qemu/rust/hw/char/pl011/src/device.rs
Peter Maydell 816945364f rust: pl011: Allow NULL chardev argument to pl011_create()
It's valid for the caller to pass a NULL chardev to pl011_create();
this means "don't set the chardev property on the device", which
in turn means "act like there's no chardev". All the chardev
frontend APIs (in C, at least) accept a NULL pointer to mean
"do nothing".

This fixes some failures in 'make check-functional' when Rust support
is enabled.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Link: https://lore.kernel.org/r/20250307190051.3274226-1-peter.maydell@linaro.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2025-03-09 11:25:10 +01:00

691 lines
21 KiB
Rust

// Copyright 2024, Linaro Limited
// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
// SPDX-License-Identifier: GPL-2.0-or-later
use std::{ffi::CStr, ptr::addr_of_mut};
use qemu_api::{
chardev::{CharBackend, Chardev, Event},
impl_vmstate_forward,
irq::{IRQState, InterruptSource},
memory::{hwaddr, MemoryRegion, MemoryRegionOps, MemoryRegionOpsBuilder},
prelude::*,
qdev::{Clock, ClockEvent, DeviceImpl, DeviceState, Property, ResetType, ResettablePhasesImpl},
qom::{ObjectImpl, Owned, ParentField},
sysbus::{SysBusDevice, SysBusDeviceImpl},
vmstate::VMStateDescription,
};
use crate::{
device_class,
registers::{self, Interrupt, RegisterOffset},
};
// TODO: You must disable the UART before any of the control registers are
// reprogrammed. When the UART is disabled in the middle of transmission or
// reception, it completes the current character before stopping
/// Integer Baud Rate Divider, `UARTIBRD`
const IBRD_MASK: u32 = 0xffff;
/// Fractional Baud Rate Divider, `UARTFBRD`
const FBRD_MASK: u32 = 0x3f;
/// QEMU sourced constant.
pub const PL011_FIFO_DEPTH: u32 = 16;
#[derive(Clone, Copy)]
struct DeviceId(&'static [u8; 8]);
impl std::ops::Index<hwaddr> for DeviceId {
type Output = u8;
fn index(&self, idx: hwaddr) -> &Self::Output {
&self.0[idx as usize]
}
}
// FIFOs use 32-bit indices instead of usize, for compatibility with
// the migration stream produced by the C version of this device.
#[repr(transparent)]
#[derive(Debug, Default)]
pub struct Fifo([registers::Data; PL011_FIFO_DEPTH as usize]);
impl_vmstate_forward!(Fifo);
impl Fifo {
const fn len(&self) -> u32 {
self.0.len() as u32
}
}
impl std::ops::IndexMut<u32> for Fifo {
fn index_mut(&mut self, idx: u32) -> &mut Self::Output {
&mut self.0[idx as usize]
}
}
impl std::ops::Index<u32> for Fifo {
type Output = registers::Data;
fn index(&self, idx: u32) -> &Self::Output {
&self.0[idx as usize]
}
}
#[repr(C)]
#[derive(Debug, Default, qemu_api_macros::offsets)]
pub struct PL011Registers {
#[doc(alias = "fr")]
pub flags: registers::Flags,
#[doc(alias = "lcr")]
pub line_control: registers::LineControl,
#[doc(alias = "rsr")]
pub receive_status_error_clear: registers::ReceiveStatusErrorClear,
#[doc(alias = "cr")]
pub control: registers::Control,
pub dmacr: u32,
pub int_enabled: u32,
pub int_level: u32,
pub read_fifo: Fifo,
pub ilpr: u32,
pub ibrd: u32,
pub fbrd: u32,
pub ifl: u32,
pub read_pos: u32,
pub read_count: u32,
pub read_trigger: u32,
}
#[repr(C)]
#[derive(qemu_api_macros::Object, qemu_api_macros::offsets)]
/// PL011 Device Model in QEMU
pub struct PL011State {
pub parent_obj: ParentField<SysBusDevice>,
pub iomem: MemoryRegion,
#[doc(alias = "chr")]
pub char_backend: CharBackend,
pub regs: BqlRefCell<PL011Registers>,
/// QEMU interrupts
///
/// ```text
/// * sysbus MMIO region 0: device registers
/// * sysbus IRQ 0: `UARTINTR` (combined interrupt line)
/// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line)
/// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line)
/// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line)
/// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line)
/// * sysbus IRQ 5: `UARTEINTR` (error interrupt line)
/// ```
#[doc(alias = "irq")]
pub interrupts: [InterruptSource; IRQMASK.len()],
#[doc(alias = "clk")]
pub clock: Owned<Clock>,
#[doc(alias = "migrate_clk")]
pub migrate_clock: bool,
}
qom_isa!(PL011State : SysBusDevice, DeviceState, Object);
#[repr(C)]
pub struct PL011Class {
parent_class: <SysBusDevice as ObjectType>::Class,
/// The byte string that identifies the device.
device_id: DeviceId,
}
trait PL011Impl: SysBusDeviceImpl + IsA<PL011State> {
const DEVICE_ID: DeviceId;
}
impl PL011Class {
fn class_init<T: PL011Impl>(&mut self) {
self.device_id = T::DEVICE_ID;
self.parent_class.class_init::<T>();
}
}
unsafe impl ObjectType for PL011State {
type Class = PL011Class;
const TYPE_NAME: &'static CStr = crate::TYPE_PL011;
}
impl PL011Impl for PL011State {
const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1]);
}
impl ObjectImpl for PL011State {
type ParentType = SysBusDevice;
const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init);
const INSTANCE_POST_INIT: Option<fn(&Self)> = Some(Self::post_init);
const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>;
}
impl DeviceImpl for PL011State {
fn properties() -> &'static [Property] {
&device_class::PL011_PROPERTIES
}
fn vmsd() -> Option<&'static VMStateDescription> {
Some(&device_class::VMSTATE_PL011)
}
const REALIZE: Option<fn(&Self)> = Some(Self::realize);
}
impl ResettablePhasesImpl for PL011State {
const HOLD: Option<fn(&Self, ResetType)> = Some(Self::reset_hold);
}
impl SysBusDeviceImpl for PL011State {}
impl PL011Registers {
pub(self) fn read(&mut self, offset: RegisterOffset) -> (bool, u32) {
use RegisterOffset::*;
let mut update = false;
let result = match offset {
DR => {
self.flags.set_receive_fifo_full(false);
let c = self.read_fifo[self.read_pos];
if self.read_count > 0 {
self.read_count -= 1;
self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1);
}
if self.read_count == 0 {
self.flags.set_receive_fifo_empty(true);
}
if self.read_count + 1 == self.read_trigger {
self.int_level &= !Interrupt::RX.0;
}
// Update error bits.
self.receive_status_error_clear.set_from_data(c);
// Must call qemu_chr_fe_accept_input
update = true;
u32::from(c)
}
RSR => u32::from(self.receive_status_error_clear),
FR => u32::from(self.flags),
FBRD => self.fbrd,
ILPR => self.ilpr,
IBRD => self.ibrd,
LCR_H => u32::from(self.line_control),
CR => u32::from(self.control),
FLS => self.ifl,
IMSC => self.int_enabled,
RIS => self.int_level,
MIS => self.int_level & self.int_enabled,
ICR => {
// "The UARTICR Register is the interrupt clear register and is write-only"
// Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR
0
}
DMACR => self.dmacr,
};
(update, result)
}
pub(self) fn write(
&mut self,
offset: RegisterOffset,
value: u32,
char_backend: &CharBackend,
) -> bool {
// eprintln!("write offset {offset} value {value}");
use RegisterOffset::*;
match offset {
DR => {
// interrupts always checked
let _ = self.loopback_tx(value.into());
self.int_level |= Interrupt::TX.0;
return true;
}
RSR => {
self.receive_status_error_clear = 0.into();
}
FR => {
// flag writes are ignored
}
ILPR => {
self.ilpr = value;
}
IBRD => {
self.ibrd = value;
}
FBRD => {
self.fbrd = value;
}
LCR_H => {
let new_val: registers::LineControl = value.into();
// Reset the FIFO state on FIFO enable or disable
if self.line_control.fifos_enabled() != new_val.fifos_enabled() {
self.reset_rx_fifo();
self.reset_tx_fifo();
}
let update = (self.line_control.send_break() != new_val.send_break()) && {
let break_enable = new_val.send_break();
let _ = char_backend.send_break(break_enable);
self.loopback_break(break_enable)
};
self.line_control = new_val;
self.set_read_trigger();
return update;
}
CR => {
// ??? Need to implement the enable bit.
self.control = value.into();
return self.loopback_mdmctrl();
}
FLS => {
self.ifl = value;
self.set_read_trigger();
}
IMSC => {
self.int_enabled = value;
return true;
}
RIS => {}
MIS => {}
ICR => {
self.int_level &= !value;
return true;
}
DMACR => {
self.dmacr = value;
if value & 3 > 0 {
// qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n");
eprintln!("pl011: DMA not implemented");
}
}
}
false
}
#[inline]
#[must_use]
fn loopback_tx(&mut self, value: registers::Data) -> bool {
// Caveat:
//
// In real hardware, TX loopback happens at the serial-bit level
// and then reassembled by the RX logics back into bytes and placed
// into the RX fifo. That is, loopback happens after TX fifo.
//
// Because the real hardware TX fifo is time-drained at the frame
// rate governed by the configured serial format, some loopback
// bytes in TX fifo may still be able to get into the RX fifo
// that could be full at times while being drained at software
// pace.
//
// In such scenario, the RX draining pace is the major factor
// deciding which loopback bytes get into the RX fifo, unless
// hardware flow-control is enabled.
//
// For simplicity, the above described is not emulated.
self.loopback_enabled() && self.put_fifo(value)
}
#[must_use]
fn loopback_mdmctrl(&mut self) -> bool {
if !self.loopback_enabled() {
return false;
}
/*
* Loopback software-driven modem control outputs to modem status inputs:
* FR.RI <= CR.Out2
* FR.DCD <= CR.Out1
* FR.CTS <= CR.RTS
* FR.DSR <= CR.DTR
*
* The loopback happens immediately even if this call is triggered
* by setting only CR.LBE.
*
* CTS/RTS updates due to enabled hardware flow controls are not
* dealt with here.
*/
self.flags.set_ring_indicator(self.control.out_2());
self.flags.set_data_carrier_detect(self.control.out_1());
self.flags.set_clear_to_send(self.control.request_to_send());
self.flags
.set_data_set_ready(self.control.data_transmit_ready());
// Change interrupts based on updated FR
let mut il = self.int_level;
il &= !Interrupt::MS.0;
if self.flags.data_set_ready() {
il |= Interrupt::DSR.0;
}
if self.flags.data_carrier_detect() {
il |= Interrupt::DCD.0;
}
if self.flags.clear_to_send() {
il |= Interrupt::CTS.0;
}
if self.flags.ring_indicator() {
il |= Interrupt::RI.0;
}
self.int_level = il;
true
}
fn loopback_break(&mut self, enable: bool) -> bool {
enable && self.loopback_tx(registers::Data::BREAK)
}
fn set_read_trigger(&mut self) {
self.read_trigger = 1;
}
pub fn reset(&mut self) {
self.line_control.reset();
self.receive_status_error_clear.reset();
self.dmacr = 0;
self.int_enabled = 0;
self.int_level = 0;
self.ilpr = 0;
self.ibrd = 0;
self.fbrd = 0;
self.read_trigger = 1;
self.ifl = 0x12;
self.control.reset();
self.flags.reset();
self.reset_rx_fifo();
self.reset_tx_fifo();
}
pub fn reset_rx_fifo(&mut self) {
self.read_count = 0;
self.read_pos = 0;
// Reset FIFO flags
self.flags.set_receive_fifo_full(false);
self.flags.set_receive_fifo_empty(true);
}
pub fn reset_tx_fifo(&mut self) {
// Reset FIFO flags
self.flags.set_transmit_fifo_full(false);
self.flags.set_transmit_fifo_empty(true);
}
#[inline]
pub fn fifo_enabled(&self) -> bool {
self.line_control.fifos_enabled() == registers::Mode::FIFO
}
#[inline]
pub fn loopback_enabled(&self) -> bool {
self.control.enable_loopback()
}
#[inline]
pub fn fifo_depth(&self) -> u32 {
// Note: FIFO depth is expected to be power-of-2
if self.fifo_enabled() {
return PL011_FIFO_DEPTH;
}
1
}
#[must_use]
pub fn put_fifo(&mut self, value: registers::Data) -> bool {
let depth = self.fifo_depth();
assert!(depth > 0);
let slot = (self.read_pos + self.read_count) & (depth - 1);
self.read_fifo[slot] = value;
self.read_count += 1;
self.flags.set_receive_fifo_empty(false);
if self.read_count == depth {
self.flags.set_receive_fifo_full(true);
}
if self.read_count == self.read_trigger {
self.int_level |= Interrupt::RX.0;
return true;
}
false
}
pub fn post_load(&mut self) -> Result<(), ()> {
/* Sanity-check input state */
if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() {
return Err(());
}
if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 {
// Older versions of PL011 didn't ensure that the single
// character in the FIFO in FIFO-disabled mode is in
// element 0 of the array; convert to follow the current
// code's assumptions.
self.read_fifo[0] = self.read_fifo[self.read_pos];
self.read_pos = 0;
}
self.ibrd &= IBRD_MASK;
self.fbrd &= FBRD_MASK;
Ok(())
}
}
impl PL011State {
/// Initializes a pre-allocated, unitialized instance of `PL011State`.
///
/// # Safety
///
/// `self` must point to a correctly sized and aligned location for the
/// `PL011State` type. It must not be called more than once on the same
/// location/instance. All its fields are expected to hold unitialized
/// values with the sole exception of `parent_obj`.
unsafe fn init(&mut self) {
static PL011_OPS: MemoryRegionOps<PL011State> = MemoryRegionOpsBuilder::<PL011State>::new()
.read(&PL011State::read)
.write(&PL011State::write)
.native_endian()
.impl_sizes(4, 4)
.build();
// SAFETY:
//
// self and self.iomem are guaranteed to be valid at this point since callers
// must make sure the `self` reference is valid.
MemoryRegion::init_io(
unsafe { &mut *addr_of_mut!(self.iomem) },
addr_of_mut!(*self),
&PL011_OPS,
"pl011",
0x1000,
);
self.regs = Default::default();
// SAFETY:
//
// self.clock is not initialized at this point; but since `Owned<_>` is
// not Drop, we can overwrite the undefined value without side effects;
// it's not sound but, because for all PL011State instances are created
// by QOM code which calls this function to initialize the fields, at
// leastno code is able to access an invalid self.clock value.
self.clock = self.init_clock_in("clk", &Self::clock_update, ClockEvent::ClockUpdate);
}
const fn clock_update(&self, _event: ClockEvent) {
/* pl011_trace_baudrate_change(s); */
}
fn post_init(&self) {
self.init_mmio(&self.iomem);
for irq in self.interrupts.iter() {
self.init_irq(irq);
}
}
fn read(&self, offset: hwaddr, _size: u32) -> u64 {
match RegisterOffset::try_from(offset) {
Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => {
let device_id = self.get_class().device_id;
u64::from(device_id[(offset - 0xfe0) >> 2])
}
Err(_) => {
// qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset);
0
}
Ok(field) => {
let (update_irq, result) = self.regs.borrow_mut().read(field);
if update_irq {
self.update();
self.char_backend.accept_input();
}
result.into()
}
}
}
fn write(&self, offset: hwaddr, value: u64, _size: u32) {
let mut update_irq = false;
if let Ok(field) = RegisterOffset::try_from(offset) {
// qemu_chr_fe_write_all() calls into the can_receive
// callback, so handle writes before entering PL011Registers.
if field == RegisterOffset::DR {
// ??? Check if transmitter is enabled.
let ch: [u8; 1] = [value as u8];
// XXX this blocks entire thread. Rewrite to use
// qemu_chr_fe_write and background I/O callbacks
let _ = self.char_backend.write_all(&ch);
}
update_irq = self
.regs
.borrow_mut()
.write(field, value as u32, &self.char_backend);
} else {
eprintln!("write bad offset {offset} value {value}");
}
if update_irq {
self.update();
}
}
fn can_receive(&self) -> u32 {
let regs = self.regs.borrow();
// trace_pl011_can_receive(s->lcr, s->read_count, r);
u32::from(regs.read_count < regs.fifo_depth())
}
fn receive(&self, buf: &[u8]) {
if buf.is_empty() {
return;
}
let mut regs = self.regs.borrow_mut();
let c: u32 = buf[0].into();
let update_irq = !regs.loopback_enabled() && regs.put_fifo(c.into());
// Release the BqlRefCell before calling self.update()
drop(regs);
if update_irq {
self.update();
}
}
fn event(&self, event: Event) {
let mut update_irq = false;
let mut regs = self.regs.borrow_mut();
if event == Event::CHR_EVENT_BREAK && !regs.loopback_enabled() {
update_irq = regs.put_fifo(registers::Data::BREAK);
}
// Release the BqlRefCell before calling self.update()
drop(regs);
if update_irq {
self.update()
}
}
fn realize(&self) {
self.char_backend
.enable_handlers(self, Self::can_receive, Self::receive, Self::event);
}
fn reset_hold(&self, _type: ResetType) {
self.regs.borrow_mut().reset();
}
fn update(&self) {
let regs = self.regs.borrow();
let flags = regs.int_level & regs.int_enabled;
for (irq, i) in self.interrupts.iter().zip(IRQMASK) {
irq.set(flags & i != 0);
}
}
pub fn post_load(&self, _version_id: u32) -> Result<(), ()> {
self.regs.borrow_mut().post_load()
}
}
/// Which bits in the interrupt status matter for each outbound IRQ line ?
const IRQMASK: [u32; 6] = [
/* combined IRQ */
Interrupt::E.0 | Interrupt::MS.0 | Interrupt::RT.0 | Interrupt::TX.0 | Interrupt::RX.0,
Interrupt::RX.0,
Interrupt::TX.0,
Interrupt::RT.0,
Interrupt::MS.0,
Interrupt::E.0,
];
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer for `chr`
/// and `irq`.
#[no_mangle]
pub unsafe extern "C" fn pl011_create(
addr: u64,
irq: *mut IRQState,
chr: *mut Chardev,
) -> *mut DeviceState {
// SAFETY: The callers promise that they have owned references.
// They do not gift them to pl011_create, so use `Owned::from`.
let irq = unsafe { Owned::<IRQState>::from(&*irq) };
let dev = PL011State::new();
if !chr.is_null() {
let chr = unsafe { Owned::<Chardev>::from(&*chr) };
dev.prop_set_chr("chardev", &chr);
}
dev.sysbus_realize();
dev.mmio_map(0, addr);
dev.connect_irq(0, &irq);
// The pointer is kept alive by the QOM tree; drop the owned ref
dev.as_mut_ptr()
}
#[repr(C)]
#[derive(qemu_api_macros::Object)]
/// PL011 Luminary device model.
pub struct PL011Luminary {
parent_obj: ParentField<PL011State>,
}
qom_isa!(PL011Luminary : PL011State, SysBusDevice, DeviceState, Object);
unsafe impl ObjectType for PL011Luminary {
type Class = <PL011State as ObjectType>::Class;
const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY;
}
impl ObjectImpl for PL011Luminary {
type ParentType = PL011State;
const CLASS_INIT: fn(&mut Self::Class) = Self::Class::class_init::<Self>;
}
impl PL011Impl for PL011Luminary {
const DEVICE_ID: DeviceId = DeviceId(&[0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1]);
}
impl DeviceImpl for PL011Luminary {}
impl ResettablePhasesImpl for PL011Luminary {}
impl SysBusDeviceImpl for PL011Luminary {}