/* * STM32L4X5 RCC (Reset and clock control) * * Copyright (c) 2023 Arnaud Minier * Copyright (c) 2023 Inès Varhol * * SPDX-License-Identifier: GPL-2.0-or-later * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * The reference used is the STMicroElectronics RM0351 Reference manual * for STM32L4x5 and STM32L4x6 advanced Arm ® -based 32-bit MCUs. * * Inspired by the BCM2835 CPRMAN clock manager implementation by Luc Michel. */ #include "qemu/osdep.h" #include "qemu/log.h" #include "qemu/module.h" #include "qemu/timer.h" #include "qapi/error.h" #include "migration/vmstate.h" #include "hw/misc/stm32l4x5_rcc.h" #include "hw/misc/stm32l4x5_rcc_internals.h" #include "hw/clock.h" #include "hw/irq.h" #include "hw/qdev-clock.h" #include "hw/qdev-properties.h" #include "hw/qdev-properties-system.h" #include "trace.h" #define HSE_DEFAULT_FRQ 48000000ULL #define HSI_FRQ 16000000ULL #define MSI_DEFAULT_FRQ 4000000ULL #define LSE_FRQ 32768ULL #define LSI_FRQ 32000ULL static void clock_mux_update(RccClockMuxState *mux) { uint64_t src_freq; Clock *current_source = mux->srcs[mux->src]; uint32_t freq_multiplier = 0; /* * To avoid rounding errors, we use the clock period instead of the * frequency. * This means that the multiplier of the mux becomes the divider of * the clock and the divider of the mux becomes the multiplier of the * clock. */ if (mux->enabled && mux->divider) { freq_multiplier = mux->divider; } clock_set_mul_div(mux->out, freq_multiplier, mux->multiplier); clock_update(mux->out, clock_get(current_source)); src_freq = clock_get_hz(current_source); /* TODO: can we simply detect if the config changed so that we reduce log spam ? */ trace_stm32l4x5_rcc_mux_update(mux->id, mux->src, src_freq, mux->multiplier, mux->divider); } static void clock_mux_src_update(void *opaque, ClockEvent event) { RccClockMuxState **backref = opaque; RccClockMuxState *s = *backref; /* * The backref value is equal to: * s->backref + (sizeof(RccClockMuxState *) * update_src). * By subtracting we can get back the index of the updated clock. */ const uint32_t update_src = backref - s->backref; /* Only update if the clock that was updated is the current source */ if (update_src == s->src) { clock_mux_update(s); } } static void clock_mux_init(Object *obj) { RccClockMuxState *s = RCC_CLOCK_MUX(obj); size_t i; for (i = 0; i < RCC_NUM_CLOCK_MUX_SRC; i++) { char *name = g_strdup_printf("srcs[%zu]", i); s->backref[i] = s; s->srcs[i] = qdev_init_clock_in(DEVICE(s), name, clock_mux_src_update, &s->backref[i], ClockUpdate); g_free(name); } s->out = qdev_init_clock_out(DEVICE(s), "out"); } static void clock_mux_reset_hold(Object *obj) { } static const VMStateDescription clock_mux_vmstate = { .name = TYPE_RCC_CLOCK_MUX, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(id, RccClockMuxState), VMSTATE_ARRAY_CLOCK(srcs, RccClockMuxState, RCC_NUM_CLOCK_MUX_SRC), VMSTATE_BOOL(enabled, RccClockMuxState), VMSTATE_UINT32(src, RccClockMuxState), VMSTATE_UINT32(multiplier, RccClockMuxState), VMSTATE_UINT32(divider, RccClockMuxState), VMSTATE_END_OF_LIST() } }; static void clock_mux_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.hold = clock_mux_reset_hold; dc->vmsd = &clock_mux_vmstate; } static void clock_mux_set_enable(RccClockMuxState *mux, bool enabled) { if (mux->enabled == enabled) { return; } if (enabled) { trace_stm32l4x5_rcc_mux_enable(mux->id); } else { trace_stm32l4x5_rcc_mux_disable(mux->id); } mux->enabled = enabled; clock_mux_update(mux); } static void clock_mux_set_factor(RccClockMuxState *mux, uint32_t multiplier, uint32_t divider) { if (mux->multiplier == multiplier && mux->divider == divider) { return; } trace_stm32l4x5_rcc_mux_set_factor(mux->id, mux->multiplier, multiplier, mux->divider, divider); mux->multiplier = multiplier; mux->divider = divider; clock_mux_update(mux); } static void clock_mux_set_source(RccClockMuxState *mux, RccClockMuxSource src) { if (mux->src == src) { return; } trace_stm32l4x5_rcc_mux_set_src(mux->id, mux->src, src); mux->src = src; clock_mux_update(mux); } static void rcc_update_irq(Stm32l4x5RccState *s) { if (s->cifr & CIFR_IRQ_MASK) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static void stm32l4x5_rcc_reset_hold(Object *obj) { Stm32l4x5RccState *s = STM32L4X5_RCC(obj); s->cr = 0x00000063; /* * Factory-programmed calibration data * From the reference manual: 0x10XX 00XX * Value taken from a real card. */ s->icscr = 0x106E0082; s->cfgr = 0x0; s->pllcfgr = 0x00001000; s->pllsai1cfgr = 0x00001000; s->pllsai2cfgr = 0x00001000; s->cier = 0x0; s->cifr = 0x0; s->ahb1rstr = 0x0; s->ahb2rstr = 0x0; s->ahb3rstr = 0x0; s->apb1rstr1 = 0x0; s->apb1rstr2 = 0x0; s->apb2rstr = 0x0; s->ahb1enr = 0x00000100; s->ahb2enr = 0x0; s->ahb3enr = 0x0; s->apb1enr1 = 0x0; s->apb1enr2 = 0x0; s->apb2enr = 0x0; s->ahb1smenr = 0x00011303; s->ahb2smenr = 0x000532FF; s->ahb3smenr = 0x00000101; s->apb1smenr1 = 0xF2FECA3F; s->apb1smenr2 = 0x00000025; s->apb2smenr = 0x01677C01; s->ccipr = 0x0; s->bdcr = 0x0; s->csr = 0x0C000600; } static uint64_t stm32l4x5_rcc_read(void *opaque, hwaddr addr, unsigned int size) { Stm32l4x5RccState *s = opaque; uint64_t retvalue = 0; switch (addr) { case A_CR: retvalue = s->cr; break; case A_ICSCR: retvalue = s->icscr; break; case A_CFGR: retvalue = s->cfgr; break; case A_PLLCFGR: retvalue = s->pllcfgr; break; case A_PLLSAI1CFGR: retvalue = s->pllsai1cfgr; break; case A_PLLSAI2CFGR: retvalue = s->pllsai2cfgr; break; case A_CIER: retvalue = s->cier; break; case A_CIFR: retvalue = s->cifr; break; case A_CICR: /* CICR is write only, return the reset value = 0 */ break; case A_AHB1RSTR: retvalue = s->ahb1rstr; break; case A_AHB2RSTR: retvalue = s->ahb2rstr; break; case A_AHB3RSTR: retvalue = s->ahb3rstr; break; case A_APB1RSTR1: retvalue = s->apb1rstr1; break; case A_APB1RSTR2: retvalue = s->apb1rstr2; break; case A_APB2RSTR: retvalue = s->apb2rstr; break; case A_AHB1ENR: retvalue = s->ahb1enr; break; case A_AHB2ENR: retvalue = s->ahb2enr; break; case A_AHB3ENR: retvalue = s->ahb3enr; break; case A_APB1ENR1: retvalue = s->apb1enr1; break; case A_APB1ENR2: retvalue = s->apb1enr2; break; case A_APB2ENR: retvalue = s->apb2enr; break; case A_AHB1SMENR: retvalue = s->ahb1smenr; break; case A_AHB2SMENR: retvalue = s->ahb2smenr; break; case A_AHB3SMENR: retvalue = s->ahb3smenr; break; case A_APB1SMENR1: retvalue = s->apb1smenr1; break; case A_APB1SMENR2: retvalue = s->apb1smenr2; break; case A_APB2SMENR: retvalue = s->apb2smenr; break; case A_CCIPR: retvalue = s->ccipr; break; case A_BDCR: retvalue = s->bdcr; break; case A_CSR: retvalue = s->csr; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); break; } trace_stm32l4x5_rcc_read(addr, retvalue); return retvalue; } static void stm32l4x5_rcc_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { Stm32l4x5RccState *s = opaque; const uint32_t value = val64; trace_stm32l4x5_rcc_write(addr, value); switch (addr) { case A_CR: s->cr = (s->cr & CR_READ_SET_MASK) | (value & (CR_READ_SET_MASK | ~CR_READ_ONLY_MASK)); break; case A_ICSCR: s->icscr = value & ~ICSCR_READ_ONLY_MASK; break; case A_CFGR: s->cfgr = value & ~CFGR_READ_ONLY_MASK; break; case A_PLLCFGR: s->pllcfgr = value; break; case A_PLLSAI1CFGR: s->pllsai1cfgr = value; break; case A_PLLSAI2CFGR: s->pllsai2cfgr = value; break; case A_CIER: s->cier = value; break; case A_CIFR: qemu_log_mask(LOG_GUEST_ERROR, "%s: Write attempt into read-only register (CIFR) 0x%"PRIx32"\n", __func__, value); break; case A_CICR: /* Clear interrupt flags by writing a 1 to the CICR register */ s->cifr &= ~value; rcc_update_irq(s); break; /* Reset behaviors are not implemented */ case A_AHB1RSTR: s->ahb1rstr = value; break; case A_AHB2RSTR: s->ahb2rstr = value; break; case A_AHB3RSTR: s->ahb3rstr = value; break; case A_APB1RSTR1: s->apb1rstr1 = value; break; case A_APB1RSTR2: s->apb1rstr2 = value; break; case A_APB2RSTR: s->apb2rstr = value; break; case A_AHB1ENR: s->ahb1enr = value; break; case A_AHB2ENR: s->ahb2enr = value; break; case A_AHB3ENR: s->ahb3enr = value; break; case A_APB1ENR1: s->apb1enr1 = value; break; case A_APB1ENR2: s->apb1enr2 = value; break; case A_APB2ENR: s->apb2enr = (s->apb2enr & APB2ENR_READ_SET_MASK) | value; break; /* Behaviors for Sleep and Stop modes are not implemented */ case A_AHB1SMENR: s->ahb1smenr = value; break; case A_AHB2SMENR: s->ahb2smenr = value; break; case A_AHB3SMENR: s->ahb3smenr = value; break; case A_APB1SMENR1: s->apb1smenr1 = value; break; case A_APB1SMENR2: s->apb1smenr2 = value; break; case A_APB2SMENR: s->apb2smenr = value; break; case A_CCIPR: s->ccipr = value; break; case A_BDCR: s->bdcr = value & ~BDCR_READ_ONLY_MASK; break; case A_CSR: s->csr = value & ~CSR_READ_ONLY_MASK; break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%"HWADDR_PRIx"\n", __func__, addr); } } static const MemoryRegionOps stm32l4x5_rcc_ops = { .read = stm32l4x5_rcc_read, .write = stm32l4x5_rcc_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .max_access_size = 4, .min_access_size = 4, .unaligned = false }, .impl = { .max_access_size = 4, .min_access_size = 4, .unaligned = false }, }; static const ClockPortInitArray stm32l4x5_rcc_clocks = { QDEV_CLOCK_IN(Stm32l4x5RccState, hsi16_rc, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, msi_rc, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, hse, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, lsi_rc, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, lse_crystal, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, sai1_extclk, NULL, 0), QDEV_CLOCK_IN(Stm32l4x5RccState, sai2_extclk, NULL, 0), QDEV_CLOCK_END }; static void stm32l4x5_rcc_init(Object *obj) { Stm32l4x5RccState *s = STM32L4X5_RCC(obj); size_t i; sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq); memory_region_init_io(&s->mmio, obj, &stm32l4x5_rcc_ops, s, TYPE_STM32L4X5_RCC, 0x400); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); qdev_init_clocks(DEVICE(s), stm32l4x5_rcc_clocks); for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { object_initialize_child(obj, "clock[*]", &s->clock_muxes[i], TYPE_RCC_CLOCK_MUX); } s->gnd = clock_new(obj, "gnd"); } static const VMStateDescription vmstate_stm32l4x5_rcc = { .name = TYPE_STM32L4X5_RCC, .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(cr, Stm32l4x5RccState), VMSTATE_UINT32(icscr, Stm32l4x5RccState), VMSTATE_UINT32(cfgr, Stm32l4x5RccState), VMSTATE_UINT32(pllcfgr, Stm32l4x5RccState), VMSTATE_UINT32(pllsai1cfgr, Stm32l4x5RccState), VMSTATE_UINT32(pllsai2cfgr, Stm32l4x5RccState), VMSTATE_UINT32(cier, Stm32l4x5RccState), VMSTATE_UINT32(cifr, Stm32l4x5RccState), VMSTATE_UINT32(ahb1rstr, Stm32l4x5RccState), VMSTATE_UINT32(ahb2rstr, Stm32l4x5RccState), VMSTATE_UINT32(ahb3rstr, Stm32l4x5RccState), VMSTATE_UINT32(apb1rstr1, Stm32l4x5RccState), VMSTATE_UINT32(apb1rstr2, Stm32l4x5RccState), VMSTATE_UINT32(apb2rstr, Stm32l4x5RccState), VMSTATE_UINT32(ahb1enr, Stm32l4x5RccState), VMSTATE_UINT32(ahb2enr, Stm32l4x5RccState), VMSTATE_UINT32(ahb3enr, Stm32l4x5RccState), VMSTATE_UINT32(apb1enr1, Stm32l4x5RccState), VMSTATE_UINT32(apb1enr2, Stm32l4x5RccState), VMSTATE_UINT32(apb2enr, Stm32l4x5RccState), VMSTATE_UINT32(ahb1smenr, Stm32l4x5RccState), VMSTATE_UINT32(ahb2smenr, Stm32l4x5RccState), VMSTATE_UINT32(ahb3smenr, Stm32l4x5RccState), VMSTATE_UINT32(apb1smenr1, Stm32l4x5RccState), VMSTATE_UINT32(apb1smenr2, Stm32l4x5RccState), VMSTATE_UINT32(apb2smenr, Stm32l4x5RccState), VMSTATE_UINT32(ccipr, Stm32l4x5RccState), VMSTATE_UINT32(bdcr, Stm32l4x5RccState), VMSTATE_UINT32(csr, Stm32l4x5RccState), VMSTATE_CLOCK(hsi16_rc, Stm32l4x5RccState), VMSTATE_CLOCK(msi_rc, Stm32l4x5RccState), VMSTATE_CLOCK(hse, Stm32l4x5RccState), VMSTATE_CLOCK(lsi_rc, Stm32l4x5RccState), VMSTATE_CLOCK(lse_crystal, Stm32l4x5RccState), VMSTATE_CLOCK(sai1_extclk, Stm32l4x5RccState), VMSTATE_CLOCK(sai2_extclk, Stm32l4x5RccState), VMSTATE_END_OF_LIST() } }; static void stm32l4x5_rcc_realize(DeviceState *dev, Error **errp) { Stm32l4x5RccState *s = STM32L4X5_RCC(dev); size_t i; if (s->hse_frequency < 4000000ULL || s->hse_frequency > 48000000ULL) { error_setg(errp, "HSE frequency is outside of the allowed [4-48]Mhz range: %" PRIx64 "", s->hse_frequency); return; } for (i = 0; i < RCC_NUM_CLOCK_MUX; i++) { RccClockMuxState *clock_mux = &s->clock_muxes[i]; if (!qdev_realize(DEVICE(clock_mux), NULL, errp)) { return; } } clock_update_hz(s->msi_rc, MSI_DEFAULT_FRQ); clock_update_hz(s->sai1_extclk, s->sai1_extclk_frequency); clock_update_hz(s->sai2_extclk, s->sai2_extclk_frequency); clock_update(s->gnd, 0); /* * Dummy values to make compilation pass. * Removed in later commits. */ clock_mux_set_source(&s->clock_muxes[0], RCC_CLOCK_MUX_SRC_GND); clock_mux_set_enable(&s->clock_muxes[0], true); clock_mux_set_factor(&s->clock_muxes[0], 1, 1); } static Property stm32l4x5_rcc_properties[] = { DEFINE_PROP_UINT64("hse_frequency", Stm32l4x5RccState, hse_frequency, HSE_DEFAULT_FRQ), DEFINE_PROP_UINT64("sai1_extclk_frequency", Stm32l4x5RccState, sai1_extclk_frequency, 0), DEFINE_PROP_UINT64("sai2_extclk_frequency", Stm32l4x5RccState, sai2_extclk_frequency, 0), DEFINE_PROP_END_OF_LIST(), }; static void stm32l4x5_rcc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); ResettableClass *rc = RESETTABLE_CLASS(klass); rc->phases.hold = stm32l4x5_rcc_reset_hold; device_class_set_props(dc, stm32l4x5_rcc_properties); dc->realize = stm32l4x5_rcc_realize; dc->vmsd = &vmstate_stm32l4x5_rcc; } static const TypeInfo stm32l4x5_rcc_types[] = { { .name = TYPE_STM32L4X5_RCC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(Stm32l4x5RccState), .instance_init = stm32l4x5_rcc_init, .class_init = stm32l4x5_rcc_class_init, }, { .name = TYPE_RCC_CLOCK_MUX, .parent = TYPE_DEVICE, .instance_size = sizeof(RccClockMuxState), .instance_init = clock_mux_init, .class_init = clock_mux_class_init, } }; DEFINE_TYPES(stm32l4x5_rcc_types)