mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-06 09:13:55 -06:00
Move target-* CPU file into a target/ folder
We've currently got 18 architectures in QEMU, and thus 18 target-xxx folders in the root folder of the QEMU source tree. More architectures (e.g. RISC-V, AVR) are likely to be included soon, too, so the main folder of the QEMU sources slowly gets quite overcrowded with the target-xxx folders. To disburden the main folder a little bit, let's move the target-xxx folders into a dedicated target/ folder, so that target-xxx/ simply becomes target/xxx/ instead. Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part] Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part] Acked-by: Michael Walle <michael@walle.cc> [lm32 part] Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part] Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part] Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part] Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part] Acked-by: Richard Henderson <rth@twiddle.net> [alpha part] Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part] Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part] Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part] Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part] Signed-off-by: Thomas Huth <thuth@redhat.com>
This commit is contained in:
parent
82ecffa8c0
commit
fcf5ef2ab5
369 changed files with 78 additions and 80 deletions
310
target/ppc/mem_helper.c
Normal file
310
target/ppc/mem_helper.c
Normal file
|
@ -0,0 +1,310 @@
|
|||
/*
|
||||
* PowerPC memory access emulation helpers for QEMU.
|
||||
*
|
||||
* Copyright (c) 2003-2007 Jocelyn Mayer
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
#include "qemu/osdep.h"
|
||||
#include "cpu.h"
|
||||
#include "exec/exec-all.h"
|
||||
#include "qemu/host-utils.h"
|
||||
#include "exec/helper-proto.h"
|
||||
|
||||
#include "helper_regs.h"
|
||||
#include "exec/cpu_ldst.h"
|
||||
|
||||
//#define DEBUG_OP
|
||||
|
||||
static inline bool needs_byteswap(const CPUPPCState *env)
|
||||
{
|
||||
#if defined(TARGET_WORDS_BIGENDIAN)
|
||||
return msr_le;
|
||||
#else
|
||||
return !msr_le;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Memory load and stores */
|
||||
|
||||
static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
|
||||
target_long arg)
|
||||
{
|
||||
#if defined(TARGET_PPC64)
|
||||
if (!msr_is_64bit(env, env->msr)) {
|
||||
return (uint32_t)(addr + arg);
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
return addr + arg;
|
||||
}
|
||||
}
|
||||
|
||||
void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
|
||||
{
|
||||
for (; reg < 32; reg++) {
|
||||
if (needs_byteswap(env)) {
|
||||
env->gpr[reg] = bswap32(cpu_ldl_data_ra(env, addr, GETPC()));
|
||||
} else {
|
||||
env->gpr[reg] = cpu_ldl_data_ra(env, addr, GETPC());
|
||||
}
|
||||
addr = addr_add(env, addr, 4);
|
||||
}
|
||||
}
|
||||
|
||||
void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
|
||||
{
|
||||
for (; reg < 32; reg++) {
|
||||
if (needs_byteswap(env)) {
|
||||
cpu_stl_data_ra(env, addr, bswap32((uint32_t)env->gpr[reg]),
|
||||
GETPC());
|
||||
} else {
|
||||
cpu_stl_data_ra(env, addr, (uint32_t)env->gpr[reg], GETPC());
|
||||
}
|
||||
addr = addr_add(env, addr, 4);
|
||||
}
|
||||
}
|
||||
|
||||
static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
|
||||
uint32_t reg, uintptr_t raddr)
|
||||
{
|
||||
int sh;
|
||||
|
||||
for (; nb > 3; nb -= 4) {
|
||||
env->gpr[reg] = cpu_ldl_data_ra(env, addr, raddr);
|
||||
reg = (reg + 1) % 32;
|
||||
addr = addr_add(env, addr, 4);
|
||||
}
|
||||
if (unlikely(nb > 0)) {
|
||||
env->gpr[reg] = 0;
|
||||
for (sh = 24; nb > 0; nb--, sh -= 8) {
|
||||
env->gpr[reg] |= cpu_ldub_data_ra(env, addr, raddr) << sh;
|
||||
addr = addr_add(env, addr, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
|
||||
{
|
||||
do_lsw(env, addr, nb, reg, GETPC());
|
||||
}
|
||||
|
||||
/* PPC32 specification says we must generate an exception if
|
||||
* rA is in the range of registers to be loaded.
|
||||
* In an other hand, IBM says this is valid, but rA won't be loaded.
|
||||
* For now, I'll follow the spec...
|
||||
*/
|
||||
void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
|
||||
uint32_t ra, uint32_t rb)
|
||||
{
|
||||
if (likely(xer_bc != 0)) {
|
||||
int num_used_regs = (xer_bc + 3) / 4;
|
||||
if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
|
||||
lsw_reg_in_range(reg, num_used_regs, rb))) {
|
||||
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
|
||||
POWERPC_EXCP_INVAL |
|
||||
POWERPC_EXCP_INVAL_LSWX, GETPC());
|
||||
} else {
|
||||
do_lsw(env, addr, xer_bc, reg, GETPC());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
|
||||
uint32_t reg)
|
||||
{
|
||||
int sh;
|
||||
|
||||
for (; nb > 3; nb -= 4) {
|
||||
cpu_stl_data_ra(env, addr, env->gpr[reg], GETPC());
|
||||
reg = (reg + 1) % 32;
|
||||
addr = addr_add(env, addr, 4);
|
||||
}
|
||||
if (unlikely(nb > 0)) {
|
||||
for (sh = 24; nb > 0; nb--, sh -= 8) {
|
||||
cpu_stb_data_ra(env, addr, (env->gpr[reg] >> sh) & 0xFF, GETPC());
|
||||
addr = addr_add(env, addr, 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
|
||||
{
|
||||
target_ulong mask, dcbz_size = env->dcache_line_size;
|
||||
uint32_t i;
|
||||
void *haddr;
|
||||
|
||||
#if defined(TARGET_PPC64)
|
||||
/* Check for dcbz vs dcbzl on 970 */
|
||||
if (env->excp_model == POWERPC_EXCP_970 &&
|
||||
!(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
|
||||
dcbz_size = 32;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Align address */
|
||||
mask = ~(dcbz_size - 1);
|
||||
addr &= mask;
|
||||
|
||||
/* Check reservation */
|
||||
if ((env->reserve_addr & mask) == (addr & mask)) {
|
||||
env->reserve_addr = (target_ulong)-1ULL;
|
||||
}
|
||||
|
||||
/* Try fast path translate */
|
||||
haddr = tlb_vaddr_to_host(env, addr, MMU_DATA_STORE, env->dmmu_idx);
|
||||
if (haddr) {
|
||||
memset(haddr, 0, dcbz_size);
|
||||
} else {
|
||||
/* Slow path */
|
||||
for (i = 0; i < dcbz_size; i += 8) {
|
||||
cpu_stq_data_ra(env, addr + i, 0, GETPC());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void helper_icbi(CPUPPCState *env, target_ulong addr)
|
||||
{
|
||||
addr &= ~(env->dcache_line_size - 1);
|
||||
/* Invalidate one cache line :
|
||||
* PowerPC specification says this is to be treated like a load
|
||||
* (not a fetch) by the MMU. To be sure it will be so,
|
||||
* do the load "by hand".
|
||||
*/
|
||||
cpu_ldl_data_ra(env, addr, GETPC());
|
||||
}
|
||||
|
||||
/* XXX: to be tested */
|
||||
target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
|
||||
uint32_t ra, uint32_t rb)
|
||||
{
|
||||
int i, c, d;
|
||||
|
||||
d = 24;
|
||||
for (i = 0; i < xer_bc; i++) {
|
||||
c = cpu_ldub_data_ra(env, addr, GETPC());
|
||||
addr = addr_add(env, addr, 1);
|
||||
/* ra (if not 0) and rb are never modified */
|
||||
if (likely(reg != rb && (ra == 0 || reg != ra))) {
|
||||
env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
|
||||
}
|
||||
if (unlikely(c == xer_cmp)) {
|
||||
break;
|
||||
}
|
||||
if (likely(d != 0)) {
|
||||
d -= 8;
|
||||
} else {
|
||||
d = 24;
|
||||
reg++;
|
||||
reg = reg & 0x1F;
|
||||
}
|
||||
}
|
||||
return i;
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Altivec extension helpers */
|
||||
#if defined(HOST_WORDS_BIGENDIAN)
|
||||
#define HI_IDX 0
|
||||
#define LO_IDX 1
|
||||
#else
|
||||
#define HI_IDX 1
|
||||
#define LO_IDX 0
|
||||
#endif
|
||||
|
||||
/* We use msr_le to determine index ordering in a vector. However,
|
||||
byteswapping is not simply controlled by msr_le. We also need to take
|
||||
into account endianness of the target. This is done for the little-endian
|
||||
PPC64 user-mode target. */
|
||||
|
||||
#define LVE(name, access, swap, element) \
|
||||
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
|
||||
target_ulong addr) \
|
||||
{ \
|
||||
size_t n_elems = ARRAY_SIZE(r->element); \
|
||||
int adjust = HI_IDX*(n_elems - 1); \
|
||||
int sh = sizeof(r->element[0]) >> 1; \
|
||||
int index = (addr & 0xf) >> sh; \
|
||||
if (msr_le) { \
|
||||
index = n_elems - index - 1; \
|
||||
} \
|
||||
\
|
||||
if (needs_byteswap(env)) { \
|
||||
r->element[LO_IDX ? index : (adjust - index)] = \
|
||||
swap(access(env, addr, GETPC())); \
|
||||
} else { \
|
||||
r->element[LO_IDX ? index : (adjust - index)] = \
|
||||
access(env, addr, GETPC()); \
|
||||
} \
|
||||
}
|
||||
#define I(x) (x)
|
||||
LVE(lvebx, cpu_ldub_data_ra, I, u8)
|
||||
LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
|
||||
LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
|
||||
#undef I
|
||||
#undef LVE
|
||||
|
||||
#define STVE(name, access, swap, element) \
|
||||
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
|
||||
target_ulong addr) \
|
||||
{ \
|
||||
size_t n_elems = ARRAY_SIZE(r->element); \
|
||||
int adjust = HI_IDX * (n_elems - 1); \
|
||||
int sh = sizeof(r->element[0]) >> 1; \
|
||||
int index = (addr & 0xf) >> sh; \
|
||||
if (msr_le) { \
|
||||
index = n_elems - index - 1; \
|
||||
} \
|
||||
\
|
||||
if (needs_byteswap(env)) { \
|
||||
access(env, addr, swap(r->element[LO_IDX ? index : \
|
||||
(adjust - index)]), \
|
||||
GETPC()); \
|
||||
} else { \
|
||||
access(env, addr, r->element[LO_IDX ? index : \
|
||||
(adjust - index)], GETPC()); \
|
||||
} \
|
||||
}
|
||||
#define I(x) (x)
|
||||
STVE(stvebx, cpu_stb_data_ra, I, u8)
|
||||
STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
|
||||
STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
|
||||
#undef I
|
||||
#undef LVE
|
||||
|
||||
#undef HI_IDX
|
||||
#undef LO_IDX
|
||||
|
||||
void helper_tbegin(CPUPPCState *env)
|
||||
{
|
||||
/* As a degenerate implementation, always fail tbegin. The reason
|
||||
* given is "Nesting overflow". The "persistent" bit is set,
|
||||
* providing a hint to the error handler to not retry. The TFIAR
|
||||
* captures the address of the failure, which is this tbegin
|
||||
* instruction. Instruction execution will continue with the
|
||||
* next instruction in memory, which is precisely what we want.
|
||||
*/
|
||||
|
||||
env->spr[SPR_TEXASR] =
|
||||
(1ULL << TEXASR_FAILURE_PERSISTENT) |
|
||||
(1ULL << TEXASR_NESTING_OVERFLOW) |
|
||||
(msr_hv << TEXASR_PRIVILEGE_HV) |
|
||||
(msr_pr << TEXASR_PRIVILEGE_PR) |
|
||||
(1ULL << TEXASR_FAILURE_SUMMARY) |
|
||||
(1ULL << TEXASR_TFIAR_EXACT);
|
||||
env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
|
||||
env->spr[SPR_TFHAR] = env->nip + 4;
|
||||
env->crf[0] = 0xB; /* 0b1010 = transaction failure */
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue