target/i386: remove lflags

Just use cc_dst and cc_src for the same purpose.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2025-04-24 17:12:45 +02:00
parent 5b80dcf95b
commit d521fdc73f
3 changed files with 29 additions and 36 deletions

View file

@ -1805,11 +1805,6 @@ typedef struct CPUCaches {
CPUCacheInfo *l3_cache;
} CPUCaches;
typedef struct X86LazyFlags {
target_ulong result;
target_ulong auxbits;
} X86LazyFlags;
typedef struct CPUArchState {
/* standard registers */
target_ulong regs[CPU_NB_REGS];
@ -2102,7 +2097,6 @@ typedef struct CPUArchState {
QemuMutex xen_timers_lock;
#endif
#if defined(CONFIG_HVF)
X86LazyFlags lflags;
void *emu_mmio_buf;
#endif

View file

@ -474,10 +474,10 @@ static inline void string_rep(CPUX86State *env, struct x86_decode *decode,
while (rcx--) {
func(env, decode);
write_reg(env, R_ECX, rcx, decode->addressing_size);
if ((PREFIX_REP == rep) && !env->lflags.result) {
if ((PREFIX_REP == rep) && !env->cc_dst) {
break;
}
if ((PREFIX_REPN == rep) && env->lflags.result) {
if ((PREFIX_REPN == rep) && env->cc_dst) {
break;
}
}

View file

@ -31,10 +31,10 @@
/*
* The algorithms here are similar to those in Bochs. After an ALU
* operation, RESULT can be used to compute ZF, SF and PF, whereas
* AUXBITS is used to compute AF, CF and OF. In reality, SF and PF are the
* XOR of the value computed from RESULT and the value found in bits 7 and 2
* of AUXBITS; this way the same logic can be used to compute the flags
* operation, CC_DST can be used to compute ZF, SF and PF, whereas
* CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the
* XOR of the value computed from CC_DST and the value found in bits 7 and 2
* of CC_SRC; this way the same logic can be used to compute the flags
* both before and after an ALU operation.
*
* Compared to the TCG CC_OP codes, this avoids conditionals when converting
@ -65,14 +65,14 @@
* place PO and CF in the top two bits.
*/
#define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \
env->lflags.result = (target_ulong)(int##size##_t)(lf_result); \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
env->lflags.auxbits = temp; \
env->cc_src = temp; \
}
/* carries, result */
@ -89,15 +89,15 @@
/* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF
* did not match the high bit of lf_carries. */
#define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \
env->lflags.result = (target_ulong)(int##size##_t)(lf_result); \
env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \
target_ulong temp = (lf_carries); \
if ((size) == TARGET_LONG_BITS) { \
temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \
} else { \
temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \
} \
target_ulong cf_changed = ((target_long)(env->lflags.auxbits ^ temp)) < 0; \
env->lflags.auxbits = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \
env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \
}
/* carries, result */
@ -110,9 +110,9 @@
void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf)
{
env->lflags.auxbits &= ~(LF_MASK_PO | LF_MASK_CF);
env->lflags.auxbits |= (-(target_ulong)new_cf << LF_BIT_PO);
env->lflags.auxbits ^= ((target_ulong)new_of << LF_BIT_PO);
env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF);
env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO);
env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO);
}
void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2,
@ -208,37 +208,36 @@ void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2,
static inline uint32_t get_PF(CPUX86State *env)
{
uint8_t temp = env->lflags.result;
return ((parity8(temp) - 1) ^ env->lflags.auxbits) & CC_P;
return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P;
}
static inline uint32_t get_OF(CPUX86State *env)
{
return ((env->lflags.auxbits >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O;
return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O;
}
bool get_CF(CPUX86State *env)
{
return ((target_long)env->lflags.auxbits) < 0;
return ((target_long)env->cc_src) < 0;
}
void set_CF(CPUX86State *env, bool val)
{
/* If CF changes, flip PO and CF */
target_ulong temp = -(target_ulong)val;
target_ulong cf_changed = ((target_long)(env->lflags.auxbits ^ temp)) < 0;
env->lflags.auxbits ^= cf_changed * (LF_MASK_PO | LF_MASK_CF);
target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0;
env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF);
}
static inline uint32_t get_ZF(CPUX86State *env)
{
return env->lflags.result ? 0 : CC_Z;
return env->cc_dst ? 0 : CC_Z;
}
static inline uint32_t get_SF(CPUX86State *env)
{
return ((env->lflags.result >> (LF_SIGN_BIT - LF_BIT_SD)) ^
env->lflags.auxbits) & CC_S;
return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^
env->cc_src) & CC_S;
}
void lflags_to_rflags(CPUX86State *env)
@ -246,8 +245,8 @@ void lflags_to_rflags(CPUX86State *env)
env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O);
/* rotate left by one to move carry-out bits into CF and AF */
env->eflags |= (
(env->lflags.auxbits << 1) |
(env->lflags.auxbits >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
(env->cc_src << 1) |
(env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
env->eflags |= get_SF(env);
env->eflags |= get_PF(env);
env->eflags |= get_ZF(env);
@ -258,17 +257,17 @@ void rflags_to_lflags(CPUX86State *env)
{
target_ulong cf_xor_of;
env->lflags.auxbits = CC_P;
env->lflags.auxbits ^= env->eflags & (CC_S | CC_P);
env->cc_src = CC_P;
env->cc_src ^= env->eflags & (CC_S | CC_P);
/* rotate right by one to move CF and AF into the carry-out positions */
env->lflags.auxbits |= (
env->cc_src |= (
(env->eflags >> 1) |
(env->eflags << (TARGET_LONG_BITS - 1))) & (CC_C | CC_A);
cf_xor_of = (env->eflags & (CC_C | CC_O)) + (CC_O - CC_C);
env->lflags.auxbits |= -cf_xor_of & LF_MASK_PO;
env->cc_src |= -cf_xor_of & LF_MASK_PO;
/* Leave the low byte zero so that parity is not affected. */
env->lflags.result = !(env->eflags & CC_Z) << 8;
env->cc_dst = !(env->eflags & CC_Z) << 8;
}