qemu/tcg/mips/tcg-target.c.inc
Richard Henderson 03568c0d53 tcg: Convert rotl, rotr to TCGOutOpBinary
For aarch64, arm, loongarch64, mips, we can drop rotl.
For ppc, s390x we can drop rotr.
Only x86, riscv, tci have both rotl and rotr.

Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2025-04-28 13:40:16 -07:00

2748 lines
83 KiB
C++

/*
* Tiny Code Generator for QEMU
*
* Copyright (c) 2008-2009 Arnaud Patard <arnaud.patard@rtp-net.org>
* Copyright (c) 2009 Aurelien Jarno <aurelien@aurel32.net>
* Based on i386/tcg-target.c - Copyright (c) 2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* used for function call generation */
#define TCG_TARGET_STACK_ALIGN 16
#if _MIPS_SIM == _ABIO32
# define TCG_TARGET_CALL_STACK_OFFSET 16
# define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_EVEN
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_BY_REF
#else
# define TCG_TARGET_CALL_STACK_OFFSET 0
# define TCG_TARGET_CALL_ARG_I64 TCG_CALL_ARG_NORMAL
# define TCG_TARGET_CALL_RET_I128 TCG_CALL_RET_NORMAL
#endif
#define TCG_TARGET_CALL_ARG_I32 TCG_CALL_ARG_NORMAL
#define TCG_TARGET_CALL_ARG_I128 TCG_CALL_ARG_EVEN
#if TCG_TARGET_REG_BITS == 32
# define LO_OFF (HOST_BIG_ENDIAN * 4)
# define HI_OFF (4 - LO_OFF)
#else
/* Assert at compile-time that these values are never used for 64-bit. */
# define LO_OFF ({ qemu_build_not_reached(); 0; })
# define HI_OFF ({ qemu_build_not_reached(); 0; })
#endif
#ifdef CONFIG_DEBUG_TCG
static const char * const tcg_target_reg_names[TCG_TARGET_NB_REGS] = {
"zero",
"at",
"v0",
"v1",
"a0",
"a1",
"a2",
"a3",
"t0",
"t1",
"t2",
"t3",
"t4",
"t5",
"t6",
"t7",
"s0",
"s1",
"s2",
"s3",
"s4",
"s5",
"s6",
"s7",
"t8",
"t9",
"k0",
"k1",
"gp",
"sp",
"s8",
"ra",
};
#endif
#define TCG_TMP0 TCG_REG_AT
#define TCG_TMP1 TCG_REG_T9
#define TCG_TMP2 TCG_REG_T8
#define TCG_TMP3 TCG_REG_T7
#define TCG_GUEST_BASE_REG TCG_REG_S7
#if TCG_TARGET_REG_BITS == 64
#define TCG_REG_TB TCG_REG_S6
#else
#define TCG_REG_TB ({ qemu_build_not_reached(); TCG_REG_ZERO; })
#endif
/* check if we really need so many registers :P */
static const int tcg_target_reg_alloc_order[] = {
/* Call saved registers. */
TCG_REG_S0,
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6,
TCG_REG_S7,
TCG_REG_S8,
/* Call clobbered registers. */
TCG_REG_T4,
TCG_REG_T5,
TCG_REG_T6,
TCG_REG_T7,
TCG_REG_T8,
TCG_REG_T9,
TCG_REG_V1,
TCG_REG_V0,
/* Argument registers, opposite order of allocation. */
TCG_REG_T3,
TCG_REG_T2,
TCG_REG_T1,
TCG_REG_T0,
TCG_REG_A3,
TCG_REG_A2,
TCG_REG_A1,
TCG_REG_A0,
};
static const TCGReg tcg_target_call_iarg_regs[] = {
TCG_REG_A0,
TCG_REG_A1,
TCG_REG_A2,
TCG_REG_A3,
#if _MIPS_SIM == _ABIN32 || _MIPS_SIM == _ABI64
TCG_REG_T0,
TCG_REG_T1,
TCG_REG_T2,
TCG_REG_T3,
#endif
};
static TCGReg tcg_target_call_oarg_reg(TCGCallReturnKind kind, int slot)
{
tcg_debug_assert(kind == TCG_CALL_RET_NORMAL);
tcg_debug_assert(slot >= 0 && slot <= 1);
return TCG_REG_V0 + slot;
}
static const tcg_insn_unit *tb_ret_addr;
static const tcg_insn_unit *bswap32_addr;
static const tcg_insn_unit *bswap32u_addr;
static const tcg_insn_unit *bswap64_addr;
static bool reloc_pc16(tcg_insn_unit *src_rw, const tcg_insn_unit *target)
{
/* Let the compiler perform the right-shift as part of the arithmetic. */
const tcg_insn_unit *src_rx = tcg_splitwx_to_rx(src_rw);
ptrdiff_t disp = target - (src_rx + 1);
if (disp == (int16_t)disp) {
*src_rw = deposit32(*src_rw, 0, 16, disp);
return true;
}
return false;
}
static bool patch_reloc(tcg_insn_unit *code_ptr, int type,
intptr_t value, intptr_t addend)
{
value += addend;
switch (type) {
case R_MIPS_PC16:
return reloc_pc16(code_ptr, (const tcg_insn_unit *)value);
case R_MIPS_16:
if (value != (int16_t)value) {
return false;
}
*code_ptr = deposit32(*code_ptr, 0, 16, value);
return true;
}
g_assert_not_reached();
}
#define TCG_CT_CONST_U16 0x100 /* Unsigned 16-bit: 0 - 0xffff. */
#define TCG_CT_CONST_S16 0x200 /* Signed 16-bit: -32768 - 32767 */
#define TCG_CT_CONST_P2M1 0x400 /* Power of 2 minus 1. */
#define TCG_CT_CONST_N16 0x800 /* "Negatable" 16-bit: -32767 - 32767 */
#define TCG_CT_CONST_WSZ 0x1000 /* word size */
#define ALL_GENERAL_REGS 0xffffffffu
static bool is_p2m1(tcg_target_long val)
{
return val && ((val + 1) & val) == 0;
}
/* test if a constant matches the constraint */
static bool tcg_target_const_match(int64_t val, int ct,
TCGType type, TCGCond cond, int vece)
{
if (ct & TCG_CT_CONST) {
return 1;
} else if ((ct & TCG_CT_CONST_U16) && val == (uint16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_S16) && val == (int16_t)val) {
return 1;
} else if ((ct & TCG_CT_CONST_N16) && val >= -32767 && val <= 32767) {
return 1;
} else if ((ct & TCG_CT_CONST_P2M1)
&& use_mips32r2_instructions && is_p2m1(val)) {
return 1;
} else if ((ct & TCG_CT_CONST_WSZ)
&& val == (type == TCG_TYPE_I32 ? 32 : 64)) {
return 1;
}
return 0;
}
/* instruction opcodes */
typedef enum {
OPC_J = 002 << 26,
OPC_JAL = 003 << 26,
OPC_BEQ = 004 << 26,
OPC_BNE = 005 << 26,
OPC_BLEZ = 006 << 26,
OPC_BGTZ = 007 << 26,
OPC_ADDIU = 011 << 26,
OPC_SLTI = 012 << 26,
OPC_SLTIU = 013 << 26,
OPC_ANDI = 014 << 26,
OPC_ORI = 015 << 26,
OPC_XORI = 016 << 26,
OPC_LUI = 017 << 26,
OPC_BNEL = 025 << 26,
OPC_BNEZALC_R6 = 030 << 26,
OPC_DADDIU = 031 << 26,
OPC_LDL = 032 << 26,
OPC_LDR = 033 << 26,
OPC_LB = 040 << 26,
OPC_LH = 041 << 26,
OPC_LWL = 042 << 26,
OPC_LW = 043 << 26,
OPC_LBU = 044 << 26,
OPC_LHU = 045 << 26,
OPC_LWR = 046 << 26,
OPC_LWU = 047 << 26,
OPC_SB = 050 << 26,
OPC_SH = 051 << 26,
OPC_SWL = 052 << 26,
OPC_SW = 053 << 26,
OPC_SDL = 054 << 26,
OPC_SDR = 055 << 26,
OPC_SWR = 056 << 26,
OPC_LD = 067 << 26,
OPC_SD = 077 << 26,
OPC_SPECIAL = 000 << 26,
OPC_SLL = OPC_SPECIAL | 000,
OPC_SRL = OPC_SPECIAL | 002,
OPC_ROTR = OPC_SPECIAL | 002 | (1 << 21),
OPC_SRA = OPC_SPECIAL | 003,
OPC_SLLV = OPC_SPECIAL | 004,
OPC_SRLV = OPC_SPECIAL | 006,
OPC_ROTRV = OPC_SPECIAL | 006 | 0100,
OPC_SRAV = OPC_SPECIAL | 007,
OPC_JR_R5 = OPC_SPECIAL | 010,
OPC_JALR = OPC_SPECIAL | 011,
OPC_MOVZ = OPC_SPECIAL | 012,
OPC_MOVN = OPC_SPECIAL | 013,
OPC_SYNC = OPC_SPECIAL | 017,
OPC_MFHI = OPC_SPECIAL | 020,
OPC_MFLO = OPC_SPECIAL | 022,
OPC_DSLLV = OPC_SPECIAL | 024,
OPC_DSRLV = OPC_SPECIAL | 026,
OPC_DROTRV = OPC_SPECIAL | 026 | 0100,
OPC_DSRAV = OPC_SPECIAL | 027,
OPC_MULT = OPC_SPECIAL | 030,
OPC_MUL_R6 = OPC_SPECIAL | 030 | 0200,
OPC_MUH = OPC_SPECIAL | 030 | 0300,
OPC_MULTU = OPC_SPECIAL | 031,
OPC_MULU = OPC_SPECIAL | 031 | 0200,
OPC_MUHU = OPC_SPECIAL | 031 | 0300,
OPC_DIV = OPC_SPECIAL | 032,
OPC_DIV_R6 = OPC_SPECIAL | 032 | 0200,
OPC_MOD = OPC_SPECIAL | 032 | 0300,
OPC_DIVU = OPC_SPECIAL | 033,
OPC_DIVU_R6 = OPC_SPECIAL | 033 | 0200,
OPC_MODU = OPC_SPECIAL | 033 | 0300,
OPC_DMULT = OPC_SPECIAL | 034,
OPC_DMUL = OPC_SPECIAL | 034 | 0200,
OPC_DMUH = OPC_SPECIAL | 034 | 0300,
OPC_DMULTU = OPC_SPECIAL | 035,
OPC_DMULU = OPC_SPECIAL | 035 | 0200,
OPC_DMUHU = OPC_SPECIAL | 035 | 0300,
OPC_DDIV = OPC_SPECIAL | 036,
OPC_DDIV_R6 = OPC_SPECIAL | 036 | 0200,
OPC_DMOD = OPC_SPECIAL | 036 | 0300,
OPC_DDIVU = OPC_SPECIAL | 037,
OPC_DDIVU_R6 = OPC_SPECIAL | 037 | 0200,
OPC_DMODU = OPC_SPECIAL | 037 | 0300,
OPC_ADDU = OPC_SPECIAL | 041,
OPC_SUBU = OPC_SPECIAL | 043,
OPC_AND = OPC_SPECIAL | 044,
OPC_OR = OPC_SPECIAL | 045,
OPC_XOR = OPC_SPECIAL | 046,
OPC_NOR = OPC_SPECIAL | 047,
OPC_SLT = OPC_SPECIAL | 052,
OPC_SLTU = OPC_SPECIAL | 053,
OPC_DADDU = OPC_SPECIAL | 055,
OPC_DSUBU = OPC_SPECIAL | 057,
OPC_SELEQZ = OPC_SPECIAL | 065,
OPC_SELNEZ = OPC_SPECIAL | 067,
OPC_DSLL = OPC_SPECIAL | 070,
OPC_DSRL = OPC_SPECIAL | 072,
OPC_DROTR = OPC_SPECIAL | 072 | (1 << 21),
OPC_DSRA = OPC_SPECIAL | 073,
OPC_DSLL32 = OPC_SPECIAL | 074,
OPC_DSRL32 = OPC_SPECIAL | 076,
OPC_DROTR32 = OPC_SPECIAL | 076 | (1 << 21),
OPC_DSRA32 = OPC_SPECIAL | 077,
OPC_CLZ_R6 = OPC_SPECIAL | 0120,
OPC_DCLZ_R6 = OPC_SPECIAL | 0122,
OPC_REGIMM = 001 << 26,
OPC_BLTZ = OPC_REGIMM | (000 << 16),
OPC_BGEZ = OPC_REGIMM | (001 << 16),
OPC_SPECIAL2 = 034 << 26,
OPC_MUL_R5 = OPC_SPECIAL2 | 002,
OPC_CLZ = OPC_SPECIAL2 | 040,
OPC_DCLZ = OPC_SPECIAL2 | 044,
OPC_SPECIAL3 = 037 << 26,
OPC_EXT = OPC_SPECIAL3 | 000,
OPC_DEXTM = OPC_SPECIAL3 | 001,
OPC_DEXTU = OPC_SPECIAL3 | 002,
OPC_DEXT = OPC_SPECIAL3 | 003,
OPC_INS = OPC_SPECIAL3 | 004,
OPC_DINSM = OPC_SPECIAL3 | 005,
OPC_DINSU = OPC_SPECIAL3 | 006,
OPC_DINS = OPC_SPECIAL3 | 007,
OPC_WSBH = OPC_SPECIAL3 | 00240,
OPC_DSBH = OPC_SPECIAL3 | 00244,
OPC_DSHD = OPC_SPECIAL3 | 00544,
OPC_SEB = OPC_SPECIAL3 | 02040,
OPC_SEH = OPC_SPECIAL3 | 03040,
/* MIPS r6 doesn't have JR, JALR should be used instead */
OPC_JR = use_mips32r6_instructions ? OPC_JALR : OPC_JR_R5,
/*
* MIPS r6 replaces MUL with an alternative encoding which is
* backwards-compatible at the assembly level.
*/
OPC_MUL = use_mips32r6_instructions ? OPC_MUL_R6 : OPC_MUL_R5,
/* MIPS r6 introduced names for weaker variants of SYNC. These are
backward compatible to previous architecture revisions. */
OPC_SYNC_WMB = OPC_SYNC | 0x04 << 6,
OPC_SYNC_MB = OPC_SYNC | 0x10 << 6,
OPC_SYNC_ACQUIRE = OPC_SYNC | 0x11 << 6,
OPC_SYNC_RELEASE = OPC_SYNC | 0x12 << 6,
OPC_SYNC_RMB = OPC_SYNC | 0x13 << 6,
/* Aliases for convenience. */
ALIAS_PADD = sizeof(void *) == 4 ? OPC_ADDU : OPC_DADDU,
ALIAS_PADDI = sizeof(void *) == 4 ? OPC_ADDIU : OPC_DADDIU,
} MIPSInsn;
/*
* Type reg
*/
static void tcg_out_opc_reg(TCGContext *s, MIPSInsn opc,
TCGReg rd, TCGReg rs, TCGReg rt)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (rd & 0x1F) << 11;
tcg_out32(s, inst);
}
/*
* Type immediate
*/
static void tcg_out_opc_imm(TCGContext *s, MIPSInsn opc,
TCGReg rt, TCGReg rs, TCGArg imm)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (imm & 0xffff);
tcg_out32(s, inst);
}
/*
* Type bitfield
*/
static void tcg_out_opc_bf(TCGContext *s, MIPSInsn opc, TCGReg rt,
TCGReg rs, int msb, int lsb)
{
int32_t inst;
inst = opc;
inst |= (rs & 0x1F) << 21;
inst |= (rt & 0x1F) << 16;
inst |= (msb & 0x1F) << 11;
inst |= (lsb & 0x1F) << 6;
tcg_out32(s, inst);
}
static void tcg_out_opc_bf64(TCGContext *s, MIPSInsn opc, MIPSInsn opm,
MIPSInsn oph, TCGReg rt, TCGReg rs,
int msb, int lsb)
{
if (lsb >= 32) {
opc = oph;
msb -= 32;
lsb -= 32;
} else if (msb >= 32) {
opc = opm;
msb -= 32;
}
tcg_out_opc_bf(s, opc, rt, rs, msb, lsb);
}
/*
* Type branch
*/
static void tcg_out_opc_br(TCGContext *s, MIPSInsn opc, TCGReg rt, TCGReg rs)
{
tcg_out_opc_imm(s, opc, rt, rs, 0);
}
/*
* Type sa
*/
static void tcg_out_opc_sa(TCGContext *s, MIPSInsn opc,
TCGReg rd, TCGReg rt, TCGArg sa)
{
int32_t inst;
inst = opc;
inst |= (rt & 0x1F) << 16;
inst |= (rd & 0x1F) << 11;
inst |= (sa & 0x1F) << 6;
tcg_out32(s, inst);
}
static void tcg_out_opc_sa64(TCGContext *s, MIPSInsn opc1, MIPSInsn opc2,
TCGReg rd, TCGReg rt, TCGArg sa)
{
int32_t inst;
inst = (sa & 32 ? opc2 : opc1);
inst |= (rt & 0x1F) << 16;
inst |= (rd & 0x1F) << 11;
inst |= (sa & 0x1F) << 6;
tcg_out32(s, inst);
}
/*
* Type jump.
* Returns true if the branch was in range and the insn was emitted.
*/
static bool tcg_out_opc_jmp(TCGContext *s, MIPSInsn opc, const void *target)
{
uintptr_t dest = (uintptr_t)target;
uintptr_t from = (uintptr_t)tcg_splitwx_to_rx(s->code_ptr) + 4;
int32_t inst;
/* The pc-region branch happens within the 256MB region of
the delay slot (thus the +4). */
if ((from ^ dest) & -(1 << 28)) {
return false;
}
tcg_debug_assert((dest & 3) == 0);
inst = opc;
inst |= (dest >> 2) & 0x3ffffff;
tcg_out32(s, inst);
return true;
}
static void tcg_out_nop(TCGContext *s)
{
tcg_out32(s, 0);
}
static void tcg_out_nop_fill(tcg_insn_unit *p, int count)
{
memset(p, 0, count * sizeof(tcg_insn_unit));
}
static void tcg_out_dsll(TCGContext *s, TCGReg rd, TCGReg rt, TCGArg sa)
{
tcg_out_opc_sa64(s, OPC_DSLL, OPC_DSLL32, rd, rt, sa);
}
static void tcg_out_dsrl(TCGContext *s, TCGReg rd, TCGReg rt, TCGArg sa)
{
tcg_out_opc_sa64(s, OPC_DSRL, OPC_DSRL32, rd, rt, sa);
}
static void tcg_out_dsra(TCGContext *s, TCGReg rd, TCGReg rt, TCGArg sa)
{
tcg_out_opc_sa64(s, OPC_DSRA, OPC_DSRA32, rd, rt, sa);
}
static bool tcg_out_mov(TCGContext *s, TCGType type, TCGReg ret, TCGReg arg)
{
/* Simple reg-reg move, optimising out the 'do nothing' case */
if (ret != arg) {
tcg_out_opc_reg(s, OPC_OR, ret, arg, TCG_REG_ZERO);
}
return true;
}
static bool tcg_out_movi_one(TCGContext *s, TCGReg ret, tcg_target_long arg)
{
if (arg == (int16_t)arg) {
tcg_out_opc_imm(s, OPC_ADDIU, ret, TCG_REG_ZERO, arg);
return true;
}
if (arg == (uint16_t)arg) {
tcg_out_opc_imm(s, OPC_ORI, ret, TCG_REG_ZERO, arg);
return true;
}
if (arg == (int32_t)arg && (arg & 0xffff) == 0) {
tcg_out_opc_imm(s, OPC_LUI, ret, TCG_REG_ZERO, arg >> 16);
return true;
}
return false;
}
static bool tcg_out_movi_two(TCGContext *s, TCGReg ret, tcg_target_long arg)
{
/*
* All signed 32-bit constants are loadable with two immediates,
* and everything else requires more work.
*/
if (arg == (int32_t)arg) {
if (!tcg_out_movi_one(s, ret, arg)) {
tcg_out_opc_imm(s, OPC_LUI, ret, TCG_REG_ZERO, arg >> 16);
tcg_out_opc_imm(s, OPC_ORI, ret, ret, arg & 0xffff);
}
return true;
}
return false;
}
static void tcg_out_movi_pool(TCGContext *s, TCGReg ret,
tcg_target_long arg, TCGReg tbreg)
{
new_pool_label(s, arg, R_MIPS_16, s->code_ptr, tcg_tbrel_diff(s, NULL));
tcg_out_opc_imm(s, OPC_LD, ret, tbreg, 0);
}
static void tcg_out_movi_int(TCGContext *s, TCGType type, TCGReg ret,
tcg_target_long arg, TCGReg tbreg)
{
tcg_target_long tmp;
int sh, lo;
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I32) {
arg = (int32_t)arg;
}
/* Load all 32-bit constants. */
if (tcg_out_movi_two(s, ret, arg)) {
return;
}
assert(TCG_TARGET_REG_BITS == 64);
/* Load addresses within 2GB of TB with 1 or 3 insns. */
tmp = tcg_tbrel_diff(s, (void *)arg);
if (tmp == (int16_t)tmp) {
tcg_out_opc_imm(s, OPC_DADDIU, ret, tbreg, tmp);
return;
}
if (tcg_out_movi_two(s, ret, tmp)) {
tcg_out_opc_reg(s, OPC_DADDU, ret, ret, tbreg);
return;
}
/*
* Load bitmasks with a right-shift. This is good for things
* like 0x0fff_ffff_ffff_fff0: ADDUI r,0,0xff00 + DSRL r,r,4.
* or similarly using LUI. For this to work, bit 31 must be set.
*/
if (arg > 0 && (int32_t)arg < 0) {
sh = clz64(arg);
if (tcg_out_movi_one(s, ret, arg << sh)) {
tcg_out_dsrl(s, ret, ret, sh);
return;
}
}
/*
* Load slightly larger constants using left-shift.
* Limit this sequence to 3 insns to avoid too much expansion.
*/
sh = ctz64(arg);
if (sh && tcg_out_movi_two(s, ret, arg >> sh)) {
tcg_out_dsll(s, ret, ret, sh);
return;
}
/*
* Load slightly larger constants using left-shift and add/or.
* Prefer addi with a negative immediate when that would produce
* a larger shift. For this to work, bits 15 and 16 must be set.
*/
lo = arg & 0xffff;
if (lo) {
if ((arg & 0x18000) == 0x18000) {
lo = (int16_t)arg;
}
tmp = arg - lo;
sh = ctz64(tmp);
tmp >>= sh;
if (tcg_out_movi_one(s, ret, tmp)) {
tcg_out_dsll(s, ret, ret, sh);
tcg_out_opc_imm(s, lo < 0 ? OPC_DADDIU : OPC_ORI, ret, ret, lo);
return;
}
}
/* Otherwise, put 64-bit constants into the constant pool. */
tcg_out_movi_pool(s, ret, arg, tbreg);
}
static void tcg_out_movi(TCGContext *s, TCGType type,
TCGReg ret, tcg_target_long arg)
{
TCGReg tbreg = TCG_TARGET_REG_BITS == 64 ? TCG_REG_TB : 0;
tcg_out_movi_int(s, type, ret, arg, tbreg);
}
static void tcg_out_ext8s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rs)
{
tcg_debug_assert(use_mips32r2_instructions);
tcg_out_opc_reg(s, OPC_SEB, rd, TCG_REG_ZERO, rs);
}
static void tcg_out_ext8u(TCGContext *s, TCGReg rd, TCGReg rs)
{
tcg_out_opc_imm(s, OPC_ANDI, rd, rs, 0xff);
}
static void tcg_out_ext16s(TCGContext *s, TCGType type, TCGReg rd, TCGReg rs)
{
tcg_debug_assert(use_mips32r2_instructions);
tcg_out_opc_reg(s, OPC_SEH, rd, TCG_REG_ZERO, rs);
}
static void tcg_out_ext16u(TCGContext *s, TCGReg rd, TCGReg rs)
{
tcg_out_opc_imm(s, OPC_ANDI, rd, rs, 0xffff);
}
static void tcg_out_ext32s(TCGContext *s, TCGReg rd, TCGReg rs)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
tcg_out_opc_sa(s, OPC_SLL, rd, rs, 0);
}
static void tcg_out_exts_i32_i64(TCGContext *s, TCGReg rd, TCGReg rs)
{
if (rd != rs) {
tcg_out_ext32s(s, rd, rs);
}
}
static void tcg_out_extu_i32_i64(TCGContext *s, TCGReg rd, TCGReg rs)
{
tcg_out_ext32u(s, rd, rs);
}
static void tcg_out_extrl_i64_i32(TCGContext *s, TCGReg rd, TCGReg rs)
{
tcg_out_ext32s(s, rd, rs);
}
static bool tcg_out_xchg(TCGContext *s, TCGType type, TCGReg r1, TCGReg r2)
{
return false;
}
static void tcg_out_addi_ptr(TCGContext *s, TCGReg rd, TCGReg rs,
tcg_target_long imm)
{
/* This function is only used for passing structs by reference. */
g_assert_not_reached();
}
static void tcg_out_bswap16(TCGContext *s, TCGReg ret, TCGReg arg, int flags)
{
/* ret and arg can't be register tmp0 */
tcg_debug_assert(ret != TCG_TMP0);
tcg_debug_assert(arg != TCG_TMP0);
/* With arg = abcd: */
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg); /* badc */
if (flags & TCG_BSWAP_OS) {
tcg_out_opc_reg(s, OPC_SEH, ret, 0, ret); /* ssdc */
} else if ((flags & (TCG_BSWAP_IZ | TCG_BSWAP_OZ)) == TCG_BSWAP_OZ) {
tcg_out_opc_imm(s, OPC_ANDI, ret, ret, 0xffff); /* 00dc */
}
return;
}
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, arg, 8); /* 0abc */
if (!(flags & TCG_BSWAP_IZ)) {
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, TCG_TMP0, 0x00ff); /* 000c */
}
if (flags & TCG_BSWAP_OS) {
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 24); /* d000 */
tcg_out_opc_sa(s, OPC_SRA, ret, ret, 16); /* ssd0 */
} else {
tcg_out_opc_sa(s, OPC_SLL, ret, arg, 8); /* bcd0 */
if (flags & TCG_BSWAP_OZ) {
tcg_out_opc_imm(s, OPC_ANDI, ret, ret, 0xff00); /* 00d0 */
}
}
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP0); /* ssdc */
}
static void tcg_out_bswap_subr(TCGContext *s, const tcg_insn_unit *sub)
{
if (!tcg_out_opc_jmp(s, OPC_JAL, sub)) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP1, (uintptr_t)sub);
tcg_out_opc_reg(s, OPC_JALR, TCG_REG_RA, TCG_TMP1, 0);
}
}
static void tcg_out_bswap32(TCGContext *s, TCGReg ret, TCGReg arg, int flags)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_WSBH, ret, 0, arg);
tcg_out_opc_sa(s, OPC_ROTR, ret, ret, 16);
if (flags & TCG_BSWAP_OZ) {
tcg_out_opc_bf(s, OPC_DEXT, ret, ret, 31, 0);
}
} else {
if (flags & TCG_BSWAP_OZ) {
tcg_out_bswap_subr(s, bswap32u_addr);
} else {
tcg_out_bswap_subr(s, bswap32_addr);
}
/* delay slot -- never omit the insn, like tcg_out_mov might. */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP0, arg, TCG_REG_ZERO);
tcg_out_mov(s, TCG_TYPE_I32, ret, TCG_TMP3);
}
}
static void tcg_out_bswap64(TCGContext *s, TCGReg ret, TCGReg arg)
{
if (use_mips32r2_instructions) {
tcg_out_opc_reg(s, OPC_DSBH, ret, 0, arg);
tcg_out_opc_reg(s, OPC_DSHD, ret, 0, ret);
} else {
tcg_out_bswap_subr(s, bswap64_addr);
/* delay slot -- never omit the insn, like tcg_out_mov might. */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP0, arg, TCG_REG_ZERO);
tcg_out_mov(s, TCG_TYPE_I32, ret, TCG_TMP3);
}
}
static void tcg_out_ext32u(TCGContext *s, TCGReg ret, TCGReg arg)
{
tcg_debug_assert(TCG_TARGET_REG_BITS == 64);
if (use_mips32r2_instructions) {
tcg_out_opc_bf(s, OPC_DEXT, ret, arg, 31, 0);
} else {
tcg_out_dsll(s, ret, arg, 32);
tcg_out_dsrl(s, ret, ret, 32);
}
}
static void tcg_out_ldst(TCGContext *s, MIPSInsn opc, TCGReg data,
TCGReg addr, intptr_t ofs)
{
int16_t lo = ofs;
if (ofs != lo) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, ofs - lo);
if (addr != TCG_REG_ZERO) {
tcg_out_opc_reg(s, ALIAS_PADD, TCG_TMP0, TCG_TMP0, addr);
}
addr = TCG_TMP0;
}
tcg_out_opc_imm(s, opc, data, addr, lo);
}
static void tcg_out_ld(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
MIPSInsn opc = OPC_LD;
if (TCG_TARGET_REG_BITS == 32 || type == TCG_TYPE_I32) {
opc = OPC_LW;
}
tcg_out_ldst(s, opc, arg, arg1, arg2);
}
static void tcg_out_st(TCGContext *s, TCGType type, TCGReg arg,
TCGReg arg1, intptr_t arg2)
{
MIPSInsn opc = OPC_SD;
if (TCG_TARGET_REG_BITS == 32 || type == TCG_TYPE_I32) {
opc = OPC_SW;
}
tcg_out_ldst(s, opc, arg, arg1, arg2);
}
static bool tcg_out_sti(TCGContext *s, TCGType type, TCGArg val,
TCGReg base, intptr_t ofs)
{
if (val == 0) {
tcg_out_st(s, type, TCG_REG_ZERO, base, ofs);
return true;
}
return false;
}
static void tcg_out_addsub2(TCGContext *s, TCGReg rl, TCGReg rh, TCGReg al,
TCGReg ah, TCGArg bl, TCGArg bh, bool cbl,
bool cbh, bool is_sub)
{
TCGReg th = TCG_TMP1;
/* If we have a negative constant such that negating it would
make the high part zero, we can (usually) eliminate one insn. */
if (cbl && cbh && bh == -1 && bl != 0) {
bl = -bl;
bh = 0;
is_sub = !is_sub;
}
/* By operating on the high part first, we get to use the final
carry operation to move back from the temporary. */
if (!cbh) {
tcg_out_opc_reg(s, (is_sub ? OPC_SUBU : OPC_ADDU), th, ah, bh);
} else if (bh != 0 || ah == rl) {
tcg_out_opc_imm(s, OPC_ADDIU, th, ah, (is_sub ? -bh : bh));
} else {
th = ah;
}
/* Note that tcg optimization should eliminate the bl == 0 case. */
if (is_sub) {
if (cbl) {
tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, al, bl);
tcg_out_opc_imm(s, OPC_ADDIU, rl, al, -bl);
} else {
tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, al, bl);
tcg_out_opc_reg(s, OPC_SUBU, rl, al, bl);
}
tcg_out_opc_reg(s, OPC_SUBU, rh, th, TCG_TMP0);
} else {
if (cbl) {
tcg_out_opc_imm(s, OPC_ADDIU, rl, al, bl);
tcg_out_opc_imm(s, OPC_SLTIU, TCG_TMP0, rl, bl);
} else if (rl == al && rl == bl) {
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, al, TCG_TARGET_REG_BITS - 1);
tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl);
} else {
tcg_out_opc_reg(s, OPC_ADDU, rl, al, bl);
tcg_out_opc_reg(s, OPC_SLTU, TCG_TMP0, rl, (rl == bl ? al : bl));
}
tcg_out_opc_reg(s, OPC_ADDU, rh, th, TCG_TMP0);
}
}
#define SETCOND_INV TCG_TARGET_NB_REGS
#define SETCOND_NEZ (SETCOND_INV << 1)
#define SETCOND_FLAGS (SETCOND_INV | SETCOND_NEZ)
static int tcg_out_setcond_int(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg arg1, TCGReg arg2)
{
int flags = 0;
switch (cond) {
case TCG_COND_EQ: /* -> NE */
case TCG_COND_GE: /* -> LT */
case TCG_COND_GEU: /* -> LTU */
case TCG_COND_LE: /* -> GT */
case TCG_COND_LEU: /* -> GTU */
cond = tcg_invert_cond(cond);
flags ^= SETCOND_INV;
break;
default:
break;
}
switch (cond) {
case TCG_COND_NE:
flags |= SETCOND_NEZ;
if (arg2 == 0) {
return arg1 | flags;
}
tcg_out_opc_reg(s, OPC_XOR, ret, arg1, arg2);
break;
case TCG_COND_LT:
tcg_out_opc_reg(s, OPC_SLT, ret, arg1, arg2);
break;
case TCG_COND_LTU:
tcg_out_opc_reg(s, OPC_SLTU, ret, arg1, arg2);
break;
case TCG_COND_GT:
tcg_out_opc_reg(s, OPC_SLT, ret, arg2, arg1);
break;
case TCG_COND_GTU:
tcg_out_opc_reg(s, OPC_SLTU, ret, arg2, arg1);
break;
default:
g_assert_not_reached();
}
return ret | flags;
}
static void tcg_out_setcond_end(TCGContext *s, TCGReg ret, int tmpflags)
{
if (tmpflags != ret) {
TCGReg tmp = tmpflags & ~SETCOND_FLAGS;
switch (tmpflags & SETCOND_FLAGS) {
case SETCOND_INV:
/* Intermediate result is boolean: simply invert. */
tcg_out_opc_imm(s, OPC_XORI, ret, tmp, 1);
break;
case SETCOND_NEZ:
/* Intermediate result is zero/non-zero: test != 0. */
tcg_out_opc_reg(s, OPC_SLTU, ret, TCG_REG_ZERO, tmp);
break;
case SETCOND_NEZ | SETCOND_INV:
/* Intermediate result is zero/non-zero: test == 0. */
tcg_out_opc_imm(s, OPC_SLTIU, ret, tmp, 1);
break;
default:
g_assert_not_reached();
}
}
}
static void tcg_out_setcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg arg1, TCGReg arg2)
{
int tmpflags = tcg_out_setcond_int(s, cond, ret, arg1, arg2);
tcg_out_setcond_end(s, ret, tmpflags);
}
static void tcg_out_brcond(TCGContext *s, TCGCond cond, TCGReg arg1,
TCGReg arg2, TCGLabel *l)
{
static const MIPSInsn b_zero[16] = {
[TCG_COND_LT] = OPC_BLTZ,
[TCG_COND_GT] = OPC_BGTZ,
[TCG_COND_LE] = OPC_BLEZ,
[TCG_COND_GE] = OPC_BGEZ,
};
MIPSInsn b_opc = 0;
switch (cond) {
case TCG_COND_EQ:
b_opc = OPC_BEQ;
break;
case TCG_COND_NE:
b_opc = OPC_BNE;
break;
case TCG_COND_LT:
case TCG_COND_GT:
case TCG_COND_LE:
case TCG_COND_GE:
if (arg2 == 0) {
b_opc = b_zero[cond];
arg2 = arg1;
arg1 = 0;
}
break;
default:
break;
}
if (b_opc == 0) {
int tmpflags = tcg_out_setcond_int(s, cond, TCG_TMP0, arg1, arg2);
arg2 = TCG_REG_ZERO;
arg1 = tmpflags & ~SETCOND_FLAGS;
b_opc = tmpflags & SETCOND_INV ? OPC_BEQ : OPC_BNE;
}
tcg_out_reloc(s, s->code_ptr, R_MIPS_PC16, l, 0);
tcg_out_opc_br(s, b_opc, arg1, arg2);
tcg_out_nop(s);
}
static int tcg_out_setcond2_int(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh)
{
int flags = 0;
switch (cond) {
case TCG_COND_EQ:
flags |= SETCOND_INV;
/* fall through */
case TCG_COND_NE:
flags |= SETCOND_NEZ;
tcg_out_opc_reg(s, OPC_XOR, TCG_TMP0, al, bl);
tcg_out_opc_reg(s, OPC_XOR, TCG_TMP1, ah, bh);
tcg_out_opc_reg(s, OPC_OR, ret, TCG_TMP0, TCG_TMP1);
break;
default:
tcg_out_setcond(s, TCG_COND_EQ, TCG_TMP0, ah, bh);
tcg_out_setcond(s, tcg_unsigned_cond(cond), TCG_TMP1, al, bl);
tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, TCG_TMP0);
tcg_out_setcond(s, tcg_high_cond(cond), TCG_TMP0, ah, bh);
tcg_out_opc_reg(s, OPC_OR, ret, TCG_TMP0, TCG_TMP1);
break;
}
return ret | flags;
}
static void tcg_out_setcond2(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg al, TCGReg ah, TCGReg bl, TCGReg bh)
{
int tmpflags = tcg_out_setcond2_int(s, cond, ret, al, ah, bl, bh);
tcg_out_setcond_end(s, ret, tmpflags);
}
static void tcg_out_brcond2(TCGContext *s, TCGCond cond, TCGReg al, TCGReg ah,
TCGReg bl, TCGReg bh, TCGLabel *l)
{
int tmpflags = tcg_out_setcond2_int(s, cond, TCG_TMP0, al, ah, bl, bh);
TCGReg tmp = tmpflags & ~SETCOND_FLAGS;
MIPSInsn b_opc = tmpflags & SETCOND_INV ? OPC_BEQ : OPC_BNE;
tcg_out_reloc(s, s->code_ptr, R_MIPS_PC16, l, 0);
tcg_out_opc_br(s, b_opc, tmp, TCG_REG_ZERO);
tcg_out_nop(s);
}
static void tcg_out_movcond(TCGContext *s, TCGCond cond, TCGReg ret,
TCGReg c1, TCGReg c2, TCGReg v1, TCGReg v2)
{
int tmpflags;
bool eqz;
/* If one of the values is zero, put it last to match SEL*Z instructions */
if (use_mips32r6_instructions && v1 == 0) {
v1 = v2;
v2 = 0;
cond = tcg_invert_cond(cond);
}
tmpflags = tcg_out_setcond_int(s, cond, TCG_TMP0, c1, c2);
c1 = tmpflags & ~SETCOND_FLAGS;
eqz = tmpflags & SETCOND_INV;
if (use_mips32r6_instructions) {
MIPSInsn m_opc_t = eqz ? OPC_SELEQZ : OPC_SELNEZ;
MIPSInsn m_opc_f = eqz ? OPC_SELNEZ : OPC_SELEQZ;
if (v2 != 0) {
tcg_out_opc_reg(s, m_opc_f, TCG_TMP1, v2, c1);
}
tcg_out_opc_reg(s, m_opc_t, ret, v1, c1);
if (v2 != 0) {
tcg_out_opc_reg(s, OPC_OR, ret, ret, TCG_TMP1);
}
return;
}
/* This should be guaranteed via constraints */
tcg_debug_assert(v2 == ret);
if (use_movnz_instructions) {
MIPSInsn m_opc = eqz ? OPC_MOVZ : OPC_MOVN;
tcg_out_opc_reg(s, m_opc, ret, v1, c1);
} else {
/* Invert the condition in order to branch over the move. */
MIPSInsn b_opc = eqz ? OPC_BNE : OPC_BEQ;
tcg_out_opc_imm(s, b_opc, c1, TCG_REG_ZERO, 2);
tcg_out_nop(s);
/* Open-code tcg_out_mov, without the nop-move check. */
tcg_out_opc_reg(s, OPC_OR, ret, v1, TCG_REG_ZERO);
}
}
static void tcg_out_call_int(TCGContext *s, const tcg_insn_unit *arg, bool tail)
{
/*
* Note that __mips_abicalls requires the called function's address
* to be loaded into $25 (t9), even if a direct branch is in range.
*
* For n64, always drop the pointer into the constant pool.
* We can re-use helper addresses often and do not want any
* of the longer sequences tcg_out_movi may try.
*/
if (sizeof(uintptr_t) == 8) {
tcg_out_movi_pool(s, TCG_REG_T9, (uintptr_t)arg, TCG_REG_TB);
} else {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_REG_T9, (uintptr_t)arg);
}
/* But do try a direct branch, allowing the cpu better insn prefetch. */
if (tail) {
if (!tcg_out_opc_jmp(s, OPC_J, arg)) {
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_T9, 0);
}
} else {
if (!tcg_out_opc_jmp(s, OPC_JAL, arg)) {
tcg_out_opc_reg(s, OPC_JALR, TCG_REG_RA, TCG_REG_T9, 0);
}
}
}
static void tcg_out_call(TCGContext *s, const tcg_insn_unit *arg,
const TCGHelperInfo *info)
{
tcg_out_call_int(s, arg, false);
tcg_out_nop(s);
}
/* We have four temps, we might as well expose three of them. */
static const TCGLdstHelperParam ldst_helper_param = {
.ntmp = 3, .tmp = { TCG_TMP0, TCG_TMP1, TCG_TMP2 }
};
static bool tcg_out_qemu_ld_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
const tcg_insn_unit *tgt_rx = tcg_splitwx_to_rx(s->code_ptr);
MemOp opc = get_memop(l->oi);
/* resolve label address */
if (!reloc_pc16(l->label_ptr[0], tgt_rx)
|| (l->label_ptr[1] && !reloc_pc16(l->label_ptr[1], tgt_rx))) {
return false;
}
tcg_out_ld_helper_args(s, l, &ldst_helper_param);
tcg_out_call_int(s, qemu_ld_helpers[opc & MO_SSIZE], false);
/* delay slot */
tcg_out_nop(s);
tcg_out_ld_helper_ret(s, l, true, &ldst_helper_param);
tcg_out_opc_br(s, OPC_BEQ, TCG_REG_ZERO, TCG_REG_ZERO);
if (!reloc_pc16(s->code_ptr - 1, l->raddr)) {
return false;
}
/* delay slot */
tcg_out_nop(s);
return true;
}
static bool tcg_out_qemu_st_slow_path(TCGContext *s, TCGLabelQemuLdst *l)
{
const tcg_insn_unit *tgt_rx = tcg_splitwx_to_rx(s->code_ptr);
MemOp opc = get_memop(l->oi);
/* resolve label address */
if (!reloc_pc16(l->label_ptr[0], tgt_rx)
|| (l->label_ptr[1] && !reloc_pc16(l->label_ptr[1], tgt_rx))) {
return false;
}
tcg_out_st_helper_args(s, l, &ldst_helper_param);
tcg_out_call_int(s, qemu_st_helpers[opc & MO_SIZE], false);
/* delay slot */
tcg_out_nop(s);
tcg_out_opc_br(s, OPC_BEQ, TCG_REG_ZERO, TCG_REG_ZERO);
if (!reloc_pc16(s->code_ptr - 1, l->raddr)) {
return false;
}
/* delay slot */
tcg_out_nop(s);
return true;
}
typedef struct {
TCGReg base;
TCGAtomAlign aa;
} HostAddress;
bool tcg_target_has_memory_bswap(MemOp memop)
{
return false;
}
/* We expect to use a 16-bit negative offset from ENV. */
#define MIN_TLB_MASK_TABLE_OFS -32768
/*
* For system-mode, perform the TLB load and compare.
* For user-mode, perform any required alignment tests.
* In both cases, return a TCGLabelQemuLdst structure if the slow path
* is required and fill in @h with the host address for the fast path.
*/
static TCGLabelQemuLdst *prepare_host_addr(TCGContext *s, HostAddress *h,
TCGReg addr, MemOpIdx oi, bool is_ld)
{
TCGType addr_type = s->addr_type;
TCGLabelQemuLdst *ldst = NULL;
MemOp opc = get_memop(oi);
MemOp a_bits;
unsigned s_bits = opc & MO_SIZE;
unsigned a_mask;
TCGReg base;
h->aa = atom_and_align_for_opc(s, opc, MO_ATOM_IFALIGN, false);
a_bits = h->aa.align;
a_mask = (1 << a_bits) - 1;
if (tcg_use_softmmu) {
unsigned s_mask = (1 << s_bits) - 1;
int mem_index = get_mmuidx(oi);
int fast_off = tlb_mask_table_ofs(s, mem_index);
int mask_off = fast_off + offsetof(CPUTLBDescFast, mask);
int table_off = fast_off + offsetof(CPUTLBDescFast, table);
int add_off = offsetof(CPUTLBEntry, addend);
int cmp_off = is_ld ? offsetof(CPUTLBEntry, addr_read)
: offsetof(CPUTLBEntry, addr_write);
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
/* Load tlb_mask[mmu_idx] and tlb_table[mmu_idx]. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP0, TCG_AREG0, mask_off);
tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP1, TCG_AREG0, table_off);
/* Extract the TLB index from the address into TMP3. */
if (TCG_TARGET_REG_BITS == 32 || addr_type == TCG_TYPE_I32) {
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP3, addr,
s->page_bits - CPU_TLB_ENTRY_BITS);
} else {
tcg_out_dsrl(s, TCG_TMP3, addr, s->page_bits - CPU_TLB_ENTRY_BITS);
}
tcg_out_opc_reg(s, OPC_AND, TCG_TMP3, TCG_TMP3, TCG_TMP0);
/* Add the tlb_table pointer, creating the CPUTLBEntry address. */
tcg_out_opc_reg(s, ALIAS_PADD, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* Load the tlb comparator. */
if (TCG_TARGET_REG_BITS == 64 && addr_type == TCG_TYPE_I32) {
tcg_out_ld(s, TCG_TYPE_I32, TCG_TMP0, TCG_TMP3,
cmp_off + HOST_BIG_ENDIAN * 4);
} else {
tcg_out_ld(s, TCG_TYPE_REG, TCG_TMP0, TCG_TMP3, cmp_off);
}
/* Load the tlb addend for the fast path. */
tcg_out_ld(s, TCG_TYPE_PTR, TCG_TMP3, TCG_TMP3, add_off);
/*
* Mask the page bits, keeping the alignment bits to compare against.
* For unaligned accesses, compare against the end of the access to
* verify that it does not cross a page boundary.
*/
tcg_out_movi(s, addr_type, TCG_TMP1, s->page_mask | a_mask);
if (a_mask < s_mask) {
tcg_out_opc_imm(s, (TCG_TARGET_REG_BITS == 32
|| addr_type == TCG_TYPE_I32
? OPC_ADDIU : OPC_DADDIU),
TCG_TMP2, addr, s_mask - a_mask);
tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, TCG_TMP2);
} else {
tcg_out_opc_reg(s, OPC_AND, TCG_TMP1, TCG_TMP1, addr);
}
/* Zero extend a 32-bit guest address for a 64-bit host. */
if (TCG_TARGET_REG_BITS == 64 && addr_type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_TMP2, addr);
addr = TCG_TMP2;
}
ldst->label_ptr[0] = s->code_ptr;
tcg_out_opc_br(s, OPC_BNE, TCG_TMP1, TCG_TMP0);
/* delay slot */
base = TCG_TMP3;
tcg_out_opc_reg(s, ALIAS_PADD, base, TCG_TMP3, addr);
} else {
if (a_mask && (use_mips32r6_instructions || a_bits != s_bits)) {
ldst = new_ldst_label(s);
ldst->is_ld = is_ld;
ldst->oi = oi;
ldst->addr_reg = addr;
/* We are expecting a_bits to max out at 7, much lower than ANDI. */
tcg_debug_assert(a_bits < 16);
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP0, addr, a_mask);
ldst->label_ptr[0] = s->code_ptr;
if (use_mips32r6_instructions) {
tcg_out_opc_br(s, OPC_BNEZALC_R6, TCG_REG_ZERO, TCG_TMP0);
} else {
tcg_out_opc_br(s, OPC_BNEL, TCG_TMP0, TCG_REG_ZERO);
tcg_out_nop(s);
}
}
base = addr;
if (TCG_TARGET_REG_BITS == 64 && addr_type == TCG_TYPE_I32) {
tcg_out_ext32u(s, TCG_REG_A0, base);
base = TCG_REG_A0;
}
if (guest_base) {
if (guest_base == (int16_t)guest_base) {
tcg_out_opc_imm(s, ALIAS_PADDI, TCG_REG_A0, base, guest_base);
} else {
tcg_out_opc_reg(s, ALIAS_PADD, TCG_REG_A0, base,
TCG_GUEST_BASE_REG);
}
base = TCG_REG_A0;
}
}
h->base = base;
return ldst;
}
static void tcg_out_qemu_ld_direct(TCGContext *s, TCGReg lo, TCGReg hi,
TCGReg base, MemOp opc, TCGType type)
{
switch (opc & MO_SSIZE) {
case MO_UB:
tcg_out_opc_imm(s, OPC_LBU, lo, base, 0);
break;
case MO_SB:
tcg_out_opc_imm(s, OPC_LB, lo, base, 0);
break;
case MO_UW:
tcg_out_opc_imm(s, OPC_LHU, lo, base, 0);
break;
case MO_SW:
tcg_out_opc_imm(s, OPC_LH, lo, base, 0);
break;
case MO_UL:
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64) {
tcg_out_opc_imm(s, OPC_LWU, lo, base, 0);
break;
}
/* FALLTHRU */
case MO_SL:
tcg_out_opc_imm(s, OPC_LW, lo, base, 0);
break;
case MO_UQ:
/* Prefer to load from offset 0 first, but allow for overlap. */
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_opc_imm(s, OPC_LD, lo, base, 0);
} else if (HOST_BIG_ENDIAN ? hi != base : lo == base) {
tcg_out_opc_imm(s, OPC_LW, hi, base, HI_OFF);
tcg_out_opc_imm(s, OPC_LW, lo, base, LO_OFF);
} else {
tcg_out_opc_imm(s, OPC_LW, lo, base, LO_OFF);
tcg_out_opc_imm(s, OPC_LW, hi, base, HI_OFF);
}
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_ld_unalign(TCGContext *s, TCGReg lo, TCGReg hi,
TCGReg base, MemOp opc, TCGType type)
{
const MIPSInsn lw1 = HOST_BIG_ENDIAN ? OPC_LWL : OPC_LWR;
const MIPSInsn lw2 = HOST_BIG_ENDIAN ? OPC_LWR : OPC_LWL;
const MIPSInsn ld1 = HOST_BIG_ENDIAN ? OPC_LDL : OPC_LDR;
const MIPSInsn ld2 = HOST_BIG_ENDIAN ? OPC_LDR : OPC_LDL;
bool sgn = opc & MO_SIGN;
switch (opc & MO_SIZE) {
case MO_16:
if (HOST_BIG_ENDIAN) {
tcg_out_opc_imm(s, sgn ? OPC_LB : OPC_LBU, TCG_TMP0, base, 0);
tcg_out_opc_imm(s, OPC_LBU, lo, base, 1);
if (use_mips32r2_instructions) {
tcg_out_opc_bf(s, OPC_INS, lo, TCG_TMP0, 31, 8);
} else {
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP0, TCG_TMP0, 8);
tcg_out_opc_reg(s, OPC_OR, lo, lo, TCG_TMP0);
}
} else if (use_mips32r2_instructions && lo != base) {
tcg_out_opc_imm(s, OPC_LBU, lo, base, 0);
tcg_out_opc_imm(s, sgn ? OPC_LB : OPC_LBU, TCG_TMP0, base, 1);
tcg_out_opc_bf(s, OPC_INS, lo, TCG_TMP0, 31, 8);
} else {
tcg_out_opc_imm(s, OPC_LBU, TCG_TMP0, base, 0);
tcg_out_opc_imm(s, sgn ? OPC_LB : OPC_LBU, TCG_TMP1, base, 1);
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP1, TCG_TMP1, 8);
tcg_out_opc_reg(s, OPC_OR, lo, TCG_TMP0, TCG_TMP1);
}
break;
case MO_32:
tcg_out_opc_imm(s, lw1, lo, base, 0);
tcg_out_opc_imm(s, lw2, lo, base, 3);
if (TCG_TARGET_REG_BITS == 64 && type == TCG_TYPE_I64 && !sgn) {
tcg_out_ext32u(s, lo, lo);
}
break;
case MO_64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_opc_imm(s, ld1, lo, base, 0);
tcg_out_opc_imm(s, ld2, lo, base, 7);
} else {
tcg_out_opc_imm(s, lw1, HOST_BIG_ENDIAN ? hi : lo, base, 0 + 0);
tcg_out_opc_imm(s, lw2, HOST_BIG_ENDIAN ? hi : lo, base, 0 + 3);
tcg_out_opc_imm(s, lw1, HOST_BIG_ENDIAN ? lo : hi, base, 4 + 0);
tcg_out_opc_imm(s, lw2, HOST_BIG_ENDIAN ? lo : hi, base, 4 + 3);
}
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_ld(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg addr, MemOpIdx oi, TCGType data_type)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, true);
if (use_mips32r6_instructions || h.aa.align >= (opc & MO_SIZE)) {
tcg_out_qemu_ld_direct(s, datalo, datahi, h.base, opc, data_type);
} else {
tcg_out_qemu_ld_unalign(s, datalo, datahi, h.base, opc, data_type);
}
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_qemu_st_direct(TCGContext *s, TCGReg lo, TCGReg hi,
TCGReg base, MemOp opc)
{
switch (opc & MO_SIZE) {
case MO_8:
tcg_out_opc_imm(s, OPC_SB, lo, base, 0);
break;
case MO_16:
tcg_out_opc_imm(s, OPC_SH, lo, base, 0);
break;
case MO_32:
tcg_out_opc_imm(s, OPC_SW, lo, base, 0);
break;
case MO_64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_opc_imm(s, OPC_SD, lo, base, 0);
} else {
tcg_out_opc_imm(s, OPC_SW, HOST_BIG_ENDIAN ? hi : lo, base, 0);
tcg_out_opc_imm(s, OPC_SW, HOST_BIG_ENDIAN ? lo : hi, base, 4);
}
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_st_unalign(TCGContext *s, TCGReg lo, TCGReg hi,
TCGReg base, MemOp opc)
{
const MIPSInsn sw1 = HOST_BIG_ENDIAN ? OPC_SWL : OPC_SWR;
const MIPSInsn sw2 = HOST_BIG_ENDIAN ? OPC_SWR : OPC_SWL;
const MIPSInsn sd1 = HOST_BIG_ENDIAN ? OPC_SDL : OPC_SDR;
const MIPSInsn sd2 = HOST_BIG_ENDIAN ? OPC_SDR : OPC_SDL;
switch (opc & MO_SIZE) {
case MO_16:
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP0, lo, 8);
tcg_out_opc_imm(s, OPC_SB, HOST_BIG_ENDIAN ? TCG_TMP0 : lo, base, 0);
tcg_out_opc_imm(s, OPC_SB, HOST_BIG_ENDIAN ? lo : TCG_TMP0, base, 1);
break;
case MO_32:
tcg_out_opc_imm(s, sw1, lo, base, 0);
tcg_out_opc_imm(s, sw2, lo, base, 3);
break;
case MO_64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_opc_imm(s, sd1, lo, base, 0);
tcg_out_opc_imm(s, sd2, lo, base, 7);
} else {
tcg_out_opc_imm(s, sw1, HOST_BIG_ENDIAN ? hi : lo, base, 0 + 0);
tcg_out_opc_imm(s, sw2, HOST_BIG_ENDIAN ? hi : lo, base, 0 + 3);
tcg_out_opc_imm(s, sw1, HOST_BIG_ENDIAN ? lo : hi, base, 4 + 0);
tcg_out_opc_imm(s, sw2, HOST_BIG_ENDIAN ? lo : hi, base, 4 + 3);
}
break;
default:
g_assert_not_reached();
}
}
static void tcg_out_qemu_st(TCGContext *s, TCGReg datalo, TCGReg datahi,
TCGReg addr, MemOpIdx oi, TCGType data_type)
{
MemOp opc = get_memop(oi);
TCGLabelQemuLdst *ldst;
HostAddress h;
ldst = prepare_host_addr(s, &h, addr, oi, false);
if (use_mips32r6_instructions || h.aa.align >= (opc & MO_SIZE)) {
tcg_out_qemu_st_direct(s, datalo, datahi, h.base, opc);
} else {
tcg_out_qemu_st_unalign(s, datalo, datahi, h.base, opc);
}
if (ldst) {
ldst->type = data_type;
ldst->datalo_reg = datalo;
ldst->datahi_reg = datahi;
ldst->raddr = tcg_splitwx_to_rx(s->code_ptr);
}
}
static void tcg_out_mb(TCGContext *s, TCGArg a0)
{
static const MIPSInsn sync[] = {
/* Note that SYNC_MB is a slightly weaker than SYNC 0,
as the former is an ordering barrier and the latter
is a completion barrier. */
[0 ... TCG_MO_ALL] = OPC_SYNC_MB,
[TCG_MO_LD_LD] = OPC_SYNC_RMB,
[TCG_MO_ST_ST] = OPC_SYNC_WMB,
[TCG_MO_LD_ST] = OPC_SYNC_RELEASE,
[TCG_MO_LD_ST | TCG_MO_ST_ST] = OPC_SYNC_RELEASE,
[TCG_MO_LD_ST | TCG_MO_LD_LD] = OPC_SYNC_ACQUIRE,
};
tcg_out32(s, sync[a0 & TCG_MO_ALL]);
}
static void tcg_out_clz(TCGContext *s, MIPSInsn opcv2, MIPSInsn opcv6,
int width, TCGReg a0, TCGReg a1, TCGArg a2)
{
if (use_mips32r6_instructions) {
if (a2 == width) {
tcg_out_opc_reg(s, opcv6, a0, a1, 0);
} else {
tcg_out_opc_reg(s, opcv6, TCG_TMP0, a1, 0);
tcg_out_movcond(s, TCG_COND_EQ, a0, a1, 0, a2, TCG_TMP0);
}
} else {
if (a2 == width) {
tcg_out_opc_reg(s, opcv2, a0, a1, a1);
} else if (a0 == a2) {
tcg_out_opc_reg(s, opcv2, TCG_TMP0, a1, a1);
tcg_out_opc_reg(s, OPC_MOVN, a0, TCG_TMP0, a1);
} else if (a0 != a1) {
tcg_out_opc_reg(s, opcv2, a0, a1, a1);
tcg_out_opc_reg(s, OPC_MOVZ, a0, a2, a1);
} else {
tcg_out_opc_reg(s, opcv2, TCG_TMP0, a1, a1);
tcg_out_opc_reg(s, OPC_MOVZ, TCG_TMP0, a2, a1);
tcg_out_mov(s, TCG_TYPE_REG, a0, TCG_TMP0);
}
}
}
static void tcg_out_exit_tb(TCGContext *s, uintptr_t a0)
{
TCGReg base = TCG_REG_ZERO;
int16_t lo = 0;
if (a0) {
intptr_t ofs;
if (TCG_TARGET_REG_BITS == 64) {
ofs = tcg_tbrel_diff(s, (void *)a0);
lo = ofs;
if (ofs == lo) {
base = TCG_REG_TB;
} else {
base = TCG_REG_V0;
tcg_out_movi(s, TCG_TYPE_PTR, base, ofs - lo);
tcg_out_opc_reg(s, ALIAS_PADD, base, base, TCG_REG_TB);
}
} else {
ofs = a0;
lo = ofs;
base = TCG_REG_V0;
tcg_out_movi(s, TCG_TYPE_PTR, base, ofs - lo);
}
}
if (!tcg_out_opc_jmp(s, OPC_J, tb_ret_addr)) {
tcg_out_movi(s, TCG_TYPE_PTR, TCG_TMP0, (uintptr_t)tb_ret_addr);
tcg_out_opc_reg(s, OPC_JR, 0, TCG_TMP0, 0);
}
/* delay slot */
tcg_out_opc_imm(s, ALIAS_PADDI, TCG_REG_V0, base, lo);
}
static void tcg_out_goto_tb(TCGContext *s, int which)
{
intptr_t ofs = get_jmp_target_addr(s, which);
TCGReg base, dest;
/* indirect jump method */
if (TCG_TARGET_REG_BITS == 64) {
dest = TCG_REG_TB;
base = TCG_REG_TB;
ofs = tcg_tbrel_diff(s, (void *)ofs);
} else {
dest = TCG_TMP0;
base = TCG_REG_ZERO;
}
tcg_out_ld(s, TCG_TYPE_PTR, dest, base, ofs);
tcg_out_opc_reg(s, OPC_JR, 0, dest, 0);
/* delay slot */
tcg_out_nop(s);
set_jmp_reset_offset(s, which);
if (TCG_TARGET_REG_BITS == 64) {
/* For the unlinked case, need to reset TCG_REG_TB. */
tcg_out_ldst(s, ALIAS_PADDI, TCG_REG_TB, TCG_REG_TB,
-tcg_current_code_size(s));
}
}
void tb_target_set_jmp_target(const TranslationBlock *tb, int n,
uintptr_t jmp_rx, uintptr_t jmp_rw)
{
/* Always indirect, nothing to do */
}
static void tgen_add(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_ADDU : OPC_DADDU;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static void tgen_addi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_ADDIU : OPC_DADDIU;
tcg_out_opc_imm(s, insn, a0, a1, a2);
}
static const TCGOutOpBinary outop_add = {
.base.static_constraint = C_O1_I2(r, r, rJ),
.out_rrr = tgen_add,
.out_rri = tgen_addi,
};
static void tgen_and(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_opc_reg(s, OPC_AND, a0, a1, a2);
}
static void tgen_andi(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
int msb;
if (a2 == (uint16_t)a2) {
tcg_out_opc_imm(s, OPC_ANDI, a0, a1, a2);
return;
}
tcg_debug_assert(use_mips32r2_instructions);
tcg_debug_assert(is_p2m1(a2));
msb = ctz64(~a2) - 1;
if (type == TCG_TYPE_I32) {
tcg_out_opc_bf(s, OPC_EXT, a0, a1, msb, 0);
} else {
tcg_out_opc_bf64(s, OPC_DEXT, OPC_DEXTM, OPC_DEXTU, a0, a1, msb, 0);
}
}
static const TCGOutOpBinary outop_and = {
.base.static_constraint = C_O1_I2(r, r, rIK),
.out_rrr = tgen_and,
.out_rri = tgen_andi,
};
static const TCGOutOpBinary outop_andc = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_divs(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
if (type == TCG_TYPE_I32) {
tcg_out_opc_reg(s, OPC_DIV_R6, a0, a1, a2);
} else {
tcg_out_opc_reg(s, OPC_DDIV_R6, a0, a1, a2);
}
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_DIV : OPC_DDIV;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_divs = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_divs,
};
static const TCGOutOpDivRem outop_divs2 = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_divu(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
if (type == TCG_TYPE_I32) {
tcg_out_opc_reg(s, OPC_DIVU_R6, a0, a1, a2);
} else {
tcg_out_opc_reg(s, OPC_DDIVU_R6, a0, a1, a2);
}
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_DIVU : OPC_DDIVU;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_divu = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_divu,
};
static const TCGOutOpDivRem outop_divu2 = {
.base.static_constraint = C_NotImplemented,
};
static const TCGOutOpBinary outop_eqv = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_mul(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn;
if (type == TCG_TYPE_I32) {
if (use_mips32_instructions) {
tcg_out_opc_reg(s, OPC_MUL, a0, a1, a2);
return;
}
insn = OPC_MULT;
} else {
if (use_mips32r6_instructions) {
tcg_out_opc_reg(s, OPC_DMUL, a0, a1, a2);
return;
}
insn = OPC_DMULT;
}
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
}
static const TCGOutOpBinary outop_mul = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_mul,
};
static void tgen_mulsh(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_MUH : OPC_DMUH;
tcg_out_opc_reg(s, insn, a0, a1, a2);
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_MULT : OPC_DMULT;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFHI, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_mulsh = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_mulsh,
};
static void tgen_muluh(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_MUHU : OPC_DMUHU;
tcg_out_opc_reg(s, insn, a0, a1, a2);
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_MULTU : OPC_DMULTU;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFHI, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_muluh = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_muluh,
};
static const TCGOutOpBinary outop_nand = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_nor(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_opc_reg(s, OPC_NOR, a0, a1, a2);
}
static const TCGOutOpBinary outop_nor = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_nor,
};
static void tgen_or(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_opc_reg(s, OPC_OR, a0, a1, a2);
}
static void tgen_ori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_opc_imm(s, OPC_ORI, a0, a1, a2);
}
static const TCGOutOpBinary outop_or = {
.base.static_constraint = C_O1_I2(r, r, rI),
.out_rrr = tgen_or,
.out_rri = tgen_ori,
};
static const TCGOutOpBinary outop_orc = {
.base.static_constraint = C_NotImplemented,
};
static void tgen_rems(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
if (type == TCG_TYPE_I32) {
tcg_out_opc_reg(s, OPC_MOD, a0, a1, a2);
} else {
tcg_out_opc_reg(s, OPC_DMOD, a0, a1, a2);
}
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_DIV : OPC_DDIV;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFHI, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_rems = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_rems,
};
static void tgen_remu(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
if (use_mips32r6_instructions) {
if (type == TCG_TYPE_I32) {
tcg_out_opc_reg(s, OPC_MODU, a0, a1, a2);
} else {
tcg_out_opc_reg(s, OPC_DMODU, a0, a1, a2);
}
} else {
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_DIVU : OPC_DDIVU;
tcg_out_opc_reg(s, insn, 0, a1, a2);
tcg_out_opc_reg(s, OPC_MFHI, a0, 0, 0);
}
}
static const TCGOutOpBinary outop_remu = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_remu,
};
static const TCGOutOpBinary outop_rotl = {
.base.static_constraint = C_NotImplemented,
};
static TCGConstraintSetIndex cset_rotr(TCGType type, unsigned flags)
{
return use_mips32r2_instructions ? C_O1_I2(r, r, ri) : C_NotImplemented;
}
static void tgen_rotr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_ROTRV : OPC_DROTRV;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static void tgen_rotri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
if (type == TCG_TYPE_I32) {
tcg_out_opc_sa(s, OPC_ROTR, a0, a1, a2);
} else {
tcg_out_opc_sa64(s, OPC_DROTR, OPC_DROTR32, a0, a1, a2);
}
}
static const TCGOutOpBinary outop_rotr = {
.base.static_constraint = C_Dynamic,
.base.dynamic_constraint = cset_rotr,
.out_rrr = tgen_rotr,
.out_rri = tgen_rotri,
};
static void tgen_sar(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_SRAV : OPC_DSRAV;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static void tgen_sari(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
if (type == TCG_TYPE_I32) {
tcg_out_opc_sa(s, OPC_SRA, a0, a1, a2);
} else {
tcg_out_dsra(s, a0, a1, a2);
}
}
static const TCGOutOpBinary outop_sar = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_sar,
.out_rri = tgen_sari,
};
static void tgen_shl(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_SLLV : OPC_DSLLV;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static void tgen_shli(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
if (type == TCG_TYPE_I32) {
tcg_out_opc_sa(s, OPC_SLL, a0, a1, a2);
} else {
tcg_out_dsll(s, a0, a1, a2);
}
}
static const TCGOutOpBinary outop_shl = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_shl,
.out_rri = tgen_shli,
};
static void tgen_shr(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_SRLV : OPC_DSRLV;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static void tgen_shri(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
if (type == TCG_TYPE_I32) {
tcg_out_opc_sa(s, OPC_SRL, a0, a1, a2);
} else {
tcg_out_dsrl(s, a0, a1, a2);
}
}
static const TCGOutOpBinary outop_shr = {
.base.static_constraint = C_O1_I2(r, r, ri),
.out_rrr = tgen_shr,
.out_rri = tgen_shri,
};
static void tgen_sub(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
MIPSInsn insn = type == TCG_TYPE_I32 ? OPC_SUBU : OPC_DSUBU;
tcg_out_opc_reg(s, insn, a0, a1, a2);
}
static const TCGOutOpSubtract outop_sub = {
.base.static_constraint = C_O1_I2(r, r, r),
.out_rrr = tgen_sub,
};
static void tgen_xor(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, TCGReg a2)
{
tcg_out_opc_reg(s, OPC_XOR, a0, a1, a2);
}
static void tgen_xori(TCGContext *s, TCGType type,
TCGReg a0, TCGReg a1, tcg_target_long a2)
{
tcg_out_opc_imm(s, OPC_XORI, a0, a1, a2);
}
static const TCGOutOpBinary outop_xor = {
.base.static_constraint = C_O1_I2(r, r, rI),
.out_rrr = tgen_xor,
.out_rri = tgen_xori,
};
static void tgen_neg(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
tgen_sub(s, type, a0, TCG_REG_ZERO, a1);
}
static const TCGOutOpUnary outop_neg = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_neg,
};
static void tgen_not(TCGContext *s, TCGType type, TCGReg a0, TCGReg a1)
{
tgen_nor(s, type, a0, TCG_REG_ZERO, a1);
}
static const TCGOutOpUnary outop_not = {
.base.static_constraint = C_O1_I1(r, r),
.out_rr = tgen_not,
};
static void tcg_out_op(TCGContext *s, TCGOpcode opc, TCGType type,
const TCGArg args[TCG_MAX_OP_ARGS],
const int const_args[TCG_MAX_OP_ARGS])
{
MIPSInsn i1;
TCGArg a0, a1, a2;
a0 = args[0];
a1 = args[1];
a2 = args[2];
switch (opc) {
case INDEX_op_goto_ptr:
/* jmp to the given host address (could be epilogue) */
tcg_out_opc_reg(s, OPC_JR, 0, a0, 0);
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, a0);
} else {
tcg_out_nop(s);
}
break;
case INDEX_op_br:
tcg_out_brcond(s, TCG_COND_EQ, TCG_REG_ZERO, TCG_REG_ZERO,
arg_label(a0));
break;
case INDEX_op_ld8u_i32:
case INDEX_op_ld8u_i64:
i1 = OPC_LBU;
goto do_ldst;
case INDEX_op_ld8s_i32:
case INDEX_op_ld8s_i64:
i1 = OPC_LB;
goto do_ldst;
case INDEX_op_ld16u_i32:
case INDEX_op_ld16u_i64:
i1 = OPC_LHU;
goto do_ldst;
case INDEX_op_ld16s_i32:
case INDEX_op_ld16s_i64:
i1 = OPC_LH;
goto do_ldst;
case INDEX_op_ld_i32:
case INDEX_op_ld32s_i64:
i1 = OPC_LW;
goto do_ldst;
case INDEX_op_ld32u_i64:
i1 = OPC_LWU;
goto do_ldst;
case INDEX_op_ld_i64:
i1 = OPC_LD;
goto do_ldst;
case INDEX_op_st8_i32:
case INDEX_op_st8_i64:
i1 = OPC_SB;
goto do_ldst;
case INDEX_op_st16_i32:
case INDEX_op_st16_i64:
i1 = OPC_SH;
goto do_ldst;
case INDEX_op_st_i32:
case INDEX_op_st32_i64:
i1 = OPC_SW;
goto do_ldst;
case INDEX_op_st_i64:
i1 = OPC_SD;
do_ldst:
tcg_out_ldst(s, i1, a0, a1, a2);
break;
case INDEX_op_muls2_i32:
i1 = OPC_MULT;
goto do_hilo2;
case INDEX_op_mulu2_i32:
i1 = OPC_MULTU;
goto do_hilo2;
case INDEX_op_muls2_i64:
i1 = OPC_DMULT;
goto do_hilo2;
case INDEX_op_mulu2_i64:
i1 = OPC_DMULTU;
do_hilo2:
tcg_out_opc_reg(s, i1, 0, a2, args[3]);
tcg_out_opc_reg(s, OPC_MFLO, a0, 0, 0);
tcg_out_opc_reg(s, OPC_MFHI, a1, 0, 0);
break;
case INDEX_op_bswap16_i32:
case INDEX_op_bswap16_i64:
tcg_out_bswap16(s, a0, a1, a2);
break;
case INDEX_op_bswap32_i32:
tcg_out_bswap32(s, a0, a1, 0);
break;
case INDEX_op_bswap32_i64:
tcg_out_bswap32(s, a0, a1, a2);
break;
case INDEX_op_bswap64_i64:
tcg_out_bswap64(s, a0, a1);
break;
case INDEX_op_extrh_i64_i32:
tcg_out_dsra(s, a0, a1, 32);
break;
case INDEX_op_clz_i32:
tcg_out_clz(s, OPC_CLZ, OPC_CLZ_R6, 32, a0, a1, a2);
break;
case INDEX_op_clz_i64:
tcg_out_clz(s, OPC_DCLZ, OPC_DCLZ_R6, 64, a0, a1, a2);
break;
case INDEX_op_deposit_i32:
tcg_out_opc_bf(s, OPC_INS, a0, a2, args[3] + args[4] - 1, args[3]);
break;
case INDEX_op_deposit_i64:
tcg_out_opc_bf64(s, OPC_DINS, OPC_DINSM, OPC_DINSU, a0, a2,
args[3] + args[4] - 1, args[3]);
break;
case INDEX_op_extract_i32:
if (a2 == 0 && args[3] <= 16) {
tcg_out_opc_imm(s, OPC_ANDI, a0, a1, (1 << args[3]) - 1);
} else {
tcg_out_opc_bf(s, OPC_EXT, a0, a1, args[3] - 1, a2);
}
break;
case INDEX_op_extract_i64:
if (a2 == 0 && args[3] <= 16) {
tcg_out_opc_imm(s, OPC_ANDI, a0, a1, (1 << args[3]) - 1);
} else {
tcg_out_opc_bf64(s, OPC_DEXT, OPC_DEXTM, OPC_DEXTU,
a0, a1, args[3] - 1, a2);
}
break;
case INDEX_op_sextract_i64:
if (a2 == 0 && args[3] == 32) {
tcg_out_ext32s(s, a0, a1);
break;
}
/* FALLTHRU */
case INDEX_op_sextract_i32:
if (a2 == 0 && args[3] == 8) {
tcg_out_ext8s(s, TCG_TYPE_REG, a0, a1);
} else if (a2 == 0 && args[3] == 16) {
tcg_out_ext16s(s, TCG_TYPE_REG, a0, a1);
} else {
g_assert_not_reached();
}
break;
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
tcg_out_brcond(s, a2, a0, a1, arg_label(args[3]));
break;
case INDEX_op_brcond2_i32:
tcg_out_brcond2(s, args[4], a0, a1, a2, args[3], arg_label(args[5]));
break;
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
tcg_out_movcond(s, args[5], a0, a1, a2, args[3], args[4]);
break;
case INDEX_op_setcond_i32:
case INDEX_op_setcond_i64:
tcg_out_setcond(s, args[3], a0, a1, a2);
break;
case INDEX_op_setcond2_i32:
tcg_out_setcond2(s, args[5], a0, a1, a2, args[3], args[4]);
break;
case INDEX_op_qemu_ld_i32:
tcg_out_qemu_ld(s, a0, 0, a1, a2, TCG_TYPE_I32);
break;
case INDEX_op_qemu_ld_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_ld(s, a0, 0, a1, a2, TCG_TYPE_I64);
} else {
tcg_out_qemu_ld(s, a0, a1, a2, args[3], TCG_TYPE_I64);
}
break;
case INDEX_op_qemu_st_i32:
tcg_out_qemu_st(s, a0, 0, a1, a2, TCG_TYPE_I32);
break;
case INDEX_op_qemu_st_i64:
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_qemu_st(s, a0, 0, a1, a2, TCG_TYPE_I64);
} else {
tcg_out_qemu_st(s, a0, a1, a2, args[3], TCG_TYPE_I64);
}
break;
case INDEX_op_add2_i32:
tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
const_args[4], const_args[5], false);
break;
case INDEX_op_sub2_i32:
tcg_out_addsub2(s, a0, a1, a2, args[3], args[4], args[5],
const_args[4], const_args[5], true);
break;
case INDEX_op_mb:
tcg_out_mb(s, a0);
break;
case INDEX_op_call: /* Always emitted via tcg_out_call. */
case INDEX_op_exit_tb: /* Always emitted via tcg_out_exit_tb. */
case INDEX_op_goto_tb: /* Always emitted via tcg_out_goto_tb. */
case INDEX_op_ext_i32_i64: /* Always emitted via tcg_reg_alloc_op. */
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
default:
g_assert_not_reached();
}
}
static TCGConstraintSetIndex
tcg_target_op_def(TCGOpcode op, TCGType type, unsigned flags)
{
switch (op) {
case INDEX_op_goto_ptr:
return C_O0_I1(r);
case INDEX_op_ld8u_i32:
case INDEX_op_ld8s_i32:
case INDEX_op_ld16u_i32:
case INDEX_op_ld16s_i32:
case INDEX_op_ld_i32:
case INDEX_op_bswap16_i32:
case INDEX_op_bswap32_i32:
case INDEX_op_extract_i32:
case INDEX_op_sextract_i32:
case INDEX_op_ld8u_i64:
case INDEX_op_ld8s_i64:
case INDEX_op_ld16u_i64:
case INDEX_op_ld16s_i64:
case INDEX_op_ld32s_i64:
case INDEX_op_ld32u_i64:
case INDEX_op_ld_i64:
case INDEX_op_bswap16_i64:
case INDEX_op_bswap32_i64:
case INDEX_op_bswap64_i64:
case INDEX_op_ext_i32_i64:
case INDEX_op_extu_i32_i64:
case INDEX_op_extrl_i64_i32:
case INDEX_op_extrh_i64_i32:
case INDEX_op_extract_i64:
case INDEX_op_sextract_i64:
return C_O1_I1(r, r);
case INDEX_op_st8_i32:
case INDEX_op_st16_i32:
case INDEX_op_st_i32:
case INDEX_op_st8_i64:
case INDEX_op_st16_i64:
case INDEX_op_st32_i64:
case INDEX_op_st_i64:
return C_O0_I2(rz, r);
case INDEX_op_setcond_i32:
case INDEX_op_setcond_i64:
return C_O1_I2(r, rz, rz);
case INDEX_op_muls2_i32:
case INDEX_op_mulu2_i32:
case INDEX_op_muls2_i64:
case INDEX_op_mulu2_i64:
return C_O2_I2(r, r, r, r);
case INDEX_op_clz_i32:
case INDEX_op_clz_i64:
return C_O1_I2(r, r, rzW);
case INDEX_op_deposit_i32:
case INDEX_op_deposit_i64:
return C_O1_I2(r, 0, rz);
case INDEX_op_brcond_i32:
case INDEX_op_brcond_i64:
return C_O0_I2(rz, rz);
case INDEX_op_movcond_i32:
case INDEX_op_movcond_i64:
return (use_mips32r6_instructions
? C_O1_I4(r, rz, rz, rz, rz)
: C_O1_I4(r, rz, rz, rz, 0));
case INDEX_op_add2_i32:
case INDEX_op_sub2_i32:
return C_O2_I4(r, r, rz, rz, rN, rN);
case INDEX_op_setcond2_i32:
return C_O1_I4(r, rz, rz, rz, rz);
case INDEX_op_brcond2_i32:
return C_O0_I4(rz, rz, rz, rz);
case INDEX_op_qemu_ld_i32:
return C_O1_I1(r, r);
case INDEX_op_qemu_st_i32:
return C_O0_I2(rz, r);
case INDEX_op_qemu_ld_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O1_I1(r, r) : C_O2_I1(r, r, r);
case INDEX_op_qemu_st_i64:
return TCG_TARGET_REG_BITS == 64 ? C_O0_I2(rz, r) : C_O0_I3(rz, rz, r);
default:
return C_NotImplemented;
}
}
static const int tcg_target_callee_save_regs[] = {
TCG_REG_S0,
TCG_REG_S1,
TCG_REG_S2,
TCG_REG_S3,
TCG_REG_S4,
TCG_REG_S5,
TCG_REG_S6, /* used for the tb base (TCG_REG_TB) */
TCG_REG_S7, /* used for guest_base */
TCG_REG_S8, /* used for the global env (TCG_AREG0) */
TCG_REG_RA, /* should be last for ABI compliance */
};
/* The Linux kernel doesn't provide any information about the available
instruction set. Probe it using a signal handler. */
#ifndef use_movnz_instructions
bool use_movnz_instructions = false;
#endif
#ifndef use_mips32_instructions
bool use_mips32_instructions = false;
#endif
#ifndef use_mips32r2_instructions
bool use_mips32r2_instructions = false;
#endif
static volatile sig_atomic_t got_sigill;
static void sigill_handler(int signo, siginfo_t *si, void *data)
{
/* Skip the faulty instruction */
ucontext_t *uc = (ucontext_t *)data;
uc->uc_mcontext.pc += 4;
got_sigill = 1;
}
static void tcg_target_detect_isa(void)
{
struct sigaction sa_old, sa_new;
memset(&sa_new, 0, sizeof(sa_new));
sa_new.sa_flags = SA_SIGINFO;
sa_new.sa_sigaction = sigill_handler;
sigaction(SIGILL, &sa_new, &sa_old);
/* Probe for movn/movz, necessary to implement movcond. */
#ifndef use_movnz_instructions
got_sigill = 0;
asm volatile(".set push\n"
".set mips32\n"
"movn $zero, $zero, $zero\n"
"movz $zero, $zero, $zero\n"
".set pop\n"
: : : );
use_movnz_instructions = !got_sigill;
#endif
/* Probe for MIPS32 instructions. As no subsetting is allowed
by the specification, it is only necessary to probe for one
of the instructions. */
#ifndef use_mips32_instructions
got_sigill = 0;
asm volatile(".set push\n"
".set mips32\n"
"mul $zero, $zero\n"
".set pop\n"
: : : );
use_mips32_instructions = !got_sigill;
#endif
/* Probe for MIPS32r2 instructions if MIPS32 instructions are
available. As no subsetting is allowed by the specification,
it is only necessary to probe for one of the instructions. */
#ifndef use_mips32r2_instructions
if (use_mips32_instructions) {
got_sigill = 0;
asm volatile(".set push\n"
".set mips32r2\n"
"seb $zero, $zero\n"
".set pop\n"
: : : );
use_mips32r2_instructions = !got_sigill;
}
#endif
sigaction(SIGILL, &sa_old, NULL);
}
static tcg_insn_unit *align_code_ptr(TCGContext *s)
{
uintptr_t p = (uintptr_t)s->code_ptr;
if (p & 15) {
p = (p + 15) & -16;
s->code_ptr = (void *)p;
}
return s->code_ptr;
}
/* Stack frame parameters. */
#define REG_SIZE (TCG_TARGET_REG_BITS / 8)
#define SAVE_SIZE ((int)ARRAY_SIZE(tcg_target_callee_save_regs) * REG_SIZE)
#define TEMP_SIZE (CPU_TEMP_BUF_NLONGS * (int)sizeof(long))
#define FRAME_SIZE ((TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE + SAVE_SIZE \
+ TCG_TARGET_STACK_ALIGN - 1) \
& -TCG_TARGET_STACK_ALIGN)
#define SAVE_OFS (TCG_STATIC_CALL_ARGS_SIZE + TEMP_SIZE)
/* We're expecting to be able to use an immediate for frame allocation. */
QEMU_BUILD_BUG_ON(FRAME_SIZE > 0x7fff);
/* Generate global QEMU prologue and epilogue code */
static void tcg_target_qemu_prologue(TCGContext *s)
{
int i;
tcg_set_frame(s, TCG_REG_SP, TCG_STATIC_CALL_ARGS_SIZE, TEMP_SIZE);
/* TB prologue */
tcg_out_opc_imm(s, ALIAS_PADDI, TCG_REG_SP, TCG_REG_SP, -FRAME_SIZE);
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
tcg_out_st(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_SP, SAVE_OFS + i * REG_SIZE);
}
if (!tcg_use_softmmu && guest_base != (int16_t)guest_base) {
/*
* The function call abi for n32 and n64 will have loaded $25 (t9)
* with the address of the prologue, so we can use that instead
* of TCG_REG_TB.
*/
#if TCG_TARGET_REG_BITS == 64 && !defined(__mips_abicalls)
# error "Unknown mips abi"
#endif
tcg_out_movi_int(s, TCG_TYPE_PTR, TCG_GUEST_BASE_REG, guest_base,
TCG_TARGET_REG_BITS == 64 ? TCG_REG_T9 : 0);
tcg_regset_set_reg(s->reserved_regs, TCG_GUEST_BASE_REG);
}
if (TCG_TARGET_REG_BITS == 64) {
tcg_out_mov(s, TCG_TYPE_PTR, TCG_REG_TB, tcg_target_call_iarg_regs[1]);
}
/* Call generated code */
tcg_out_opc_reg(s, OPC_JR, 0, tcg_target_call_iarg_regs[1], 0);
/* delay slot */
tcg_out_mov(s, TCG_TYPE_PTR, TCG_AREG0, tcg_target_call_iarg_regs[0]);
/*
* Return path for goto_ptr. Set return value to 0, a-la exit_tb,
* and fall through to the rest of the epilogue.
*/
tcg_code_gen_epilogue = tcg_splitwx_to_rx(s->code_ptr);
tcg_out_mov(s, TCG_TYPE_REG, TCG_REG_V0, TCG_REG_ZERO);
/* TB epilogue */
tb_ret_addr = tcg_splitwx_to_rx(s->code_ptr);
for (i = 0; i < ARRAY_SIZE(tcg_target_callee_save_regs); i++) {
tcg_out_ld(s, TCG_TYPE_REG, tcg_target_callee_save_regs[i],
TCG_REG_SP, SAVE_OFS + i * REG_SIZE);
}
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
/* delay slot */
tcg_out_opc_imm(s, ALIAS_PADDI, TCG_REG_SP, TCG_REG_SP, FRAME_SIZE);
if (use_mips32r2_instructions) {
return;
}
/* Bswap subroutines: Input in TCG_TMP0, output in TCG_TMP3;
clobbers TCG_TMP1, TCG_TMP2. */
/*
* bswap32 -- 32-bit swap (signed result for mips64). a0 = abcd.
*/
bswap32_addr = tcg_splitwx_to_rx(align_code_ptr(s));
/* t3 = (ssss)d000 */
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP3, TCG_TMP0, 24);
/* t1 = 000a */
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP1, TCG_TMP0, 24);
/* t2 = 00c0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP0, 0xff00);
/* t3 = d00a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* t1 = 0abc */
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP1, TCG_TMP0, 8);
/* t2 = 0c00 */
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP2, TCG_TMP2, 8);
/* t1 = 00b0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP1, 0xff00);
/* t3 = dc0a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
/* t3 = dcba -- delay slot */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
if (TCG_TARGET_REG_BITS == 32) {
return;
}
/*
* bswap32u -- unsigned 32-bit swap. a0 = ....abcd.
*/
bswap32u_addr = tcg_splitwx_to_rx(align_code_ptr(s));
/* t1 = (0000)000d */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP0, 0xff);
/* t3 = 000a */
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP3, TCG_TMP0, 24);
/* t1 = (0000)d000 */
tcg_out_dsll(s, TCG_TMP1, TCG_TMP1, 24);
/* t2 = 00c0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP0, 0xff00);
/* t3 = d00a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* t1 = 0abc */
tcg_out_opc_sa(s, OPC_SRL, TCG_TMP1, TCG_TMP0, 8);
/* t2 = 0c00 */
tcg_out_opc_sa(s, OPC_SLL, TCG_TMP2, TCG_TMP2, 8);
/* t1 = 00b0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP1, 0xff00);
/* t3 = dc0a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
/* t3 = dcba -- delay slot */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/*
* bswap64 -- 64-bit swap. a0 = abcdefgh
*/
bswap64_addr = tcg_splitwx_to_rx(align_code_ptr(s));
/* t3 = h0000000 */
tcg_out_dsll(s, TCG_TMP3, TCG_TMP0, 56);
/* t1 = 0000000a */
tcg_out_dsrl(s, TCG_TMP1, TCG_TMP0, 56);
/* t2 = 000000g0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP0, 0xff00);
/* t3 = h000000a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* t1 = 00000abc */
tcg_out_dsrl(s, TCG_TMP1, TCG_TMP0, 40);
/* t2 = 0g000000 */
tcg_out_dsll(s, TCG_TMP2, TCG_TMP2, 40);
/* t1 = 000000b0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP1, 0xff00);
/* t3 = hg00000a */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
/* t2 = 0000abcd */
tcg_out_dsrl(s, TCG_TMP2, TCG_TMP0, 32);
/* t3 = hg0000ba */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* t1 = 000000c0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP2, 0xff00);
/* t2 = 0000000d */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP2, 0x00ff);
/* t1 = 00000c00 */
tcg_out_dsll(s, TCG_TMP1, TCG_TMP1, 8);
/* t2 = 0000d000 */
tcg_out_dsll(s, TCG_TMP2, TCG_TMP2, 24);
/* t3 = hg000cba */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
/* t1 = 00abcdef */
tcg_out_dsrl(s, TCG_TMP1, TCG_TMP0, 16);
/* t3 = hg00dcba */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
/* t2 = 0000000f */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP2, TCG_TMP1, 0x00ff);
/* t1 = 000000e0 */
tcg_out_opc_imm(s, OPC_ANDI, TCG_TMP1, TCG_TMP1, 0xff00);
/* t2 = 00f00000 */
tcg_out_dsll(s, TCG_TMP2, TCG_TMP2, 40);
/* t1 = 000e0000 */
tcg_out_dsll(s, TCG_TMP1, TCG_TMP1, 24);
/* t3 = hgf0dcba */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP2);
tcg_out_opc_reg(s, OPC_JR, 0, TCG_REG_RA, 0);
/* t3 = hgfedcba -- delay slot */
tcg_out_opc_reg(s, OPC_OR, TCG_TMP3, TCG_TMP3, TCG_TMP1);
}
static void tcg_out_tb_start(TCGContext *s)
{
/* nothing to do */
}
static void tcg_target_init(TCGContext *s)
{
tcg_target_detect_isa();
tcg_target_available_regs[TCG_TYPE_I32] = 0xffffffff;
if (TCG_TARGET_REG_BITS == 64) {
tcg_target_available_regs[TCG_TYPE_I64] = 0xffffffff;
}
tcg_target_call_clobber_regs = 0;
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_V1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_A0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_A1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_A2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_A3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T0);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T1);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T2);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T3);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T4);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T5);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T6);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T7);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T8);
tcg_regset_set_reg(tcg_target_call_clobber_regs, TCG_REG_T9);
s->reserved_regs = 0;
tcg_regset_set_reg(s->reserved_regs, TCG_REG_ZERO); /* zero register */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_K0); /* kernel use only */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_K1); /* kernel use only */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP0); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP1); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP2); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_TMP3); /* internal use */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_RA); /* return address */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_SP); /* stack pointer */
tcg_regset_set_reg(s->reserved_regs, TCG_REG_GP); /* global pointer */
if (TCG_TARGET_REG_BITS == 64) {
tcg_regset_set_reg(s->reserved_regs, TCG_REG_TB); /* tc->tc_ptr */
}
}
typedef struct {
DebugFrameHeader h;
uint8_t fde_def_cfa[4];
uint8_t fde_reg_ofs[ARRAY_SIZE(tcg_target_callee_save_regs) * 2];
} DebugFrame;
#define ELF_HOST_MACHINE EM_MIPS
/* GDB doesn't appear to require proper setting of ELF_HOST_FLAGS,
which is good because they're really quite complicated for MIPS. */
static const DebugFrame debug_frame = {
.h.cie.len = sizeof(DebugFrameCIE) - 4, /* length after .len member */
.h.cie.id = -1,
.h.cie.version = 1,
.h.cie.code_align = 1,
.h.cie.data_align = -(TCG_TARGET_REG_BITS / 8) & 0x7f, /* sleb128 */
.h.cie.return_column = TCG_REG_RA,
/* Total FDE size does not include the "len" member. */
.h.fde.len = sizeof(DebugFrame) - offsetof(DebugFrame, h.fde.cie_offset),
.fde_def_cfa = {
12, TCG_REG_SP, /* DW_CFA_def_cfa sp, ... */
(FRAME_SIZE & 0x7f) | 0x80, /* ... uleb128 FRAME_SIZE */
(FRAME_SIZE >> 7)
},
.fde_reg_ofs = {
0x80 + 16, 9, /* DW_CFA_offset, s0, -72 */
0x80 + 17, 8, /* DW_CFA_offset, s2, -64 */
0x80 + 18, 7, /* DW_CFA_offset, s3, -56 */
0x80 + 19, 6, /* DW_CFA_offset, s4, -48 */
0x80 + 20, 5, /* DW_CFA_offset, s5, -40 */
0x80 + 21, 4, /* DW_CFA_offset, s6, -32 */
0x80 + 22, 3, /* DW_CFA_offset, s7, -24 */
0x80 + 30, 2, /* DW_CFA_offset, s8, -16 */
0x80 + 31, 1, /* DW_CFA_offset, ra, -8 */
}
};
void tcg_register_jit(const void *buf, size_t buf_size)
{
tcg_register_jit_int(buf, buf_size, &debug_frame, sizeof(debug_frame));
}