hw/ssi: Rename SSI 'slave' as 'peripheral'

In order to use inclusive terminology, rename SSI 'slave' as
'peripheral', following the specification resolution:
https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names/

Patch created mechanically using:

  $ sed -i s/SSISlave/SSIPeripheral/ $(git grep -l SSISlave)
  $ sed -i s/SSI_SLAVE/SSI_PERIPHERAL/ $(git grep -l SSI_SLAVE)
  $ sed -i s/ssi-slave/ssi-peripheral/ $(git grep -l ssi-slave)
  $ sed -i s/ssi_slave/ssi_peripheral/ $(git grep -l ssi_slave)
  $ sed -i s/ssi_create_slave/ssi_create_peripheral/ \
                                $(git grep -l ssi_create_slave)

Then in VMStateDescription vmstate_ssi_peripheral we restored
the "SSISlave" migration stream name (to avoid breaking migration).

Finally the following files have been manually tweaked:
 - hw/ssi/pl022.c
 - hw/ssi/xilinx_spips.c

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20201012124955.3409127-4-f4bug@amsat.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Philippe Mathieu-Daudé 2020-10-12 14:49:55 +02:00 committed by Paolo Bonzini
parent 9ce89a22ae
commit ec7e429bd2
14 changed files with 118 additions and 117 deletions

View file

@ -2,11 +2,11 @@
/*
* In principle SSI is a point-point interface. As such the qemu
* implementation has a single slave device on a "bus".
* However it is fairly common for boards to have multiple slaves
* implementation has a single peripheral on a "bus".
* However it is fairly common for boards to have multiple peripherals
* connected to a single master, and select devices with an external
* chip select. This is implemented in qemu by having an explicit mux device.
* It is assumed that master and slave are both using the same transfer
* It is assumed that master and peripheral are both using the same transfer
* width.
*/
@ -18,9 +18,9 @@
typedef enum SSICSMode SSICSMode;
#define TYPE_SSI_SLAVE "ssi-slave"
OBJECT_DECLARE_TYPE(SSISlave, SSISlaveClass,
SSI_SLAVE)
#define TYPE_SSI_PERIPHERAL "ssi-peripheral"
OBJECT_DECLARE_TYPE(SSIPeripheral, SSIPeripheralClass,
SSI_PERIPHERAL)
#define SSI_GPIO_CS "ssi-gpio-cs"
@ -30,21 +30,21 @@ enum SSICSMode {
SSI_CS_HIGH,
};
/* Slave devices. */
struct SSISlaveClass {
/* Peripherals. */
struct SSIPeripheralClass {
DeviceClass parent_class;
void (*realize)(SSISlave *dev, Error **errp);
void (*realize)(SSIPeripheral *dev, Error **errp);
/* if you have standard or no CS behaviour, just override transfer.
* This is called when the device cs is active (true by default).
*/
uint32_t (*transfer)(SSISlave *dev, uint32_t val);
uint32_t (*transfer)(SSIPeripheral *dev, uint32_t val);
/* called when the CS line changes. Optional, devices only need to implement
* this if they have side effects associated with the cs line (beyond
* tristating the txrx lines).
*/
int (*set_cs)(SSISlave *dev, bool select);
int (*set_cs)(SSIPeripheral *dev, bool select);
/* define whether or not CS exists and is active low/high */
SSICSMode cs_polarity;
@ -53,30 +53,30 @@ struct SSISlaveClass {
* cs_polarity are unused if this is overwritten. Transfer_raw will
* always be called for the device for every txrx access to the parent bus
*/
uint32_t (*transfer_raw)(SSISlave *dev, uint32_t val);
uint32_t (*transfer_raw)(SSIPeripheral *dev, uint32_t val);
};
struct SSISlave {
struct SSIPeripheral {
DeviceState parent_obj;
/* Chip select state */
bool cs;
};
extern const VMStateDescription vmstate_ssi_slave;
extern const VMStateDescription vmstate_ssi_peripheral;
#define VMSTATE_SSI_SLAVE(_field, _state) { \
#define VMSTATE_SSI_PERIPHERAL(_field, _state) { \
.name = (stringify(_field)), \
.size = sizeof(SSISlave), \
.vmsd = &vmstate_ssi_slave, \
.size = sizeof(SSIPeripheral), \
.vmsd = &vmstate_ssi_peripheral, \
.flags = VMS_STRUCT, \
.offset = vmstate_offset_value(_state, _field, SSISlave), \
.offset = vmstate_offset_value(_state, _field, SSIPeripheral), \
}
DeviceState *ssi_create_slave(SSIBus *bus, const char *name);
DeviceState *ssi_create_peripheral(SSIBus *bus, const char *name);
/**
* ssi_realize_and_unref: realize and unref an SSI slave device
* @dev: SSI slave device to realize
* ssi_realize_and_unref: realize and unref an SSI peripheral
* @dev: SSI peripheral to realize
* @bus: SSI bus to put it on
* @errp: error pointer
*
@ -87,10 +87,10 @@ DeviceState *ssi_create_slave(SSIBus *bus, const char *name);
* This function is useful if you have created @dev via qdev_new()
* (which takes a reference to the device it returns to you), so that
* you can set properties on it before realizing it. If you don't need
* to set properties then ssi_create_slave() is probably better (as it
* to set properties then ssi_create_peripheral() is probably better (as it
* does the create, init and realize in one step).
*
* If you are embedding the SSI slave into another QOM device and
* If you are embedding the SSI peripheral into another QOM device and
* initialized it via some variant on object_initialize_child() then
* do not use this function, because that family of functions arrange
* for the only reference to the child device to be held by the parent