target-arm:

* cleanups converting to DEFINE_PROP_LINK
  * allwinner-a10: mark as not user-creatable
  * initial patches working towards ARMv8M support
  * implement generating aborts on memory transaction failures
  * make BXJ behave correctly (ie not UNDEF) on ARMv6-and-later
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJZsUjvAAoJEDwlJe0UNgzey10P+wf1TRxRMGnoDftimLyPt9Pt
 cXYSP1KKF4qn618ZSJHPHJasWEx2obAP8JrrA8qLz0quWpWlXZ40bhgxKX9iKb2l
 4jrt/DjfTH7RWMRs94lOb0ZOtMokLfjHMSBhP31xR4Lgia0HdlmwqUPLr2T10ffE
 B9BKvPbXcee9Ss7osDqQr3OMUtSMjuc3G3z3WaySwG80od9MB8mblnMU0h9gZEeT
 6csGRHU8rfOkv9ZzrSJRWBuhmxC0Mrg3lB3iZffupFnI//q+PZfW2+ojAyn+pATu
 3YgHjgfgw4P5N2iGlg8c4y6mrig0fQNHWIXWFk7zWp7kWCdXnq5doFpJmi+CfMlE
 yQqMYzuy2Bd9n2fAB036nvb1LBHEKFYfKxqPoeJzuB9wEcXjmnbwuJ+iAKo/DP94
 9wE/cPNKySFmZJFEz+byAZvnEp0ynpQtDoCnaIJPbx6ytkKfL9xXX78+mmlTn8hj
 55NyH2aaEXpuxJKkld1pP2O+r/amFJ603rujSEaK0Or2YGcE1fit+YZSSh1glt25
 b3vEKn1ydWV4udRjBIEd0l/PIhGenILXC3bDONiWqEIPaMVeOxjhl+lvEHmELOjd
 t+o4ntQfU94Z6eDXPhx/bXqIZi9qtDbMZosojWL6wMAIMEiuXlB/a9vhcs9uBnRJ
 M0PiR5jVpZgDfLipV/8A
 =URgX
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20170907' into staging

target-arm:
 * cleanups converting to DEFINE_PROP_LINK
 * allwinner-a10: mark as not user-creatable
 * initial patches working towards ARMv8M support
 * implement generating aborts on memory transaction failures
 * make BXJ behave correctly (ie not UNDEF) on ARMv6-and-later

# gpg: Signature made Thu 07 Sep 2017 14:26:07 BST
# gpg:                using RSA key 0x3C2525ED14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>"
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>"
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20170907: (31 commits)
  target/arm: Add Jazelle feature
  target/arm: Implement new do_transaction_failed hook
  hw/arm: Set ignore_memory_transaction_failures for most ARM boards
  boards.h: Define new flag ignore_memory_transaction_failures
  target/arm: Implement BXNS, and banked stack pointers
  target/arm: Move regime_is_secure() to target/arm/internals.h
  target/arm: Make CFSR register banked for v8M
  target/arm: Make MMFAR banked for v8M
  target/arm: Make CCR register banked for v8M
  target/arm: Make MPU_CTRL register banked for v8M
  target/arm: Make MPU_RNR register banked for v8M
  target/arm: Make MPU_RBAR, MPU_RLAR banked for v8M
  target/arm: Make MPU_MAIR0, MPU_MAIR1 registers banked for v8M
  target/arm: Make VTOR register banked for v8M
  nvic: Add NS alias SCS region
  target/arm: Make CONTROL register banked for v8M
  target/arm: Make FAULTMASK register banked for v8M
  target/arm: Make PRIMASK register banked for v8M
  target/arm: Make BASEPRI register banked for v8M
  target/arm: Add MMU indexes for secure v8M
  ...

# Conflicts:
#	target/arm/translate.c
This commit is contained in:
Peter Maydell 2017-09-07 16:42:55 +01:00
commit ef475b5dd1
48 changed files with 978 additions and 213 deletions

View file

@ -185,11 +185,21 @@ static void arm_cpu_reset(CPUState *s)
uint32_t initial_pc; /* Loaded from 0x4 */
uint8_t *rom;
/* The reset value of this bit is IMPDEF, but ARM recommends
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->v7m.secure = true;
}
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
* that it resets to 1, so QEMU always does that rather than making
* it dependent on CPU model.
* it dependent on CPU model. In v8M it is RES1.
*/
env->v7m.ccr = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
}
/* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff;
@ -228,17 +238,38 @@ static void arm_cpu_reset(CPUState *s)
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7)) {
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (cpu->pmsav7_dregion > 0) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_V8)) {
memset(env->pmsav8.rbar[M_REG_NS], 0,
sizeof(*env->pmsav8.rbar[M_REG_NS])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_NS], 0,
sizeof(*env->pmsav8.rlar[M_REG_NS])
* cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
memset(env->pmsav8.rbar[M_REG_S], 0,
sizeof(*env->pmsav8.rbar[M_REG_S])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_S], 0,
sizeof(*env->pmsav8.rlar[M_REG_S])
* cpu->pmsav7_dregion);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
}
}
env->pmsav7.rnr = 0;
env->pmsav7.rnr[M_REG_NS] = 0;
env->pmsav7.rnr[M_REG_S] = 0;
env->pmsav8.mair0[M_REG_NS] = 0;
env->pmsav8.mair0[M_REG_S] = 0;
env->pmsav8.mair1[M_REG_NS] = 0;
env->pmsav8.mair1[M_REG_S] = 0;
}
set_flush_to_zero(1, &env->vfp.standard_fp_status);
@ -681,6 +712,7 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
set_feature(env, ARM_FEATURE_JAZELLE);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_AUXCR);
}
@ -809,9 +841,19 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
}
if (nr) {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
}
} else {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
}
}
}
@ -825,22 +867,21 @@ static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
init_cpreg_list(cpu);
#ifndef CONFIG_USER_ONLY
if (cpu->has_el3) {
cs->num_ases = 2;
} else {
cs->num_ases = 1;
}
if (cpu->has_el3) {
if (cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY)) {
AddressSpace *as;
cs->num_ases = 2;
if (!cpu->secure_memory) {
cpu->secure_memory = cs->memory;
}
as = address_space_init_shareable(cpu->secure_memory,
"cpu-secure-memory");
cpu_address_space_init(cs, as, ARMASIdx_S);
} else {
cs->num_ases = 1;
}
cpu_address_space_init(cs,
address_space_init_shareable(cs->memory,
"cpu-memory"),
@ -887,6 +928,7 @@ static void arm926_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_VFP);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
cpu->midr = 0x41069265;
cpu->reset_fpsid = 0x41011090;
cpu->ctr = 0x1dd20d2;
@ -916,6 +958,7 @@ static void arm1026_initfn(Object *obj)
set_feature(&cpu->env, ARM_FEATURE_AUXCR);
set_feature(&cpu->env, ARM_FEATURE_DUMMY_C15_REGS);
set_feature(&cpu->env, ARM_FEATURE_CACHE_TEST_CLEAN);
set_feature(&cpu->env, ARM_FEATURE_JAZELLE);
cpu->midr = 0x4106a262;
cpu->reset_fpsid = 0x410110a0;
cpu->ctr = 0x1dd20d2;
@ -1667,6 +1710,7 @@ static void arm_cpu_class_init(ObjectClass *oc, void *data)
#else
cc->do_interrupt = arm_cpu_do_interrupt;
cc->do_unaligned_access = arm_cpu_do_unaligned_access;
cc->do_transaction_failed = arm_cpu_do_transaction_failed;
cc->get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug;
cc->asidx_from_attrs = arm_asidx_from_attrs;
cc->vmsd = &vmstate_arm_cpu;

View file

@ -66,11 +66,24 @@
#define ARMV7M_EXCP_MEM 4
#define ARMV7M_EXCP_BUS 5
#define ARMV7M_EXCP_USAGE 6
#define ARMV7M_EXCP_SECURE 7
#define ARMV7M_EXCP_SVC 11
#define ARMV7M_EXCP_DEBUG 12
#define ARMV7M_EXCP_PENDSV 14
#define ARMV7M_EXCP_SYSTICK 15
/* For M profile, some registers are banked secure vs non-secure;
* these are represented as a 2-element array where the first element
* is the non-secure copy and the second is the secure copy.
* When the CPU does not have implement the security extension then
* only the first element is used.
* This means that the copy for the current security state can be
* accessed via env->registerfield[env->v7m.secure] (whether the security
* extension is implemented or not).
*/
#define M_REG_NS 0
#define M_REG_S 1
/* ARM-specific interrupt pending bits. */
#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
@ -406,20 +419,34 @@ typedef struct CPUARMState {
} cp15;
struct {
/* M profile has up to 4 stack pointers:
* a Main Stack Pointer and a Process Stack Pointer for each
* of the Secure and Non-Secure states. (If the CPU doesn't support
* the security extension then it has only two SPs.)
* In QEMU we always store the currently active SP in regs[13],
* and the non-active SP for the current security state in
* v7m.other_sp. The stack pointers for the inactive security state
* are stored in other_ss_msp and other_ss_psp.
* switch_v7m_security_state() is responsible for rearranging them
* when we change security state.
*/
uint32_t other_sp;
uint32_t vecbase;
uint32_t basepri;
uint32_t control;
uint32_t ccr; /* Configuration and Control */
uint32_t cfsr; /* Configurable Fault Status */
uint32_t other_ss_msp;
uint32_t other_ss_psp;
uint32_t vecbase[2];
uint32_t basepri[2];
uint32_t control[2];
uint32_t ccr[2]; /* Configuration and Control */
uint32_t cfsr[2]; /* Configurable Fault Status */
uint32_t hfsr; /* HardFault Status */
uint32_t dfsr; /* Debug Fault Status Register */
uint32_t mmfar; /* MemManage Fault Address */
uint32_t mmfar[2]; /* MemManage Fault Address */
uint32_t bfar; /* BusFault Address */
unsigned mpu_ctrl; /* MPU_CTRL */
unsigned mpu_ctrl[2]; /* MPU_CTRL */
int exception;
uint32_t primask;
uint32_t faultmask;
uint32_t primask[2];
uint32_t faultmask[2];
uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
} v7m;
/* Information associated with an exception about to be taken:
@ -519,9 +546,22 @@ typedef struct CPUARMState {
uint32_t *drbar;
uint32_t *drsr;
uint32_t *dracr;
uint32_t rnr;
uint32_t rnr[2];
} pmsav7;
/* PMSAv8 MPU */
struct {
/* The PMSAv8 implementation also shares some PMSAv7 config
* and state:
* pmsav7.rnr (region number register)
* pmsav7_dregion (number of configured regions)
*/
uint32_t *rbar[2];
uint32_t *rlar[2];
uint32_t mair0[2];
uint32_t mair1[2];
} pmsav8;
void *nvic;
const struct arm_boot_info *boot_info;
/* Store GICv3CPUState to access from this struct */
@ -1182,6 +1222,11 @@ FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
/* V7M CFSR bit masks covering all of the subregister bits */
FIELD(V7M_CFSR, MMFSR, 0, 8)
FIELD(V7M_CFSR, BFSR, 8, 8)
FIELD(V7M_CFSR, UFSR, 16, 16)
/* V7M HFSR bits */
FIELD(V7M_HFSR, VECTTBL, 1, 1)
FIELD(V7M_HFSR, FORCED, 30, 1)
@ -1250,6 +1295,8 @@ enum arm_features {
ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
ARM_FEATURE_PMU, /* has PMU support */
ARM_FEATURE_VBAR, /* has cp15 VBAR */
ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
};
static inline int arm_feature(CPUARMState *env, int feature)
@ -1414,6 +1461,16 @@ void armv7m_nvic_acknowledge_irq(void *opaque);
* (Ignoring -1, this is the same as the RETTOBASE value before completion.)
*/
int armv7m_nvic_complete_irq(void *opaque, int irq);
/**
* armv7m_nvic_raw_execution_priority: return the raw execution priority
* @opaque: the NVIC
*
* Returns: the raw execution priority as defined by the v8M architecture.
* This is the execution priority minus the effects of AIRCR.PRIS,
* and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
* (v8M ARM ARM I_PKLD.)
*/
int armv7m_nvic_raw_execution_priority(void *opaque);
/* Interface for defining coprocessor registers.
* Registers are defined in tables of arm_cp_reginfo structs
@ -1643,7 +1700,8 @@ static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
static inline int arm_current_el(CPUARMState *env)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return arm_v7m_is_handler_mode(env) || !(env->v7m.control & 1);
return arm_v7m_is_handler_mode(env) ||
!(env->v7m.control[env->v7m.secure] & 1);
}
if (is_a64(env)) {
@ -2087,6 +2145,10 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
* Execution priority negative (this is like privileged, but the
* MPU HFNMIENA bit means that it may have different access permission
* check results to normal privileged code, so can't share a TLB).
* If the CPU supports the v8M Security Extension then there are also:
* Secure User
* Secure Privileged
* Secure, execution priority negative
*
* The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
* are not quite the same -- different CPU types (most notably M profile
@ -2124,6 +2186,9 @@ typedef enum ARMMMUIdx {
ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
ARMMMUIdx_MNegPri = 2 | ARM_MMU_IDX_M,
ARMMMUIdx_MSUser = 3 | ARM_MMU_IDX_M,
ARMMMUIdx_MSPriv = 4 | ARM_MMU_IDX_M,
ARMMMUIdx_MSNegPri = 5 | ARM_MMU_IDX_M,
/* Indexes below here don't have TLBs and are used only for AT system
* instructions or for the first stage of an S12 page table walk.
*/
@ -2145,6 +2210,9 @@ typedef enum ARMMMUIdxBit {
ARMMMUIdxBit_MUser = 1 << 0,
ARMMMUIdxBit_MPriv = 1 << 1,
ARMMMUIdxBit_MNegPri = 1 << 2,
ARMMMUIdxBit_MSUser = 1 << 3,
ARMMMUIdxBit_MSPriv = 1 << 4,
ARMMMUIdxBit_MSNegPri = 1 << 5,
} ARMMMUIdxBit;
#define MMU_USER_IDX 0
@ -2170,7 +2238,8 @@ static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
case ARM_MMU_IDX_A:
return mmu_idx & 3;
case ARM_MMU_IDX_M:
return mmu_idx == ARMMMUIdx_MUser ? 0 : 1;
return (mmu_idx == ARMMMUIdx_MUser || mmu_idx == ARMMMUIdx_MSUser)
? 0 : 1;
default:
g_assert_not_reached();
}
@ -2188,8 +2257,12 @@ static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
* we're in a HardFault or NMI handler.
*/
if ((env->v7m.exception > 0 && env->v7m.exception <= 3)
|| env->v7m.faultmask) {
return arm_to_core_mmu_idx(ARMMMUIdx_MNegPri);
|| env->v7m.faultmask[env->v7m.secure]) {
mmu_idx = ARMMMUIdx_MNegPri;
}
if (env->v7m.secure) {
mmu_idx += ARMMMUIdx_MSUser;
}
return arm_to_core_mmu_idx(mmu_idx);

View file

@ -2385,7 +2385,7 @@ static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
return 0;
}
u32p += env->pmsav7.rnr;
u32p += env->pmsav7.rnr[M_REG_NS];
return *u32p;
}
@ -2399,7 +2399,7 @@ static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
return;
}
u32p += env->pmsav7.rnr;
u32p += env->pmsav7.rnr[M_REG_NS];
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
*u32p = value;
}
@ -2442,7 +2442,7 @@ static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
.resetfn = arm_cp_reset_ignore },
{ .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
.access = PL1_RW,
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr),
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
.writefn = pmsav7_rgnr_write,
.resetfn = arm_cp_reset_ignore },
REGINFO_SENTINEL
@ -5870,6 +5870,12 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
return 0;
}
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
/* translate.c should never generate calls here in user-only mode */
g_assert_not_reached();
}
void switch_mode(CPUARMState *env, int mode)
{
ARMCPU *cpu = arm_env_get_cpu(env);
@ -6044,29 +6050,103 @@ static uint32_t v7m_pop(CPUARMState *env)
return val;
}
/* Return true if we're using the process stack pointer (not the MSP) */
static bool v7m_using_psp(CPUARMState *env)
{
/* Handler mode always uses the main stack; for thread mode
* the CONTROL.SPSEL bit determines the answer.
* Note that in v7M it is not possible to be in Handler mode with
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
*/
return !arm_v7m_is_handler_mode(env) &&
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}
/* Switch to V7M main or process stack pointer. */
static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
{
uint32_t tmp;
bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;
uint32_t old_control = env->v7m.control[env->v7m.secure];
bool old_spsel = old_control & R_V7M_CONTROL_SPSEL_MASK;
if (old_spsel != new_spsel) {
tmp = env->v7m.other_sp;
env->v7m.other_sp = env->regs[13];
env->regs[13] = tmp;
env->v7m.control = deposit32(env->v7m.control,
env->v7m.control[env->v7m.secure] = deposit32(old_control,
R_V7M_CONTROL_SPSEL_SHIFT,
R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
}
}
/* Switch M profile security state between NS and S */
static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
{
uint32_t new_ss_msp, new_ss_psp;
if (env->v7m.secure == new_secstate) {
return;
}
/* All the banked state is accessed by looking at env->v7m.secure
* except for the stack pointer; rearrange the SP appropriately.
*/
new_ss_msp = env->v7m.other_ss_msp;
new_ss_psp = env->v7m.other_ss_psp;
if (v7m_using_psp(env)) {
env->v7m.other_ss_psp = env->regs[13];
env->v7m.other_ss_msp = env->v7m.other_sp;
} else {
env->v7m.other_ss_msp = env->regs[13];
env->v7m.other_ss_psp = env->v7m.other_sp;
}
env->v7m.secure = new_secstate;
if (v7m_using_psp(env)) {
env->regs[13] = new_ss_psp;
env->v7m.other_sp = new_ss_msp;
} else {
env->regs[13] = new_ss_msp;
env->v7m.other_sp = new_ss_psp;
}
}
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
/* Handle v7M BXNS:
* - if the return value is a magic value, do exception return (like BX)
* - otherwise bit 0 of the return value is the target security state
*/
if (dest >= 0xff000000) {
/* This is an exception return magic value; put it where
* do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
* Note that if we ever add gen_ss_advance() singlestep support to
* M profile this should count as an "instruction execution complete"
* event (compare gen_bx_excret_final_code()).
*/
env->regs[15] = dest & ~1;
env->thumb = dest & 1;
HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
/* notreached */
}
/* translate.c should have made BXNS UNDEF unless we're secure */
assert(env->v7m.secure);
switch_v7m_security_state(env, dest & 1);
env->thumb = 1;
env->regs[15] = dest & ~1;
}
static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
MemTxResult result;
hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
hwaddr vec = env->v7m.vecbase[env->v7m.secure] + env->v7m.exception * 4;
uint32_t addr;
addr = address_space_ldl(cs->as, vec,
@ -6112,7 +6192,8 @@ static void v7m_push_stack(ARMCPU *cpu)
uint32_t xpsr = xpsr_read(env);
/* Align stack pointer if the guest wants that */
if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
if ((env->regs[13] & 4) &&
(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
env->regs[13] -= 4;
xpsr |= XPSR_SPREALIGN;
}
@ -6166,8 +6247,20 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
}
if (env->v7m.exception != ARMV7M_EXCP_NMI) {
/* Auto-clear FAULTMASK on return from other than NMI */
env->v7m.faultmask = 0;
/* Auto-clear FAULTMASK on return from other than NMI.
* If the security extension is implemented then this only
* happens if the raw execution priority is >= 0; the
* value of the ES bit in the exception return value indicates
* which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
*/
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
int es = type & 1;
if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
env->v7m.faultmask[es] = 0;
}
} else {
env->v7m.faultmask[M_REG_NS] = 0;
}
}
switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
@ -6198,7 +6291,7 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* fall through */
case 9: /* Return to Thread using Main stack */
if (!rettobase &&
!(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
!(env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_NONBASETHRDENA_MASK)) {
ufault = true;
}
break;
@ -6210,7 +6303,7 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* Bad exception return: instead of popping the exception
* stack, directly take a usage fault on the current stack.
*/
env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
v7m_exception_taken(cpu, type | 0xf0000000);
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
@ -6252,7 +6345,7 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
if (return_to_handler != arm_v7m_is_handler_mode(env)) {
/* Take an INVPC UsageFault by pushing the stack again. */
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
v7m_push_stack(cpu);
v7m_exception_taken(cpu, type | 0xf0000000);
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
@ -6311,15 +6404,15 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
switch (cs->exception_index) {
case EXCP_UDEF:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
break;
case EXCP_NOCP:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
break;
case EXCP_INVSTATE:
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
break;
case EXCP_SWI:
/* The PC already points to the next instruction. */
@ -6335,11 +6428,11 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
case 0x8: /* External Abort */
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
env->v7m.cfsr |= R_V7M_CFSR_PRECISERR_MASK;
env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_PRECISERR_MASK;
qemu_log_mask(CPU_LOG_INT, "...with CFSR.PRECISERR\n");
break;
case EXCP_DATA_ABORT:
env->v7m.cfsr |=
env->v7m.cfsr[M_REG_NS] |=
(R_V7M_CFSR_IBUSERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
env->v7m.bfar = env->exception.vaddress;
qemu_log_mask(CPU_LOG_INT,
@ -6355,16 +6448,16 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
*/
switch (cs->exception_index) {
case EXCP_PREFETCH_ABORT:
env->v7m.cfsr |= R_V7M_CFSR_IACCVIOL_MASK;
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
break;
case EXCP_DATA_ABORT:
env->v7m.cfsr |=
env->v7m.cfsr[env->v7m.secure] |=
(R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
env->v7m.mmfar = env->exception.vaddress;
env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
qemu_log_mask(CPU_LOG_INT,
"...with CFSR.DACCVIOL and MMFAR 0x%x\n",
env->v7m.mmfar);
env->v7m.mmfar[env->v7m.secure]);
break;
}
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
@ -6397,7 +6490,7 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
}
lr = 0xfffffff1;
if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
lr |= 4;
}
if (!arm_v7m_is_handler_mode(env)) {
@ -7032,35 +7125,15 @@ static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MNegPri:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSNegPri:
case ARMMMUIdx_MSUser:
return 1;
default:
g_assert_not_reached();
}
}
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_S12NSE0:
case ARMMMUIdx_S12NSE1:
case ARMMMUIdx_S1NSE0:
case ARMMMUIdx_S1NSE1:
case ARMMMUIdx_S1E2:
case ARMMMUIdx_S2NS:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MNegPri:
case ARMMMUIdx_MUser:
return false;
case ARMMMUIdx_S1E3:
case ARMMMUIdx_S1SE0:
case ARMMMUIdx_S1SE1:
return true;
default:
g_assert_not_reached();
}
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
@ -7072,11 +7145,12 @@ static inline bool regime_translation_disabled(CPUARMState *env,
ARMMMUIdx mmu_idx)
{
if (arm_feature(env, ARM_FEATURE_M)) {
switch (env->v7m.mpu_ctrl &
switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
(R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
case R_V7M_MPU_CTRL_ENABLE_MASK:
/* Enabled, but not for HardFault and NMI */
return mmu_idx == ARMMMUIdx_MNegPri;
return mmu_idx == ARMMMUIdx_MNegPri ||
mmu_idx == ARMMMUIdx_MSNegPri;
case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
/* Enabled for all cases */
return false;
@ -8231,7 +8305,8 @@ static bool pmsav7_use_background_region(ARMCPU *cpu,
}
if (arm_feature(env, ARM_FEATURE_M)) {
return env->v7m.mpu_ctrl & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
& R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
} else {
return regime_sctlr(env, mmu_idx) & SCTLR_BR;
}
@ -8411,6 +8486,112 @@ static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
return !(*prot & (1 << access_type));
}
static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
ARMCPU *cpu = arm_env_get_cpu(env);
bool is_user = regime_is_user(env, mmu_idx);
uint32_t secure = regime_is_secure(env, mmu_idx);
int n;
int matchregion = -1;
bool hit = false;
*phys_ptr = address;
*prot = 0;
/* Unlike the ARM ARM pseudocode, we don't need to check whether this
* was an exception vector read from the vector table (which is always
* done using the default system address map), because those accesses
* are done in arm_v7m_load_vector(), which always does a direct
* read using address_space_ldl(), rather than going via this function.
*/
if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
hit = true;
} else if (m_is_ppb_region(env, address)) {
hit = true;
} else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
hit = true;
} else {
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
/* region search */
/* Note that the base address is bits [31:5] from the register
* with bits [4:0] all zeroes, but the limit address is bits
* [31:5] from the register with bits [4:0] all ones.
*/
uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
/* Region disabled */
continue;
}
if (address < base || address > limit) {
continue;
}
if (hit) {
/* Multiple regions match -- always a failure (unlike
* PMSAv7 where highest-numbered-region wins)
*/
*fsr = 0x00d; /* permission fault */
return true;
}
matchregion = n;
hit = true;
if (base & ~TARGET_PAGE_MASK) {
qemu_log_mask(LOG_UNIMP,
"MPU_RBAR[%d]: No support for MPU region base"
"address of 0x%" PRIx32 ". Minimum alignment is "
"%d\n",
n, base, TARGET_PAGE_BITS);
continue;
}
if ((limit + 1) & ~TARGET_PAGE_MASK) {
qemu_log_mask(LOG_UNIMP,
"MPU_RBAR[%d]: No support for MPU region limit"
"address of 0x%" PRIx32 ". Minimum alignment is "
"%d\n",
n, limit, TARGET_PAGE_BITS);
continue;
}
}
}
if (!hit) {
/* background fault */
*fsr = 0;
return true;
}
if (matchregion == -1) {
/* hit using the background region */
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
} else {
uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
if (m_is_system_region(env, address)) {
/* System space is always execute never */
xn = 1;
}
*prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
if (*prot && !xn) {
*prot |= PAGE_EXEC;
}
/* We don't need to look the attribute up in the MAIR0/MAIR1
* registers because that only tells us about cacheability.
*/
}
*fsr = 0x00d; /* Permission fault */
return !(*prot & (1 << access_type));
}
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
hwaddr *phys_ptr, int *prot, uint32_t *fsr)
@ -8580,7 +8761,11 @@ static bool get_phys_addr(CPUARMState *env, target_ulong address,
bool ret;
*page_size = TARGET_PAGE_SIZE;
if (arm_feature(env, ARM_FEATURE_V7)) {
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
phys_ptr, prot, fsr);
} else if (arm_feature(env, ARM_FEATURE_V7)) {
/* PMSAv7 */
ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
phys_ptr, prot, fsr);
@ -8699,7 +8884,7 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
return xpsr_read(env) & mask;
break;
case 20: /* CONTROL */
return env->v7m.control;
return env->v7m.control[env->v7m.secure];
}
if (el == 0) {
@ -8708,18 +8893,18 @@ uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
switch (reg) {
case 8: /* MSP */
return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
env->v7m.other_sp : env->regs[13];
case 9: /* PSP */
return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
return (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) ?
env->regs[13] : env->v7m.other_sp;
case 16: /* PRIMASK */
return env->v7m.primask;
return env->v7m.primask[env->v7m.secure];
case 17: /* BASEPRI */
case 18: /* BASEPRI_MAX */
return env->v7m.basepri;
return env->v7m.basepri[env->v7m.secure];
case 19: /* FAULTMASK */
return env->v7m.faultmask;
return env->v7m.faultmask[env->v7m.secure];
default:
qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
" register %d\n", reg);
@ -8760,32 +8945,34 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
}
break;
case 8: /* MSP */
if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
env->v7m.other_sp = val;
} else {
env->regs[13] = val;
}
break;
case 9: /* PSP */
if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK) {
env->regs[13] = val;
} else {
env->v7m.other_sp = val;
}
break;
case 16: /* PRIMASK */
env->v7m.primask = val & 1;
env->v7m.primask[env->v7m.secure] = val & 1;
break;
case 17: /* BASEPRI */
env->v7m.basepri = val & 0xff;
env->v7m.basepri[env->v7m.secure] = val & 0xff;
break;
case 18: /* BASEPRI_MAX */
val &= 0xff;
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
env->v7m.basepri = val;
if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
|| env->v7m.basepri[env->v7m.secure] == 0)) {
env->v7m.basepri[env->v7m.secure] = val;
}
break;
case 19: /* FAULTMASK */
env->v7m.faultmask = val & 1;
env->v7m.faultmask[env->v7m.secure] = val & 1;
break;
case 20: /* CONTROL */
/* Writing to the SPSEL bit only has an effect if we are in
@ -8796,8 +8983,8 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
if (!arm_v7m_is_handler_mode(env)) {
switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
}
env->v7m.control &= ~R_V7M_CONTROL_NPRIV_MASK;
env->v7m.control |= val & R_V7M_CONTROL_NPRIV_MASK;
env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"

View file

@ -63,6 +63,8 @@ DEF_HELPER_1(cpsr_read, i32, env)
DEF_HELPER_3(v7m_msr, void, env, i32, i32)
DEF_HELPER_2(v7m_mrs, i32, env, i32)
DEF_HELPER_2(v7m_bxns, void, env, i32)
DEF_HELPER_4(access_check_cp_reg, void, env, ptr, i32, i32)
DEF_HELPER_3(set_cp_reg, void, env, ptr, i32)
DEF_HELPER_2(get_cp_reg, i32, env, ptr)

View file

@ -472,6 +472,16 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
/* Call the EL change hook if one has been registered */
static inline void arm_call_el_change_hook(ARMCPU *cpu)
{
@ -480,4 +490,30 @@ static inline void arm_call_el_change_hook(ARMCPU *cpu)
}
}
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_S12NSE0:
case ARMMMUIdx_S12NSE1:
case ARMMMUIdx_S1NSE0:
case ARMMMUIdx_S1NSE1:
case ARMMMUIdx_S1E2:
case ARMMMUIdx_S2NS:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MNegPri:
case ARMMMUIdx_MUser:
return false;
case ARMMMUIdx_S1E3:
case ARMMMUIdx_S1SE0:
case ARMMMUIdx_S1SE1:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSNegPri:
case ARMMMUIdx_MSUser:
return true;
default:
g_assert_not_reached();
}
}
#endif

View file

@ -102,8 +102,8 @@ static const VMStateDescription vmstate_m_faultmask_primask = {
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.faultmask, ARMCPU),
VMSTATE_UINT32(env.v7m.primask, ARMCPU),
VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
@ -114,16 +114,16 @@ static const VMStateDescription vmstate_m = {
.minimum_version_id = 4,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.vecbase, ARMCPU),
VMSTATE_UINT32(env.v7m.basepri, ARMCPU),
VMSTATE_UINT32(env.v7m.control, ARMCPU),
VMSTATE_UINT32(env.v7m.ccr, ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar, ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
VMSTATE_UINT32(env.v7m.mpu_ctrl, ARMCPU),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
VMSTATE_INT32(env.v7m.exception, ARMCPU),
VMSTATE_END_OF_LIST()
},
@ -159,14 +159,15 @@ static bool pmsav7_needed(void *opaque)
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7);
arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_V8);
}
static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr < cpu->pmsav7_dregion;
return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
}
static const VMStateDescription vmstate_pmsav7 = {
@ -204,7 +205,77 @@ static const VMStateDescription vmstate_pmsav7_rnr = {
.minimum_version_id = 1,
.needed = pmsav7_rnr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.pmsav7.rnr, ARMCPU),
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav8_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8);
}
static const VMStateDescription vmstate_pmsav8 = {
.name = "cpu/pmsav8",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav8_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool s_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
}
static bool m_security_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M_SECURITY);
}
static const VMStateDescription vmstate_m_security = {
.name = "cpu/m-security",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_security_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.secure, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
@ -225,9 +296,13 @@ static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
* differences are that the T bit is not in the same place, the
* primask/faultmask info may be in the CPSR I and F bits, and
* we do not want the mode bits.
* We know that this cleanup happened before v8M, so there
* is no complication with banked primask/faultmask.
*/
uint32_t newval = val;
assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
if (val & CPSR_T) {
newval |= XPSR_T;
@ -238,10 +313,10 @@ static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
* transferred using the vmstate_m_faultmask_primask subsection.
*/
if (val & CPSR_F) {
env->v7m.faultmask = 1;
env->v7m.faultmask[M_REG_NS] = 1;
}
if (val & CPSR_I) {
env->v7m.primask = 1;
env->v7m.primask[M_REG_NS] = 1;
}
val = newval;
}
@ -458,6 +533,8 @@ const VMStateDescription vmstate_arm_cpu = {
*/
&vmstate_pmsav7_rnr,
&vmstate_pmsav7,
&vmstate_pmsav8,
&vmstate_m_security,
NULL
}
};

View file

@ -229,6 +229,49 @@ void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
deliver_fault(cpu, vaddr, access_type, fsr, fsc, &fi);
}
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t fsr, fsc;
ARMMMUFaultInfo fi = {};
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
if (retaddr) {
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr);
}
/* The EA bit in syndromes and fault status registers is an
* IMPDEF classification of external aborts. ARM implementations
* usually use this to indicate AXI bus Decode error (0) or
* Slave error (1); in QEMU we follow that.
*/
fi.ea = (response != MEMTX_DECODE_ERROR);
/* The fault status register format depends on whether we're using
* the LPAE long descriptor format, or the short descriptor format.
*/
if (arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
/* long descriptor form, STATUS 0b010000: synchronous ext abort */
fsr = (fi.ea << 12) | (1 << 9) | 0x10;
} else {
/* short descriptor form, FSR 0b01000 : synchronous ext abort */
fsr = (fi.ea << 12) | 0x8;
}
fsc = 0x10;
deliver_fault(cpu, addr, access_type, fsr, fsc, &fi);
}
#endif /* !defined(CONFIG_USER_ONLY) */
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)

View file

@ -41,7 +41,7 @@
#define ENABLE_ARCH_5 arm_dc_feature(s, ARM_FEATURE_V5)
/* currently all emulated v5 cores are also v5TE, so don't bother */
#define ENABLE_ARCH_5TE arm_dc_feature(s, ARM_FEATURE_V5)
#define ENABLE_ARCH_5J 0
#define ENABLE_ARCH_5J arm_dc_feature(s, ARM_FEATURE_JAZELLE)
#define ENABLE_ARCH_6 arm_dc_feature(s, ARM_FEATURE_V6)
#define ENABLE_ARCH_6K arm_dc_feature(s, ARM_FEATURE_V6K)
#define ENABLE_ARCH_6T2 arm_dc_feature(s, ARM_FEATURE_THUMB2)
@ -994,6 +994,25 @@ static inline void gen_bx_excret_final_code(DisasContext *s)
gen_exception_internal(EXCP_EXCEPTION_EXIT);
}
static inline void gen_bxns(DisasContext *s, int rm)
{
TCGv_i32 var = load_reg(s, rm);
/* The bxns helper may raise an EXCEPTION_EXIT exception, so in theory
* we need to sync state before calling it, but:
* - we don't need to do gen_set_pc_im() because the bxns helper will
* always set the PC itself
* - we don't need to do gen_set_condexec() because BXNS is UNPREDICTABLE
* unless it's outside an IT block or the last insn in an IT block,
* so we know that condexec == 0 (already set at the top of the TB)
* is correct in the non-UNPREDICTABLE cases, and we can choose
* "zeroes the IT bits" as our UNPREDICTABLE behaviour otherwise.
*/
gen_helper_v7m_bxns(cpu_env, var);
tcg_temp_free_i32(var);
s->base.is_jmp = DISAS_EXIT;
}
/* Variant of store_reg which uses branch&exchange logic when storing
to r15 in ARM architecture v7 and above. The source must be a temporary
and will be marked as dead. */
@ -11185,12 +11204,31 @@ static void disas_thumb_insn(CPUARMState *env, DisasContext *s)
*/
bool link = insn & (1 << 7);
if (insn & 7) {
if (insn & 3) {
goto undef;
}
if (link) {
ARCH(5);
}
if ((insn & 4)) {
/* BXNS/BLXNS: only exists for v8M with the
* security extensions, and always UNDEF if NonSecure.
* We don't implement these in the user-only mode
* either (in theory you can use them from Secure User
* mode but they are too tied in to system emulation.)
*/
if (!s->v8m_secure || IS_USER_ONLY) {
goto undef;
}
if (link) {
/* BLXNS: not yet implemented */
goto undef;
} else {
gen_bxns(s, rm);
}
break;
}
/* BLX/BX */
tmp = load_reg(s, rm);
if (link) {
val = (uint32_t)s->pc | 1;
@ -11857,6 +11895,8 @@ static int arm_tr_init_disas_context(DisasContextBase *dcbase,
dc->vec_stride = ARM_TBFLAG_VECSTRIDE(dc->base.tb->flags);
dc->c15_cpar = ARM_TBFLAG_XSCALE_CPAR(dc->base.tb->flags);
dc->v7m_handler_mode = ARM_TBFLAG_HANDLER(dc->base.tb->flags);
dc->v8m_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
regime_is_secure(env, dc->mmu_idx);
dc->cp_regs = cpu->cp_regs;
dc->features = env->features;
@ -12288,24 +12328,30 @@ void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t xpsr = xpsr_read(env);
const char *mode;
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
ns_status = env->v7m.secure ? "S " : "NS ";
}
if (xpsr & XPSR_EXCP) {
mode = "handler";
} else {
if (env->v7m.control & R_V7M_CONTROL_NPRIV_MASK) {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
mode = "unpriv-thread";
} else {
mode = "priv-thread";
}
}
cpu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s\n",
cpu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
xpsr,
xpsr & XPSR_N ? 'N' : '-',
xpsr & XPSR_Z ? 'Z' : '-',
xpsr & XPSR_C ? 'C' : '-',
xpsr & XPSR_V ? 'V' : '-',
xpsr & XPSR_T ? 'T' : 'A',
ns_status,
mode);
} else {
uint32_t psr = cpsr_read(env);

View file

@ -35,6 +35,7 @@ typedef struct DisasContext {
int vec_len;
int vec_stride;
bool v7m_handler_mode;
bool v8m_secure; /* true if v8M and we're in Secure mode */
/* Immediate value in AArch32 SVC insn; must be set if is_jmp == DISAS_SWI
* so that top level loop can generate correct syndrome information.
*/