
|
|
memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
|
|
"microchip.pfsoc.qspi_xip",
|
|
memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
|
|
qspi_xip_mem);
|
|
}
|
|
|
|
static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
|
|
dc->realize = microchip_pfsoc_soc_realize;
|
|
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
|
|
dc->user_creatable = false;
|
|
}
|
|
|
|
static const TypeInfo microchip_pfsoc_soc_type_info = {
|
|
.name = TYPE_MICROCHIP_PFSOC,
|
|
.parent = TYPE_DEVICE,
|
|
.instance_size = sizeof(MicrochipPFSoCState),
|
|
.instance_init = microchip_pfsoc_soc_instance_init,
|
|
.class_init = microchip_pfsoc_soc_class_init,
|
|
};
|
|
|
|
static void microchip_pfsoc_soc_register_types(void)
|
|
{
|
|
type_register_static(µchip_pfsoc_soc_type_info);
|
|
}
|
|
|
|
type_init(microchip_pfsoc_soc_register_types)
|
|
|
|
static void microchip_icicle_kit_machine_init(MachineState *machine)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const MemMapEntry *memmap = microchip_pfsoc_memmap;
|
|
MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
|
|
MemoryRegion *system_memory = get_system_memory();
|
|
MemoryRegion *mem_low = g_new(MemoryRegion, 1);
|
|
MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
|
|
MemoryRegion *mem_high = g_new(MemoryRegion, 1);
|
|
MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
|
|
uint64_t mem_low_size, mem_high_size;
|
|
hwaddr firmware_load_addr;
|
|
const char *firmware_name;
|
|
bool kernel_as_payload = false;
|
|
target_ulong firmware_end_addr, kernel_start_addr;
|
|
uint64_t kernel_entry;
|
|
uint32_t fdt_load_addr;
|
|
DriveInfo *dinfo = drive_get(IF_SD, 0, 0);
|
|
|
|
/* Sanity check on RAM size */
|
|
if (machine->ram_size < mc->default_ram_size) {
|
|
char *sz = size_to_str(mc->default_ram_size);
|
|
error_report("Invalid RAM size, should be bigger than %s", sz);
|
|
g_free(sz);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/* Initialize SoC */
|
|
object_initialize_child(OBJECT(machine), "soc", &s->soc,
|
|
TYPE_MICROCHIP_PFSOC);
|
|
qdev_realize(DEVICE(&s->soc), NULL, &error_fatal);
|
|
|
|
/* Split RAM into low and high regions using aliases to machine->ram */
|
|
mem_low_size = memmap[MICROCHIP_PFSOC_DRAM_LO].size;
|
|
mem_high_size = machine->ram_size - mem_low_size;
|
|
memory_region_init_alias(mem_low, NULL,
|
|
"microchip.icicle.kit.ram_low", machine->ram,
|
|
0, mem_low_size);
|
|
memory_region_init_alias(mem_high, NULL,
|
|
"microchip.icicle.kit.ram_high", machine->ram,
|
|
mem_low_size, mem_high_size);
|
|
|
|
/* Register RAM */
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_DRAM_LO].base,
|
|
mem_low);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_DRAM_HI].base,
|
|
mem_high);
|
|
|
|
/* Create aliases for the low and high RAM regions */
|
|
memory_region_init_alias(mem_low_alias, NULL,
|
|
"microchip.icicle.kit.ram_low.alias",
|
|
mem_low, 0, mem_low_size);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
|
|
mem_low_alias);
|
|
memory_region_init_alias(mem_high_alias, NULL,
|
|
"microchip.icicle.kit.ram_high.alias",
|
|
mem_high, 0, mem_high_size);
|
|
memory_region_add_subregion(system_memory,
|
|
memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
|
|
mem_high_alias);
|
|
|
|
/* Attach an SD card */
|
|
if (dinfo) {
|
|
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
|
|
DeviceState *card = qdev_new(TYPE_SD_CARD);
|
|
|
|
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
|
|
&error_fatal);
|
|
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
|
|
}
|
|
|
|
/*
|
|
* We follow the following table to select which payload we execute.
|
|
*
|
|
* -bios | -kernel | payload
|
|
* -------+------------+--------
|
|
* N | N | HSS
|
|
* Y | don't care | HSS
|
|
* N | Y | kernel
|
|
*
|
|
* This ensures backwards compatibility with how we used to expose -bios
|
|
* to users but allows them to run through direct kernel booting as well.
|
|
*
|
|
* When -kernel is used for direct boot, -dtb must be present to provide
|
|
* a valid device tree for the board, as we don't generate device tree.
|
|
*/
|
|
|
|
if (machine->kernel_filename && machine->dtb) {
|
|
int fdt_size;
|
|
machine->fdt = load_device_tree(machine->dtb, &fdt_size);
|
|
if (!machine->fdt) {
|
|
error_report("load_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
firmware_name = RISCV64_BIOS_BIN;
|
|
firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
|
|
kernel_as_payload = true;
|
|
}
|
|
|
|
if (!kernel_as_payload) {
|
|
firmware_name = BIOS_FILENAME;
|
|
firmware_load_addr = RESET_VECTOR;
|
|
}
|
|
|
|
/* Load the firmware */
|
|
firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
|
|
firmware_load_addr, NULL);
|
|
|
|
if (kernel_as_payload) {
|
|
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
|
|
firmware_end_addr);
|
|
|
|
kernel_entry = riscv_load_kernel(machine, &s->soc.u_cpus,
|
|
kernel_start_addr, NULL);
|
|
|
|
if (machine->initrd_filename) {
|
|
riscv_load_initrd(machine, kernel_entry);
|
|
}
|
|
|
|
if (machine->kernel_cmdline && *machine->kernel_cmdline) {
|
|
qemu_fdt_setprop_string(machine->fdt, "/chosen",
|
|
"bootargs", machine->kernel_cmdline);
|
|
}
|
|
|
|
/* Compute the fdt load address in dram */
|
|
fdt_load_addr = riscv_compute_fdt_addr(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
|
|
memmap[MICROCHIP_PFSOC_DRAM_LO].size,
|
|
machine);
|
|
riscv_load_fdt(fdt_load_addr, machine->fdt);
|
|
|
|
/* Load the reset vector */
|
|
riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
|
|
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
|
|
kernel_entry, fdt_load_addr);
|
|
}
|
|
}
|
|
|
|
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->desc = "Microchip PolarFire SoC Icicle Kit";
|
|
mc->init = microchip_icicle_kit_machine_init;
|
|
mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
|
|
MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
|
|
mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
|
|
mc->default_cpus = mc->min_cpus;
|
|
mc->default_ram_id = "microchip.icicle.kit.ram";
|
|
|
|
/*
|
|
* Map 513 MiB high memory, the mimimum required high memory size, because
|
|
* HSS will do memory test against the high memory address range regardless
|
|
* of physical memory installed.
|
|
*
|
|
* See memory_tests() in mss_ddr.c in the HSS source code.
|
|
*/
|
|
mc->default_ram_size = 1537 * MiB;
|
|
}
|
|
|
|
static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
|
|
.name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
|
|
.parent = TYPE_MACHINE,
|
|
.class_init = microchip_icicle_kit_machine_class_init,
|
|
.instance_size = sizeof(MicrochipIcicleKitState),
|
|
};
|
|
|
|
static void microchip_icicle_kit_machine_init_register_types(void)
|
|
{
|
|
type_register_static(µchip_icicle_kit_machine_typeinfo);
|
|
}
|
|
|
|
type_init(microchip_icicle_kit_machine_init_register_types)
|