/* * Helpers for lazy condition code handling * * Copyright (c) 2003-2005 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/helper-proto.h" static inline uint32_t get_NZ_icc(int32_t dst) { uint32_t ret = 0; if (dst == 0) { ret = PSR_ZERO; } else if (dst < 0) { ret = PSR_NEG; } return ret; } #ifdef TARGET_SPARC64 static inline uint32_t get_NZ_xcc(target_long dst) { uint32_t ret = 0; if (!dst) { ret = PSR_ZERO; } else if (dst < 0) { ret = PSR_NEG; } return ret; } #endif static inline uint32_t get_V_div_icc(target_ulong src2) { uint32_t ret = 0; if (src2 != 0) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_div(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_V_div_icc(CC_SRC2); return ret; } static uint32_t compute_C_div(CPUSPARCState *env) { return 0; } static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1) { uint32_t ret = 0; if (dst < src1) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) { ret = PSR_OVF; } return ret; } #ifdef TARGET_SPARC64 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1) { uint32_t ret = 0; if (dst < src1) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_add_xcc(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_add_xcc(CC_DST, CC_SRC); ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_add_xcc(CPUSPARCState *env) { return get_C_add_xcc(CC_DST, CC_SRC); } #endif static uint32_t compute_all_add(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_add(CPUSPARCState *env) { return get_C_add_icc(CC_DST, CC_SRC); } #ifdef TARGET_SPARC64 static uint32_t compute_all_addx_xcc(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_addx_xcc(CPUSPARCState *env) { return get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); } #endif static uint32_t compute_all_addx(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_addx(CPUSPARCState *env) { return get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); } static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2) { uint32_t ret = 0; if ((src1 | src2) & 0x3) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_tadd(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_tag_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_taddtv(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); return ret; } static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (src1 < src2) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) { ret = PSR_OVF; } return ret; } #ifdef TARGET_SPARC64 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (src1 < src2) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_sub_xcc(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_sub_xcc(CC_SRC, CC_SRC2); ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_sub_xcc(CPUSPARCState *env) { return get_C_sub_xcc(CC_SRC, CC_SRC2); } #endif static uint32_t compute_all_sub(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_sub(CPUSPARCState *env) { return get_C_sub_icc(CC_SRC, CC_SRC2); } #ifdef TARGET_SPARC64 static uint32_t compute_all_subx_xcc(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_subx_xcc(CPUSPARCState *env) { return get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); } #endif static uint32_t compute_all_subx(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_subx(CPUSPARCState *env) { return get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); } static uint32_t compute_all_tsub(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_tag_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_tsubtv(CPUSPARCState *env) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_logic(CPUSPARCState *env) { return get_NZ_icc(CC_DST); } static uint32_t compute_C_logic(CPUSPARCState *env) { return 0; } #ifdef TARGET_SPARC64 static uint32_t compute_all_logic_xcc(CPUSPARCState *env) { return get_NZ_xcc(CC_DST); } #endif typedef struct CCTable { uint32_t (*compute_all)(CPUSPARCState *env); /* return all the flags */ uint32_t (*compute_c)(CPUSPARCState *env); /* return the C flag */ } CCTable; static const CCTable icc_table[CC_OP_NB] = { /* CC_OP_DYNAMIC should never happen */ [CC_OP_DIV] = { compute_all_div, compute_C_div }, [CC_OP_ADD] = { compute_all_add, compute_C_add }, [CC_OP_ADDX] = { compute_all_addx, compute_C_addx }, [CC_OP_TADD] = { compute_all_tadd, compute_C_add }, [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add }, [CC_OP_SUB] = { compute_all_sub, compute_C_sub }, [CC_OP_SUBX] = { compute_all_subx, compute_C_subx }, [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub }, [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub }, [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic }, }; #ifdef TARGET_SPARC64 static const CCTable xcc_table[CC_OP_NB] = { /* CC_OP_DYNAMIC should never happen */ [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic }, [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc }, [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc }, [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic }, }; #endif void helper_compute_psr(CPUSPARCState *env) { if (CC_OP == CC_OP_FLAGS) { return; } uint32_t icc = icc_table[CC_OP].compute_all(env); #ifdef TARGET_SPARC64 uint32_t xcc = xcc_table[CC_OP].compute_all(env); env->cc_N = deposit64(-(icc & PSR_NEG), 32, 32, -(xcc & PSR_NEG)); env->cc_V = deposit64(-(icc & PSR_OVF), 32, 32, -(xcc & PSR_OVF)); env->icc_C = (uint64_t)icc << (32 - PSR_CARRY_SHIFT); env->xcc_C = (xcc >> PSR_CARRY_SHIFT) & 1; env->xcc_Z = ~xcc & PSR_ZERO; #else env->cc_N = -(icc & PSR_NEG); env->cc_V = -(icc & PSR_OVF); env->icc_C = (icc >> PSR_CARRY_SHIFT) & 1; #endif env->icc_Z = ~icc & PSR_ZERO; CC_OP = CC_OP_FLAGS; } uint32_t helper_compute_C_icc(CPUSPARCState *env) { if (CC_OP == CC_OP_FLAGS) { #ifdef TARGET_SPARC64 return extract64(env->icc_C, 32, 1); #else return env->icc_C; #endif } return icc_table[CC_OP].compute_c(env) >> PSR_CARRY_SHIFT; }