* switch to C11 atomics (Alex)

* Coverity fixes for IPMI (Corey), i386 (Paolo), qemu-char (Paolo)
 * at long last, fail on wrong .pc files if -m32 is in use (Daniel)
 * qemu-char regression fix (Daniel)
 * SAS1068 device (Paolo)
 * memory region docs improvements (Peter)
 * target-i386 cleanups (Richard)
 * qemu-nbd docs improvements (Sitsofe)
 * thread-safe memory hotplug (Stefan)
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQEcBAABCAAGBQJWug86AAoJEL/70l94x66DMMoH/A4tioDjhozDBtAkz/Ny2lZs
 4Q34kQOWNnE0rIFDCsdg3Eq0QyYYpLH5tSuRZUHr37pfUyTkbff87uhnNepJaphY
 YV6LmmGZmYewZuvS3+bhvYOV6Eq9Ycsi85eT860/n3FFnfklcPqFWgjjxblKewOl
 Qf+9sLRVzlaeKjQPKNXbZV/4jkEF7a4W9oVKMGXcQXzyCe6vQ/ciK2jGBSLQhL9J
 FYFTvm70G39t79U7zPiJNXvZBtbKJdLbqPmMBHcyVk75np3mKVln3V0gYj68ACv+
 S30NedLwrxShLng98trHvD2TZqwsyxXqt7NimxLsVF5sH3GCfgYuc6fhueI0H6A=
 =5xD6
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging

* switch to C11 atomics (Alex)
* Coverity fixes for IPMI (Corey), i386 (Paolo), qemu-char (Paolo)
* at long last, fail on wrong .pc files if -m32 is in use (Daniel)
* qemu-char regression fix (Daniel)
* SAS1068 device (Paolo)
* memory region docs improvements (Peter)
* target-i386 cleanups (Richard)
* qemu-nbd docs improvements (Sitsofe)
* thread-safe memory hotplug (Stefan)

# gpg: Signature made Tue 09 Feb 2016 16:09:30 GMT using RSA key ID 78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>"
# gpg:                 aka "Paolo Bonzini <pbonzini@redhat.com>"

* remotes/bonzini/tags/for-upstream: (33 commits)
  qemu-char, io: fix ordering of arguments for UDP socket creation
  MAINTAINERS: add all-match entry for qemu-devel@
  get_maintainer.pl: fall back to git if only lists are found
  target-i386: fix PSE36 mode
  docs/memory.txt: Improve list of different memory regions
  ipmi_bmc_sim: Add break to correct watchdog NMI check
  ipmi_bmc_sim: Fix off by one in check.
  ipmi: do not take/drop iothread lock
  target-i386: Deconstruct the cpu_T array
  target-i386: Tidy gen_add_A0_im
  target-i386: Rewrite leave
  target-i386: Rewrite gen_enter inline
  target-i386: Use gen_lea_v_seg in pusha/popa
  target-i386: Access segs via TCG registers
  target-i386: Use gen_lea_v_seg in stack subroutines
  target-i386: Use gen_lea_v_seg in gen_lea_modrm
  target-i386: Introduce mo_stacksize
  target-i386: Create gen_lea_v_seg
  char: fix repeated registration of tcp chardev I/O handlers
  kvm-all: trace: strerror fixup
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2016-02-09 19:34:46 +00:00
commit c9f19dff10
32 changed files with 5221 additions and 1193 deletions

View file

@ -49,13 +49,43 @@ static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
return (char *)block->host + offset;
}
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
* under RCU. The bitmap for a block can be accessed as follows:
*
* rcu_read_lock();
*
* DirtyMemoryBlocks *blocks =
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
*
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
* unsigned long *block = blocks.blocks[idx];
* ...access block bitmap...
*
* rcu_read_unlock();
*
* Remember to check for the end of the block when accessing a range of
* addresses. Move on to the next block if you reach the end.
*
* Organization into blocks allows dirty memory to grow (but not shrink) under
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
* the same. Other threads can safely access existing blocks while dirty
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
* anymore it is freed by RCU (but the underlying blocks stay because they are
* pointed to from the new DirtyMemoryBlocks).
*/
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
typedef struct {
struct rcu_head rcu;
unsigned long *blocks[];
} DirtyMemoryBlocks;
typedef struct RAMList {
QemuMutex mutex;
/* Protected by the iothread lock. */
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
RAMBlock *mru_block;
/* RCU-enabled, writes protected by the ramlist lock. */
QLIST_HEAD(, RAMBlock) blocks;
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
uint32_t version;
} RAMList;
extern RAMList ram_list;
@ -89,30 +119,70 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
DirtyMemoryBlocks *blocks;
unsigned long end, page;
bool dirty = false;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_bit(ram_list.dirty_memory[client], end, page);
return next < end;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
dirty = true;
break;
}
page += num;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
ram_addr_t length,
unsigned client)
{
unsigned long end, page, next;
DirtyMemoryBlocks *blocks;
unsigned long end, page;
bool dirty = true;
assert(client < DIRTY_MEMORY_NUM);
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
return next >= end;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
dirty = false;
break;
}
page += num;
}
rcu_read_unlock();
return dirty;
}
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
@ -154,28 +224,68 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
unsigned client)
{
unsigned long page, idx, offset;
DirtyMemoryBlocks *blocks;
assert(client < DIRTY_MEMORY_NUM);
set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
page = addr >> TARGET_PAGE_BITS;
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
rcu_read_lock();
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
set_bit_atomic(offset, blocks->blocks[idx]);
rcu_read_unlock();
}
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
ram_addr_t length,
uint8_t mask)
{
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
unsigned long end, page;
unsigned long **d = ram_list.dirty_memory;
int i;
if (!mask && !xen_enabled()) {
return;
}
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
page = start >> TARGET_PAGE_BITS;
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
while (page < end) {
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
offset, num);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
offset, num);
}
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
offset, num);
}
page += num;
}
rcu_read_unlock();
xen_modified_memory(start, length);
}
@ -195,21 +305,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
/* start address is aligned at the start of a word? */
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
(hpratio == 1)) {
unsigned long **blocks[DIRTY_MEMORY_NUM];
unsigned long idx;
unsigned long offset;
long k;
long nr = BITS_TO_LONGS(pages);
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
}
for (k = 0; k < nr; k++) {
if (bitmap[k]) {
unsigned long temp = leul_to_cpu(bitmap[k]);
unsigned long **d = ram_list.dirty_memory;
atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
if (tcg_enabled()) {
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
}
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
} else {
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
@ -261,18 +391,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
int k;
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
unsigned long * const *src;
unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
DIRTY_MEMORY_BLOCK_SIZE);
rcu_read_lock();
src = atomic_rcu_read(
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
for (k = page; k < page + nr; k++) {
if (src[k]) {
unsigned long bits = atomic_xchg(&src[k], 0);
if (src[idx][offset]) {
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
unsigned long new_dirty;
new_dirty = ~dest[k];
dest[k] |= bits;
new_dirty &= bits;
num_dirty += ctpopl(new_dirty);
}
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
offset = 0;
idx++;
}
}
rcu_read_unlock();
} else {
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_test_and_clear_dirty(

View file

@ -64,6 +64,7 @@
#define PCI_VENDOR_ID_LSI_LOGIC 0x1000
#define PCI_DEVICE_ID_LSI_53C810 0x0001
#define PCI_DEVICE_ID_LSI_53C895A 0x0012
#define PCI_DEVICE_ID_LSI_SAS1068 0x0054
#define PCI_DEVICE_ID_LSI_SAS1078 0x0060
#define PCI_DEVICE_ID_LSI_SAS0079 0x0079

View file

@ -108,6 +108,8 @@ struct SCSIDevice
int blocksize;
int type;
uint64_t max_lba;
uint64_t wwn;
uint64_t port_wwn;
};
extern const VMStateDescription vmstate_scsi_device;
@ -271,6 +273,7 @@ void scsi_device_purge_requests(SCSIDevice *sdev, SCSISense sense);
void scsi_device_set_ua(SCSIDevice *sdev, SCSISense sense);
void scsi_device_report_change(SCSIDevice *dev, SCSISense sense);
void scsi_device_unit_attention_reported(SCSIDevice *dev);
void scsi_generic_read_device_identification(SCSIDevice *dev);
int scsi_device_get_sense(SCSIDevice *dev, uint8_t *buf, int len, bool fixed);
SCSIDevice *scsi_device_find(SCSIBus *bus, int channel, int target, int lun);

View file

@ -8,6 +8,8 @@
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* See docs/atomics.txt for discussion about the guarantees each
* atomic primitive is meant to provide.
*/
#ifndef __QEMU_ATOMIC_H
@ -15,12 +17,130 @@
#include "qemu/compiler.h"
/* For C11 atomic ops */
/* Compiler barrier */
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
#ifndef __ATOMIC_RELAXED
#ifdef __ATOMIC_RELAXED
/* For C11 atomic ops */
/* Manual memory barriers
*
*__atomic_thread_fence does not include a compiler barrier; instead,
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
* the compiler is free to reorder stores on each side of the barrier.
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
*/
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); barrier(); })
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
/* Weak atomic operations prevent the compiler moving other
* loads/stores past the atomic operation load/store. However there is
* no explicit memory barrier for the processor.
*/
#define atomic_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
_val; \
})
#define atomic_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
} while(0)
/* Atomic RCU operations imply weak memory barriers */
#define atomic_rcu_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
_val; \
})
#define atomic_rcu_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
} while(0)
/* atomic_mb_read/set semantics map Java volatile variables. They are
* less expensive on some platforms (notably POWER & ARMv7) than fully
* sequentially consistent operations.
*
* As long as they are used as paired operations they are safe to
* use. See docs/atomic.txt for more discussion.
*/
#if defined(_ARCH_PPC)
#define atomic_mb_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
smp_rmb(); \
_val; \
})
#define atomic_mb_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
smp_wmb(); \
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
smp_mb(); \
} while(0)
#else
#define atomic_mb_read(ptr) \
({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \
_val; \
})
#define atomic_mb_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_SEQ_CST); \
} while(0)
#endif
/* All the remaining operations are fully sequentially consistent */
#define atomic_xchg(ptr, i) ({ \
typeof(*ptr) _new = (i), _old; \
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
_old; \
})
/* Returns the eventual value, failed or not */
#define atomic_cmpxchg(ptr, old, new) \
({ \
typeof(*ptr) _old = (old), _new = (new); \
__atomic_compare_exchange(ptr, &_old, &_new, false, \
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
_old; \
})
/* Provide shorter names for GCC atomic builtins, return old value */
#define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
/* And even shorter names that return void. */
#define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
#else /* __ATOMIC_RELAXED */
/*
* We use GCC builtin if it's available, as that can use mfence on
@ -85,8 +205,6 @@
#endif /* _ARCH_PPC */
#endif /* C11 atomics */
/*
* For (host) platforms we don't have explicit barrier definitions
* for, we use the gcc __sync_synchronize() primitive to generate a
@ -98,42 +216,22 @@
#endif
#ifndef smp_wmb
#ifdef __ATOMIC_RELEASE
/* __atomic_thread_fence does not include a compiler barrier; instead,
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
* the compiler is free to reorder stores on each side of the barrier.
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
*/
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
#else
#define smp_wmb() __sync_synchronize()
#endif
#endif
#ifndef smp_rmb
#ifdef __ATOMIC_ACQUIRE
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
#else
#define smp_rmb() __sync_synchronize()
#endif
#endif
#ifndef smp_read_barrier_depends
#ifdef __ATOMIC_CONSUME
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
#else
#define smp_read_barrier_depends() barrier()
#endif
#endif
#ifndef atomic_read
/* These will only be atomic if the processor does the fetch or store
* in a single issue memory operation
*/
#define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
#endif
#ifndef atomic_set
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
#endif
/**
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
@ -146,30 +244,18 @@
* Inserts memory barriers on architectures that require them (currently only
* Alpha) and documents which pointers are protected by RCU.
*
* Unless the __ATOMIC_CONSUME memory order is available, atomic_rcu_read also
* includes a compiler barrier to ensure that value-speculative optimizations
* (e.g. VSS: Value Speculation Scheduling) does not perform the data read
* before the pointer read by speculating the value of the pointer. On new
* enough compilers, atomic_load takes care of such concern about
* dependency-breaking optimizations.
* atomic_rcu_read also includes a compiler barrier to ensure that
* value-speculative optimizations (e.g. VSS: Value Speculation
* Scheduling) does not perform the data read before the pointer read
* by speculating the value of the pointer.
*
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
*/
#ifndef atomic_rcu_read
#ifdef __ATOMIC_CONSUME
#define atomic_rcu_read(ptr) ({ \
typeof(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
_val; \
})
#else
#define atomic_rcu_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_read_barrier_depends(); \
_val; \
})
#endif
#endif
/**
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
@ -182,19 +268,10 @@
*
* Should match atomic_rcu_read().
*/
#ifndef atomic_rcu_set
#ifdef __ATOMIC_RELEASE
#define atomic_rcu_set(ptr, i) do { \
typeof(*ptr) _val = (i); \
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
} while(0)
#else
#define atomic_rcu_set(ptr, i) do { \
smp_wmb(); \
atomic_set(ptr, i); \
} while (0)
#endif
#endif
/* These have the same semantics as Java volatile variables.
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
@ -218,13 +295,11 @@
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
* Just always use the barriers manually by the rules above.
*/
#ifndef atomic_mb_read
#define atomic_mb_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_rmb(); \
_val; \
})
#endif
#ifndef atomic_mb_set
#define atomic_mb_set(ptr, i) do { \
@ -237,12 +312,6 @@
#ifndef atomic_xchg
#if defined(__clang__)
#define atomic_xchg(ptr, i) __sync_swap(ptr, i)
#elif defined(__ATOMIC_SEQ_CST)
#define atomic_xchg(ptr, i) ({ \
typeof(*ptr) _new = (i), _old; \
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
_old; \
})
#else
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
@ -266,4 +335,5 @@
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
#endif
#endif /* __ATOMIC_RELAXED */
#endif /* __QEMU_ATOMIC_H */