target/ppc: Style fixes for kvm_ppc.h and kvm.c

Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Greg Kurz <groug@kaod.org>
This commit is contained in:
David Gibson 2019-03-21 21:47:25 +11:00
parent c86f377c85
commit c995e942bf
2 changed files with 115 additions and 66 deletions

View file

@ -49,7 +49,7 @@
#include "elf.h" #include "elf.h"
#include "sysemu/kvm_int.h" #include "sysemu/kvm_int.h"
//#define DEBUG_KVM /* #define DEBUG_KVM */
#ifdef DEBUG_KVM #ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \ #define DPRINTF(fmt, ...) \
@ -65,8 +65,8 @@ const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO KVM_CAP_LAST_INFO
}; };
static int cap_interrupt_unset = false; static int cap_interrupt_unset;
static int cap_interrupt_level = false; static int cap_interrupt_level;
static int cap_segstate; static int cap_segstate;
static int cap_booke_sregs; static int cap_booke_sregs;
static int cap_ppc_smt; static int cap_ppc_smt;
@ -96,7 +96,8 @@ static int cap_large_decr;
static uint32_t debug_inst_opcode; static uint32_t debug_inst_opcode;
/* XXX We have a race condition where we actually have a level triggered /*
* XXX We have a race condition where we actually have a level triggered
* interrupt, but the infrastructure can't expose that yet, so the guest * interrupt, but the infrastructure can't expose that yet, so the guest
* takes but ignores it, goes to sleep and never gets notified that there's * takes but ignores it, goes to sleep and never gets notified that there's
* still an interrupt pending. * still an interrupt pending.
@ -114,10 +115,12 @@ static void kvm_kick_cpu(void *opaque)
qemu_cpu_kick(CPU(cpu)); qemu_cpu_kick(CPU(cpu));
} }
/* Check whether we are running with KVM-PR (instead of KVM-HV). This /*
* Check whether we are running with KVM-PR (instead of KVM-HV). This
* should only be used for fallback tests - generally we should use * should only be used for fallback tests - generally we should use
* explicit capabilities for the features we want, rather than * explicit capabilities for the features we want, rather than
* assuming what is/isn't available depending on the KVM variant. */ * assuming what is/isn't available depending on the KVM variant.
*/
static bool kvmppc_is_pr(KVMState *ks) static bool kvmppc_is_pr(KVMState *ks)
{ {
/* Assume KVM-PR if the GET_PVINFO capability is available */ /* Assume KVM-PR if the GET_PVINFO capability is available */
@ -143,8 +146,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR); cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR); cap_epr = kvm_check_extension(s, KVM_CAP_PPC_EPR);
cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG); cap_ppc_watchdog = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_WATCHDOG);
/* Note: we don't set cap_papr here, because this capability is /*
* only activated after this by kvmppc_set_papr() */ * Note: we don't set cap_papr here, because this capability is
* only activated after this by kvmppc_set_papr()
*/
cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD); cap_htab_fd = kvm_vm_check_extension(s, KVM_CAP_PPC_HTAB_FD);
cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL); cap_fixup_hcalls = kvm_check_extension(s, KVM_CAP_PPC_FIXUP_HCALL);
cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT); cap_ppc_smt = kvm_vm_check_extension(s, KVM_CAP_PPC_SMT);
@ -160,7 +165,8 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
* in KVM at this moment. * in KVM at this moment.
* *
* TODO: call kvm_vm_check_extension() with the right capability * TODO: call kvm_vm_check_extension() with the right capability
* after the kernel starts implementing it.*/ * after the kernel starts implementing it.
*/
cap_ppc_pvr_compat = false; cap_ppc_pvr_compat = false;
if (!cap_interrupt_level) { if (!cap_interrupt_level) {
@ -186,10 +192,13 @@ static int kvm_arch_sync_sregs(PowerPCCPU *cpu)
int ret; int ret;
if (cenv->excp_model == POWERPC_EXCP_BOOKE) { if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
/* What we're really trying to say is "if we're on BookE, we use /*
the native PVR for now". This is the only sane way to check * What we're really trying to say is "if we're on BookE, we
it though, so we potentially confuse users that they can run * use the native PVR for now". This is the only sane way to
BookE guests on BookS. Let's hope nobody dares enough :) */ * check it though, so we potentially confuse users that they
* can run BookE guests on BookS. Let's hope nobody dares
* enough :)
*/
return 0; return 0;
} else { } else {
if (!cap_segstate) { if (!cap_segstate) {
@ -421,12 +430,14 @@ void kvm_check_mmu(PowerPCCPU *cpu, Error **errp)
} }
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
/* Mostly what guest pagesizes we can use are related to the /*
* Mostly what guest pagesizes we can use are related to the
* host pages used to map guest RAM, which is handled in the * host pages used to map guest RAM, which is handled in the
* platform code. Cache-Inhibited largepages (64k) however are * platform code. Cache-Inhibited largepages (64k) however are
* used for I/O, so if they're mapped to the host at all it * used for I/O, so if they're mapped to the host at all it
* will be a normal mapping, not a special hugepage one used * will be a normal mapping, not a special hugepage one used
* for RAM. */ * for RAM.
*/
if (getpagesize() < 0x10000) { if (getpagesize() < 0x10000) {
error_setg(errp, error_setg(errp,
"KVM can't supply 64kiB CI pages, which guest expects"); "KVM can't supply 64kiB CI pages, which guest expects");
@ -440,9 +451,9 @@ unsigned long kvm_arch_vcpu_id(CPUState *cpu)
return POWERPC_CPU(cpu)->vcpu_id; return POWERPC_CPU(cpu)->vcpu_id;
} }
/* e500 supports 2 h/w breakpoint and 2 watchpoint. /*
* book3s supports only 1 watchpoint, so array size * e500 supports 2 h/w breakpoint and 2 watchpoint. book3s supports
* of 4 is sufficient for now. * only 1 watchpoint, so array size of 4 is sufficient for now.
*/ */
#define MAX_HW_BKPTS 4 #define MAX_HW_BKPTS 4
@ -497,9 +508,12 @@ int kvm_arch_init_vcpu(CPUState *cs)
break; break;
case POWERPC_MMU_2_07: case POWERPC_MMU_2_07:
if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) { if (!cap_htm && !kvmppc_is_pr(cs->kvm_state)) {
/* KVM-HV has transactional memory on POWER8 also without the /*
* KVM_CAP_PPC_HTM extension, so enable it here instead as * KVM-HV has transactional memory on POWER8 also without
* long as it's availble to userspace on the host. */ * the KVM_CAP_PPC_HTM extension, so enable it here
* instead as long as it's availble to userspace on the
* host.
*/
if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) { if (qemu_getauxval(AT_HWCAP2) & PPC_FEATURE2_HAS_HTM) {
cap_htm = true; cap_htm = true;
} }
@ -800,10 +814,12 @@ static int kvm_put_vpa(CPUState *cs)
struct kvm_one_reg reg; struct kvm_one_reg reg;
int ret; int ret;
/* SLB shadow or DTL can't be registered unless a master VPA is /*
* SLB shadow or DTL can't be registered unless a master VPA is
* registered. That means when restoring state, if a VPA *is* * registered. That means when restoring state, if a VPA *is*
* registered, we need to set that up first. If not, we need to * registered, we need to set that up first. If not, we need to
* deregister the others before deregistering the master VPA */ * deregister the others before deregistering the master VPA
*/
assert(spapr_cpu->vpa_addr assert(spapr_cpu->vpa_addr
|| !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr)); || !(spapr_cpu->slb_shadow_addr || spapr_cpu->dtl_addr));
@ -929,8 +945,9 @@ int kvm_arch_put_registers(CPUState *cs, int level)
regs.pid = env->spr[SPR_BOOKE_PID]; regs.pid = env->spr[SPR_BOOKE_PID];
for (i = 0;i < 32; i++) for (i = 0; i < 32; i++) {
regs.gpr[i] = env->gpr[i]; regs.gpr[i] = env->gpr[i];
}
regs.cr = 0; regs.cr = 0;
for (i = 0; i < 8; i++) { for (i = 0; i < 8; i++) {
@ -938,8 +955,9 @@ int kvm_arch_put_registers(CPUState *cs, int level)
} }
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs); ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) if (ret < 0) {
return ret; return ret;
}
kvm_put_fp(cs); kvm_put_fp(cs);
@ -962,10 +980,12 @@ int kvm_arch_put_registers(CPUState *cs, int level)
if (cap_one_reg) { if (cap_one_reg) {
int i; int i;
/* We deliberately ignore errors here, for kernels which have /*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific * the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still * registers, there's a reasonable chance things will still
* work, at least until we try to migrate. */ * work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) { for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id; uint64_t id = env->spr_cb[i].one_reg_id;
@ -1207,8 +1227,9 @@ int kvm_arch_get_registers(CPUState *cs)
int i, ret; int i, ret;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs); ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (ret < 0) if (ret < 0) {
return ret; return ret;
}
cr = regs.cr; cr = regs.cr;
for (i = 7; i >= 0; i--) { for (i = 7; i >= 0; i--) {
@ -1236,8 +1257,9 @@ int kvm_arch_get_registers(CPUState *cs)
env->spr[SPR_BOOKE_PID] = regs.pid; env->spr[SPR_BOOKE_PID] = regs.pid;
for (i = 0;i < 32; i++) for (i = 0; i < 32; i++) {
env->gpr[i] = regs.gpr[i]; env->gpr[i] = regs.gpr[i];
}
kvm_get_fp(cs); kvm_get_fp(cs);
@ -1262,10 +1284,12 @@ int kvm_arch_get_registers(CPUState *cs)
if (cap_one_reg) { if (cap_one_reg) {
int i; int i;
/* We deliberately ignore errors here, for kernels which have /*
* We deliberately ignore errors here, for kernels which have
* the ONE_REG calls, but don't support the specific * the ONE_REG calls, but don't support the specific
* registers, there's a reasonable chance things will still * registers, there's a reasonable chance things will still
* work, at least until we try to migrate. */ * work, at least until we try to migrate.
*/
for (i = 0; i < 1024; i++) { for (i = 0; i < 1024; i++) {
uint64_t id = env->spr_cb[i].one_reg_id; uint64_t id = env->spr_cb[i].one_reg_id;
@ -1339,16 +1363,20 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
qemu_mutex_lock_iothread(); qemu_mutex_lock_iothread();
/* PowerPC QEMU tracks the various core input pins (interrupt, critical /*
* interrupt, reset, etc) in PPC-specific env->irq_input_state. */ * PowerPC QEMU tracks the various core input pins (interrupt,
* critical interrupt, reset, etc) in PPC-specific
* env->irq_input_state.
*/
if (!cap_interrupt_level && if (!cap_interrupt_level &&
run->ready_for_interrupt_injection && run->ready_for_interrupt_injection &&
(cs->interrupt_request & CPU_INTERRUPT_HARD) && (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->irq_input_state & (1 << PPC_INPUT_INT))) (env->irq_input_state & (1 << PPC_INPUT_INT)))
{ {
/* For now KVM disregards the 'irq' argument. However, in the /*
* future KVM could cache it in-kernel to avoid a heavyweight exit * For now KVM disregards the 'irq' argument. However, in the
* when reading the UIC. * future KVM could cache it in-kernel to avoid a heavyweight
* exit when reading the UIC.
*/ */
irq = KVM_INTERRUPT_SET; irq = KVM_INTERRUPT_SET;
@ -1363,9 +1391,12 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
(NANOSECONDS_PER_SECOND / 50)); (NANOSECONDS_PER_SECOND / 50));
} }
/* We don't know if there are more interrupts pending after this. However, /*
* the guest will return to userspace in the course of handling this one * We don't know if there are more interrupts pending after
* anyways, so we will get a chance to deliver the rest. */ * this. However, the guest will return to userspace in the course
* of handling this one anyways, so we will get a chance to
* deliver the rest.
*/
qemu_mutex_unlock_iothread(); qemu_mutex_unlock_iothread();
} }
@ -1394,18 +1425,22 @@ static int kvmppc_handle_halt(PowerPCCPU *cpu)
} }
/* map dcr access to existing qemu dcr emulation */ /* map dcr access to existing qemu dcr emulation */
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data) static int kvmppc_handle_dcr_read(CPUPPCState *env,
uint32_t dcrn, uint32_t *data)
{ {
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn); fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
}
return 0; return 0;
} }
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data) static int kvmppc_handle_dcr_write(CPUPPCState *env,
uint32_t dcrn, uint32_t data)
{ {
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0) {
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn); fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
}
return 0; return 0;
} }
@ -1849,7 +1884,8 @@ uint32_t kvmppc_get_tbfreq(void)
return retval; return retval;
} }
if (!(ns = strchr(line, ':'))) { ns = strchr(line, ':');
if (!ns) {
return retval; return retval;
} }
@ -1875,7 +1911,8 @@ static int kvmppc_find_cpu_dt(char *buf, int buf_len)
struct dirent *dirp; struct dirent *dirp;
DIR *dp; DIR *dp;
if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) { dp = opendir(PROC_DEVTREE_CPU);
if (!dp) {
printf("Can't open directory " PROC_DEVTREE_CPU "\n"); printf("Can't open directory " PROC_DEVTREE_CPU "\n");
return -1; return -1;
} }
@ -1929,10 +1966,11 @@ static uint64_t kvmppc_read_int_dt(const char *filename)
return 0; return 0;
} }
/* Read a CPU node property from the host device tree that's a single /*
* Read a CPU node property from the host device tree that's a single
* integer (32-bit or 64-bit). Returns 0 if anything goes wrong * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
* (can't find or open the property, or doesn't understand the * (can't find or open the property, or doesn't understand the format)
* format) */ */
static uint64_t kvmppc_read_int_cpu_dt(const char *propname) static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
{ {
char buf[PATH_MAX], *tmp; char buf[PATH_MAX], *tmp;
@ -2064,8 +2102,10 @@ void kvmppc_set_papr(PowerPCCPU *cpu)
exit(1); exit(1);
} }
/* Update the capability flag so we sync the right information /*
* with kvm */ * Update the capability flag so we sync the right information
* with kvm
*/
cap_papr = 1; cap_papr = 1;
} }
@ -2133,8 +2173,10 @@ uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
long rampagesize, best_page_shift; long rampagesize, best_page_shift;
int i; int i;
/* Find the largest hardware supported page size that's less than /*
* or equal to the (logical) backing page size of guest RAM */ * Find the largest hardware supported page size that's less than
* or equal to the (logical) backing page size of guest RAM
*/
kvm_get_smmu_info(&info, &error_fatal); kvm_get_smmu_info(&info, &error_fatal);
rampagesize = qemu_getrampagesize(); rampagesize = qemu_getrampagesize();
best_page_shift = 0; best_page_shift = 0;
@ -2184,7 +2226,8 @@ void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t page_shift,
int fd; int fd;
void *table; void *table;
/* Must set fd to -1 so we don't try to munmap when called for /*
* Must set fd to -1 so we don't try to munmap when called for
* destroying the table, which the upper layers -will- do * destroying the table, which the upper layers -will- do
*/ */
*pfd = -1; *pfd = -1;
@ -2272,10 +2315,12 @@ int kvmppc_reset_htab(int shift_hint)
int ret; int ret;
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift); ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
if (ret == -ENOTTY) { if (ret == -ENOTTY) {
/* At least some versions of PR KVM advertise the /*
* At least some versions of PR KVM advertise the
* capability, but don't implement the ioctl(). Oops. * capability, but don't implement the ioctl(). Oops.
* Return 0 so that we allocate the htab in qemu, as is * Return 0 so that we allocate the htab in qemu, as is
* correct for PR. */ * correct for PR.
*/
return 0; return 0;
} else if (ret < 0) { } else if (ret < 0) {
return ret; return ret;
@ -2283,9 +2328,12 @@ int kvmppc_reset_htab(int shift_hint)
return shift; return shift;
} }
/* We have a kernel that predates the htab reset calls. For PR /*
* We have a kernel that predates the htab reset calls. For PR
* KVM, we need to allocate the htab ourselves, for an HV KVM of * KVM, we need to allocate the htab ourselves, for an HV KVM of
* this era, it has allocated a 16MB fixed size hash table already. */ * this era, it has allocated a 16MB fixed size hash table
* already.
*/
if (kvmppc_is_pr(kvm_state)) { if (kvmppc_is_pr(kvm_state)) {
/* PR - tell caller to allocate htab */ /* PR - tell caller to allocate htab */
return 0; return 0;
@ -2667,8 +2715,8 @@ int kvmppc_save_htab(QEMUFile *f, int fd, size_t bufsize, int64_t max_ns)
} }
} }
} while ((rc != 0) } while ((rc != 0)
&& ((max_ns < 0) && ((max_ns < 0) ||
|| ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns))); ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) < max_ns)));
return (rc == 0) ? 1 : 0; return (rc == 0) ? 1 : 0;
} }

View file

@ -117,7 +117,8 @@ static inline int kvmppc_get_hasidle(CPUPPCState *env)
return 0; return 0;
} }
static inline int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len) static inline int kvmppc_get_hypercall(CPUPPCState *env,
uint8_t *buf, int buf_len)
{ {
return -1; return -1;
} }