mirror of
https://github.com/Motorhead1991/qemu.git
synced 2026-02-15 17:09:31 -07:00
* switch to C11 atomics (Alex)
* Coverity fixes for IPMI (Corey), i386 (Paolo), qemu-char (Paolo) * at long last, fail on wrong .pc files if -m32 is in use (Daniel) * qemu-char regression fix (Daniel) * SAS1068 device (Paolo) * memory region docs improvements (Peter) * target-i386 cleanups (Richard) * qemu-nbd docs improvements (Sitsofe) * thread-safe memory hotplug (Stefan) -----BEGIN PGP SIGNATURE----- Version: GnuPG v2 iQEcBAABCAAGBQJWug86AAoJEL/70l94x66DMMoH/A4tioDjhozDBtAkz/Ny2lZs 4Q34kQOWNnE0rIFDCsdg3Eq0QyYYpLH5tSuRZUHr37pfUyTkbff87uhnNepJaphY YV6LmmGZmYewZuvS3+bhvYOV6Eq9Ycsi85eT860/n3FFnfklcPqFWgjjxblKewOl Qf+9sLRVzlaeKjQPKNXbZV/4jkEF7a4W9oVKMGXcQXzyCe6vQ/ciK2jGBSLQhL9J FYFTvm70G39t79U7zPiJNXvZBtbKJdLbqPmMBHcyVk75np3mKVln3V0gYj68ACv+ S30NedLwrxShLng98trHvD2TZqwsyxXqt7NimxLsVF5sH3GCfgYuc6fhueI0H6A= =5xD6 -----END PGP SIGNATURE----- Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging * switch to C11 atomics (Alex) * Coverity fixes for IPMI (Corey), i386 (Paolo), qemu-char (Paolo) * at long last, fail on wrong .pc files if -m32 is in use (Daniel) * qemu-char regression fix (Daniel) * SAS1068 device (Paolo) * memory region docs improvements (Peter) * target-i386 cleanups (Richard) * qemu-nbd docs improvements (Sitsofe) * thread-safe memory hotplug (Stefan) # gpg: Signature made Tue 09 Feb 2016 16:09:30 GMT using RSA key ID 78C7AE83 # gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>" # gpg: aka "Paolo Bonzini <pbonzini@redhat.com>" * remotes/bonzini/tags/for-upstream: (33 commits) qemu-char, io: fix ordering of arguments for UDP socket creation MAINTAINERS: add all-match entry for qemu-devel@ get_maintainer.pl: fall back to git if only lists are found target-i386: fix PSE36 mode docs/memory.txt: Improve list of different memory regions ipmi_bmc_sim: Add break to correct watchdog NMI check ipmi_bmc_sim: Fix off by one in check. ipmi: do not take/drop iothread lock target-i386: Deconstruct the cpu_T array target-i386: Tidy gen_add_A0_im target-i386: Rewrite leave target-i386: Rewrite gen_enter inline target-i386: Use gen_lea_v_seg in pusha/popa target-i386: Access segs via TCG registers target-i386: Use gen_lea_v_seg in stack subroutines target-i386: Use gen_lea_v_seg in gen_lea_modrm target-i386: Introduce mo_stacksize target-i386: Create gen_lea_v_seg char: fix repeated registration of tcp chardev I/O handlers kvm-all: trace: strerror fixup ... Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
commit
c9f19dff10
32 changed files with 5221 additions and 1193 deletions
|
|
@ -49,13 +49,43 @@ static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
|
|||
return (char *)block->host + offset;
|
||||
}
|
||||
|
||||
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
|
||||
* under RCU. The bitmap for a block can be accessed as follows:
|
||||
*
|
||||
* rcu_read_lock();
|
||||
*
|
||||
* DirtyMemoryBlocks *blocks =
|
||||
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
|
||||
*
|
||||
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
* unsigned long *block = blocks.blocks[idx];
|
||||
* ...access block bitmap...
|
||||
*
|
||||
* rcu_read_unlock();
|
||||
*
|
||||
* Remember to check for the end of the block when accessing a range of
|
||||
* addresses. Move on to the next block if you reach the end.
|
||||
*
|
||||
* Organization into blocks allows dirty memory to grow (but not shrink) under
|
||||
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
|
||||
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
|
||||
* the same. Other threads can safely access existing blocks while dirty
|
||||
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
|
||||
* anymore it is freed by RCU (but the underlying blocks stay because they are
|
||||
* pointed to from the new DirtyMemoryBlocks).
|
||||
*/
|
||||
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
|
||||
typedef struct {
|
||||
struct rcu_head rcu;
|
||||
unsigned long *blocks[];
|
||||
} DirtyMemoryBlocks;
|
||||
|
||||
typedef struct RAMList {
|
||||
QemuMutex mutex;
|
||||
/* Protected by the iothread lock. */
|
||||
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
|
||||
RAMBlock *mru_block;
|
||||
/* RCU-enabled, writes protected by the ramlist lock. */
|
||||
QLIST_HEAD(, RAMBlock) blocks;
|
||||
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
|
||||
uint32_t version;
|
||||
} RAMList;
|
||||
extern RAMList ram_list;
|
||||
|
|
@ -89,30 +119,70 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
|
|||
ram_addr_t length,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long end, page, next;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
unsigned long end, page;
|
||||
bool dirty = false;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
next = find_next_bit(ram_list.dirty_memory[client], end, page);
|
||||
|
||||
return next < end;
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
|
||||
dirty = true;
|
||||
break;
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
return dirty;
|
||||
}
|
||||
|
||||
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
|
||||
ram_addr_t length,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long end, page, next;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
unsigned long end, page;
|
||||
bool dirty = true;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
|
||||
|
||||
return next >= end;
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
|
||||
dirty = false;
|
||||
break;
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
return dirty;
|
||||
}
|
||||
|
||||
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
|
||||
|
|
@ -154,28 +224,68 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
|
|||
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long page, idx, offset;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
|
||||
|
||||
page = addr >> TARGET_PAGE_BITS;
|
||||
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
set_bit_atomic(offset, blocks->blocks[idx]);
|
||||
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
||||
ram_addr_t length,
|
||||
uint8_t mask)
|
||||
{
|
||||
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
|
||||
unsigned long end, page;
|
||||
unsigned long **d = ram_list.dirty_memory;
|
||||
int i;
|
||||
|
||||
if (!mask && !xen_enabled()) {
|
||||
return;
|
||||
}
|
||||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
xen_modified_memory(start, length);
|
||||
}
|
||||
|
||||
|
|
@ -195,21 +305,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
|
|||
/* start address is aligned at the start of a word? */
|
||||
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
||||
(hpratio == 1)) {
|
||||
unsigned long **blocks[DIRTY_MEMORY_NUM];
|
||||
unsigned long idx;
|
||||
unsigned long offset;
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(pages);
|
||||
|
||||
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
|
||||
DIRTY_MEMORY_BLOCK_SIZE);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
|
||||
}
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
if (bitmap[k]) {
|
||||
unsigned long temp = leul_to_cpu(bitmap[k]);
|
||||
unsigned long **d = ram_list.dirty_memory;
|
||||
|
||||
atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
|
||||
atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
|
||||
if (tcg_enabled()) {
|
||||
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
|
||||
}
|
||||
}
|
||||
|
||||
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
||||
offset = 0;
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
|
||||
} else {
|
||||
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
||||
|
|
@ -261,18 +391,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
|
|||
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
|
||||
int k;
|
||||
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
|
||||
unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
|
||||
unsigned long * const *src;
|
||||
unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
|
||||
DIRTY_MEMORY_BLOCK_SIZE);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
src = atomic_rcu_read(
|
||||
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
|
||||
|
||||
for (k = page; k < page + nr; k++) {
|
||||
if (src[k]) {
|
||||
unsigned long bits = atomic_xchg(&src[k], 0);
|
||||
if (src[idx][offset]) {
|
||||
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
|
||||
unsigned long new_dirty;
|
||||
new_dirty = ~dest[k];
|
||||
dest[k] |= bits;
|
||||
new_dirty &= bits;
|
||||
num_dirty += ctpopl(new_dirty);
|
||||
}
|
||||
|
||||
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
||||
offset = 0;
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
} else {
|
||||
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
|
||||
if (cpu_physical_memory_test_and_clear_dirty(
|
||||
|
|
|
|||
|
|
@ -64,6 +64,7 @@
|
|||
#define PCI_VENDOR_ID_LSI_LOGIC 0x1000
|
||||
#define PCI_DEVICE_ID_LSI_53C810 0x0001
|
||||
#define PCI_DEVICE_ID_LSI_53C895A 0x0012
|
||||
#define PCI_DEVICE_ID_LSI_SAS1068 0x0054
|
||||
#define PCI_DEVICE_ID_LSI_SAS1078 0x0060
|
||||
#define PCI_DEVICE_ID_LSI_SAS0079 0x0079
|
||||
|
||||
|
|
|
|||
|
|
@ -108,6 +108,8 @@ struct SCSIDevice
|
|||
int blocksize;
|
||||
int type;
|
||||
uint64_t max_lba;
|
||||
uint64_t wwn;
|
||||
uint64_t port_wwn;
|
||||
};
|
||||
|
||||
extern const VMStateDescription vmstate_scsi_device;
|
||||
|
|
@ -271,6 +273,7 @@ void scsi_device_purge_requests(SCSIDevice *sdev, SCSISense sense);
|
|||
void scsi_device_set_ua(SCSIDevice *sdev, SCSISense sense);
|
||||
void scsi_device_report_change(SCSIDevice *dev, SCSISense sense);
|
||||
void scsi_device_unit_attention_reported(SCSIDevice *dev);
|
||||
void scsi_generic_read_device_identification(SCSIDevice *dev);
|
||||
int scsi_device_get_sense(SCSIDevice *dev, uint8_t *buf, int len, bool fixed);
|
||||
SCSIDevice *scsi_device_find(SCSIBus *bus, int channel, int target, int lun);
|
||||
|
||||
|
|
|
|||
|
|
@ -8,6 +8,8 @@
|
|||
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
||||
* See the COPYING file in the top-level directory.
|
||||
*
|
||||
* See docs/atomics.txt for discussion about the guarantees each
|
||||
* atomic primitive is meant to provide.
|
||||
*/
|
||||
|
||||
#ifndef __QEMU_ATOMIC_H
|
||||
|
|
@ -15,12 +17,130 @@
|
|||
|
||||
#include "qemu/compiler.h"
|
||||
|
||||
/* For C11 atomic ops */
|
||||
|
||||
/* Compiler barrier */
|
||||
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
|
||||
|
||||
#ifndef __ATOMIC_RELAXED
|
||||
#ifdef __ATOMIC_RELAXED
|
||||
/* For C11 atomic ops */
|
||||
|
||||
/* Manual memory barriers
|
||||
*
|
||||
*__atomic_thread_fence does not include a compiler barrier; instead,
|
||||
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
||||
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
|
||||
* the compiler is free to reorder stores on each side of the barrier.
|
||||
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
|
||||
*/
|
||||
|
||||
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); barrier(); })
|
||||
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
|
||||
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
|
||||
|
||||
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
|
||||
|
||||
/* Weak atomic operations prevent the compiler moving other
|
||||
* loads/stores past the atomic operation load/store. However there is
|
||||
* no explicit memory barrier for the processor.
|
||||
*/
|
||||
#define atomic_read(ptr) \
|
||||
({ \
|
||||
typeof(*ptr) _val; \
|
||||
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
|
||||
_val; \
|
||||
})
|
||||
|
||||
#define atomic_set(ptr, i) do { \
|
||||
typeof(*ptr) _val = (i); \
|
||||
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
|
||||
} while(0)
|
||||
|
||||
/* Atomic RCU operations imply weak memory barriers */
|
||||
|
||||
#define atomic_rcu_read(ptr) \
|
||||
({ \
|
||||
typeof(*ptr) _val; \
|
||||
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
|
||||
_val; \
|
||||
})
|
||||
|
||||
#define atomic_rcu_set(ptr, i) do { \
|
||||
typeof(*ptr) _val = (i); \
|
||||
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
|
||||
} while(0)
|
||||
|
||||
/* atomic_mb_read/set semantics map Java volatile variables. They are
|
||||
* less expensive on some platforms (notably POWER & ARMv7) than fully
|
||||
* sequentially consistent operations.
|
||||
*
|
||||
* As long as they are used as paired operations they are safe to
|
||||
* use. See docs/atomic.txt for more discussion.
|
||||
*/
|
||||
|
||||
#if defined(_ARCH_PPC)
|
||||
#define atomic_mb_read(ptr) \
|
||||
({ \
|
||||
typeof(*ptr) _val; \
|
||||
__atomic_load(ptr, &_val, __ATOMIC_RELAXED); \
|
||||
smp_rmb(); \
|
||||
_val; \
|
||||
})
|
||||
|
||||
#define atomic_mb_set(ptr, i) do { \
|
||||
typeof(*ptr) _val = (i); \
|
||||
smp_wmb(); \
|
||||
__atomic_store(ptr, &_val, __ATOMIC_RELAXED); \
|
||||
smp_mb(); \
|
||||
} while(0)
|
||||
#else
|
||||
#define atomic_mb_read(ptr) \
|
||||
({ \
|
||||
typeof(*ptr) _val; \
|
||||
__atomic_load(ptr, &_val, __ATOMIC_SEQ_CST); \
|
||||
_val; \
|
||||
})
|
||||
|
||||
#define atomic_mb_set(ptr, i) do { \
|
||||
typeof(*ptr) _val = (i); \
|
||||
__atomic_store(ptr, &_val, __ATOMIC_SEQ_CST); \
|
||||
} while(0)
|
||||
#endif
|
||||
|
||||
|
||||
/* All the remaining operations are fully sequentially consistent */
|
||||
|
||||
#define atomic_xchg(ptr, i) ({ \
|
||||
typeof(*ptr) _new = (i), _old; \
|
||||
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
|
||||
_old; \
|
||||
})
|
||||
|
||||
/* Returns the eventual value, failed or not */
|
||||
#define atomic_cmpxchg(ptr, old, new) \
|
||||
({ \
|
||||
typeof(*ptr) _old = (old), _new = (new); \
|
||||
__atomic_compare_exchange(ptr, &_old, &_new, false, \
|
||||
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
|
||||
_old; \
|
||||
})
|
||||
|
||||
/* Provide shorter names for GCC atomic builtins, return old value */
|
||||
#define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
|
||||
#define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
|
||||
#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
|
||||
#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
|
||||
#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
|
||||
#define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
|
||||
|
||||
/* And even shorter names that return void. */
|
||||
#define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
|
||||
#define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
|
||||
#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
|
||||
#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
|
||||
#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
|
||||
#define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
|
||||
|
||||
#else /* __ATOMIC_RELAXED */
|
||||
|
||||
/*
|
||||
* We use GCC builtin if it's available, as that can use mfence on
|
||||
|
|
@ -85,8 +205,6 @@
|
|||
|
||||
#endif /* _ARCH_PPC */
|
||||
|
||||
#endif /* C11 atomics */
|
||||
|
||||
/*
|
||||
* For (host) platforms we don't have explicit barrier definitions
|
||||
* for, we use the gcc __sync_synchronize() primitive to generate a
|
||||
|
|
@ -98,42 +216,22 @@
|
|||
#endif
|
||||
|
||||
#ifndef smp_wmb
|
||||
#ifdef __ATOMIC_RELEASE
|
||||
/* __atomic_thread_fence does not include a compiler barrier; instead,
|
||||
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
|
||||
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
|
||||
* the compiler is free to reorder stores on each side of the barrier.
|
||||
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
|
||||
*/
|
||||
#define smp_wmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); barrier(); })
|
||||
#else
|
||||
#define smp_wmb() __sync_synchronize()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef smp_rmb
|
||||
#ifdef __ATOMIC_ACQUIRE
|
||||
#define smp_rmb() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); barrier(); })
|
||||
#else
|
||||
#define smp_rmb() __sync_synchronize()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef smp_read_barrier_depends
|
||||
#ifdef __ATOMIC_CONSUME
|
||||
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); barrier(); })
|
||||
#else
|
||||
#define smp_read_barrier_depends() barrier()
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifndef atomic_read
|
||||
/* These will only be atomic if the processor does the fetch or store
|
||||
* in a single issue memory operation
|
||||
*/
|
||||
#define atomic_read(ptr) (*(__typeof__(*ptr) volatile*) (ptr))
|
||||
#endif
|
||||
|
||||
#ifndef atomic_set
|
||||
#define atomic_set(ptr, i) ((*(__typeof__(*ptr) volatile*) (ptr)) = (i))
|
||||
#endif
|
||||
|
||||
/**
|
||||
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
|
||||
|
|
@ -146,30 +244,18 @@
|
|||
* Inserts memory barriers on architectures that require them (currently only
|
||||
* Alpha) and documents which pointers are protected by RCU.
|
||||
*
|
||||
* Unless the __ATOMIC_CONSUME memory order is available, atomic_rcu_read also
|
||||
* includes a compiler barrier to ensure that value-speculative optimizations
|
||||
* (e.g. VSS: Value Speculation Scheduling) does not perform the data read
|
||||
* before the pointer read by speculating the value of the pointer. On new
|
||||
* enough compilers, atomic_load takes care of such concern about
|
||||
* dependency-breaking optimizations.
|
||||
* atomic_rcu_read also includes a compiler barrier to ensure that
|
||||
* value-speculative optimizations (e.g. VSS: Value Speculation
|
||||
* Scheduling) does not perform the data read before the pointer read
|
||||
* by speculating the value of the pointer.
|
||||
*
|
||||
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
|
||||
*/
|
||||
#ifndef atomic_rcu_read
|
||||
#ifdef __ATOMIC_CONSUME
|
||||
#define atomic_rcu_read(ptr) ({ \
|
||||
typeof(*ptr) _val; \
|
||||
__atomic_load(ptr, &_val, __ATOMIC_CONSUME); \
|
||||
_val; \
|
||||
})
|
||||
#else
|
||||
#define atomic_rcu_read(ptr) ({ \
|
||||
typeof(*ptr) _val = atomic_read(ptr); \
|
||||
smp_read_barrier_depends(); \
|
||||
_val; \
|
||||
})
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
|
||||
|
|
@ -182,19 +268,10 @@
|
|||
*
|
||||
* Should match atomic_rcu_read().
|
||||
*/
|
||||
#ifndef atomic_rcu_set
|
||||
#ifdef __ATOMIC_RELEASE
|
||||
#define atomic_rcu_set(ptr, i) do { \
|
||||
typeof(*ptr) _val = (i); \
|
||||
__atomic_store(ptr, &_val, __ATOMIC_RELEASE); \
|
||||
} while(0)
|
||||
#else
|
||||
#define atomic_rcu_set(ptr, i) do { \
|
||||
smp_wmb(); \
|
||||
atomic_set(ptr, i); \
|
||||
} while (0)
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* These have the same semantics as Java volatile variables.
|
||||
* See http://gee.cs.oswego.edu/dl/jmm/cookbook.html:
|
||||
|
|
@ -218,13 +295,11 @@
|
|||
* (see docs/atomics.txt), and I'm not sure that __ATOMIC_ACQ_REL is enough.
|
||||
* Just always use the barriers manually by the rules above.
|
||||
*/
|
||||
#ifndef atomic_mb_read
|
||||
#define atomic_mb_read(ptr) ({ \
|
||||
typeof(*ptr) _val = atomic_read(ptr); \
|
||||
smp_rmb(); \
|
||||
_val; \
|
||||
})
|
||||
#endif
|
||||
|
||||
#ifndef atomic_mb_set
|
||||
#define atomic_mb_set(ptr, i) do { \
|
||||
|
|
@ -237,12 +312,6 @@
|
|||
#ifndef atomic_xchg
|
||||
#if defined(__clang__)
|
||||
#define atomic_xchg(ptr, i) __sync_swap(ptr, i)
|
||||
#elif defined(__ATOMIC_SEQ_CST)
|
||||
#define atomic_xchg(ptr, i) ({ \
|
||||
typeof(*ptr) _new = (i), _old; \
|
||||
__atomic_exchange(ptr, &_new, &_old, __ATOMIC_SEQ_CST); \
|
||||
_old; \
|
||||
})
|
||||
#else
|
||||
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
|
||||
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
|
||||
|
|
@ -266,4 +335,5 @@
|
|||
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
|
||||
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
|
||||
|
||||
#endif
|
||||
#endif /* __ATOMIC_RELAXED */
|
||||
#endif /* __QEMU_ATOMIC_H */
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue