plugins: move the more involved plugins to contrib

We have an exploding complexity problem in the testing so lets just
move the more involved plugins into contrib. tests/plugins still exist
for the basic plugins that exercise the API. We restore the old
pre-meson style Makefile for contrib as it also doubles as a guide for
out-of-tree plugin builds.

While we are at it add some examples to the documentation and a
specific plugins build target.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20200909112742.25730-11-alex.bennee@linaro.org>
This commit is contained in:
Alex Bennée 2020-09-09 12:27:41 +01:00
parent 89e076f37d
commit c17a386b6a
12 changed files with 207 additions and 6 deletions

42
contrib/plugins/Makefile Normal file
View file

@ -0,0 +1,42 @@
# -*- Mode: makefile -*-
#
# This Makefile example is fairly independent from the main makefile
# so users can take and adapt it for their build. We only really
# include config-host.mak so we don't have to repeat probing for
# cflags that the main configure has already done for us.
#
BUILD_DIR := $(CURDIR)/../..
include $(BUILD_DIR)/config-host.mak
VPATH += $(SRC_PATH)/contrib/plugins
NAMES :=
NAMES += hotblocks
NAMES += hotpages
NAMES += howvec
NAMES += lockstep
SONAMES := $(addsuffix .so,$(addprefix lib,$(NAMES)))
# The main QEMU uses Glib extensively so it's perfectly fine to use it
# in plugins (which many example do).
CFLAGS = $(GLIB_CFLAGS)
CFLAGS += -fPIC
CFLAGS += $(if $(findstring no-psabi,$(QEMU_CFLAGS)),-Wpsabi)
CFLAGS += -I$(SRC_PATH)/include/qemu
all: $(SONAMES)
%.o: %.c
$(CC) $(CFLAGS) -c -o $@ $<
lib%.so: %.o
$(CC) -shared -Wl,-soname,$@ -o $@ $^ $(LDLIBS)
clean:
rm -f *.o *.so *.d
rm -Rf .libs
.PHONY: all clean

145
contrib/plugins/hotblocks.c Normal file
View file

@ -0,0 +1,145 @@
/*
* Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org>
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include <inttypes.h>
#include <assert.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
static bool do_inline;
/* Plugins need to take care of their own locking */
static GMutex lock;
static GHashTable *hotblocks;
static guint64 limit = 20;
/*
* Counting Structure
*
* The internals of the TCG are not exposed to plugins so we can only
* get the starting PC for each block. We cheat this slightly by
* xor'ing the number of instructions to the hash to help
* differentiate.
*/
typedef struct {
uint64_t start_addr;
uint64_t exec_count;
int trans_count;
unsigned long insns;
} ExecCount;
static gint cmp_exec_count(gconstpointer a, gconstpointer b)
{
ExecCount *ea = (ExecCount *) a;
ExecCount *eb = (ExecCount *) b;
return ea->exec_count > eb->exec_count ? -1 : 1;
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) report = g_string_new("collected ");
GList *counts, *it;
int i;
g_mutex_lock(&lock);
g_string_append_printf(report, "%d entries in the hash table\n",
g_hash_table_size(hotblocks));
counts = g_hash_table_get_values(hotblocks);
it = g_list_sort(counts, cmp_exec_count);
if (it) {
g_string_append_printf(report, "pc, tcount, icount, ecount\n");
for (i = 0; i < limit && it->next; i++, it = it->next) {
ExecCount *rec = (ExecCount *) it->data;
g_string_append_printf(report, "%#016"PRIx64", %d, %ld, %"PRId64"\n",
rec->start_addr, rec->trans_count,
rec->insns, rec->exec_count);
}
g_list_free(it);
g_mutex_unlock(&lock);
}
qemu_plugin_outs(report->str);
}
static void plugin_init(void)
{
hotblocks = g_hash_table_new(NULL, g_direct_equal);
}
static void vcpu_tb_exec(unsigned int cpu_index, void *udata)
{
ExecCount *cnt;
uint64_t hash = (uint64_t) udata;
g_mutex_lock(&lock);
cnt = (ExecCount *) g_hash_table_lookup(hotblocks, (gconstpointer) hash);
/* should always succeed */
g_assert(cnt);
cnt->exec_count++;
g_mutex_unlock(&lock);
}
/*
* When do_inline we ask the plugin to increment the counter for us.
* Otherwise a helper is inserted which calls the vcpu_tb_exec
* callback.
*/
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
ExecCount *cnt;
uint64_t pc = qemu_plugin_tb_vaddr(tb);
unsigned long insns = qemu_plugin_tb_n_insns(tb);
uint64_t hash = pc ^ insns;
g_mutex_lock(&lock);
cnt = (ExecCount *) g_hash_table_lookup(hotblocks, (gconstpointer) hash);
if (cnt) {
cnt->trans_count++;
} else {
cnt = g_new0(ExecCount, 1);
cnt->start_addr = pc;
cnt->trans_count = 1;
cnt->insns = insns;
g_hash_table_insert(hotblocks, (gpointer) hash, (gpointer) cnt);
}
g_mutex_unlock(&lock);
if (do_inline) {
qemu_plugin_register_vcpu_tb_exec_inline(tb, QEMU_PLUGIN_INLINE_ADD_U64,
&cnt->exec_count, 1);
} else {
qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec,
QEMU_PLUGIN_CB_NO_REGS,
(void *)hash);
}
}
QEMU_PLUGIN_EXPORT
int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
int argc, char **argv)
{
if (argc && strcmp(argv[0], "inline") == 0) {
do_inline = true;
}
plugin_init();
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}

193
contrib/plugins/hotpages.c Normal file
View file

@ -0,0 +1,193 @@
/*
* Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org>
*
* Hot Pages - show which pages saw the most memory accesses.
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include <inttypes.h>
#include <assert.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
static uint64_t page_size = 4096;
static uint64_t page_mask;
static int limit = 50;
static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW;
static bool track_io;
enum sort_type {
SORT_RW = 0,
SORT_R,
SORT_W,
SORT_A
};
static int sort_by = SORT_RW;
typedef struct {
uint64_t page_address;
int cpu_read;
int cpu_write;
uint64_t reads;
uint64_t writes;
} PageCounters;
static GMutex lock;
static GHashTable *pages;
static gint cmp_access_count(gconstpointer a, gconstpointer b)
{
PageCounters *ea = (PageCounters *) a;
PageCounters *eb = (PageCounters *) b;
int r;
switch (sort_by) {
case SORT_RW:
r = (ea->reads + ea->writes) > (eb->reads + eb->writes) ? -1 : 1;
break;
case SORT_R:
r = ea->reads > eb->reads ? -1 : 1;
break;
case SORT_W:
r = ea->writes > eb->writes ? -1 : 1;
break;
case SORT_A:
r = ea->page_address > eb->page_address ? -1 : 1;
break;
default:
g_assert_not_reached();
}
return r;
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) report = g_string_new("Addr, RCPUs, Reads, WCPUs, Writes\n");
int i;
GList *counts;
counts = g_hash_table_get_values(pages);
if (counts && g_list_next(counts)) {
GList *it;
it = g_list_sort(counts, cmp_access_count);
for (i = 0; i < limit && it->next; i++, it = it->next) {
PageCounters *rec = (PageCounters *) it->data;
g_string_append_printf(report,
"%#016"PRIx64", 0x%04x, %"PRId64
", 0x%04x, %"PRId64"\n",
rec->page_address,
rec->cpu_read, rec->reads,
rec->cpu_write, rec->writes);
}
g_list_free(it);
}
qemu_plugin_outs(report->str);
}
static void plugin_init(void)
{
page_mask = (page_size - 1);
pages = g_hash_table_new(NULL, g_direct_equal);
}
static void vcpu_haddr(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo,
uint64_t vaddr, void *udata)
{
struct qemu_plugin_hwaddr *hwaddr = qemu_plugin_get_hwaddr(meminfo, vaddr);
uint64_t page;
PageCounters *count;
/* We only get a hwaddr for system emulation */
if (track_io) {
if (hwaddr && qemu_plugin_hwaddr_is_io(hwaddr)) {
page = vaddr;
} else {
return;
}
} else {
if (hwaddr && !qemu_plugin_hwaddr_is_io(hwaddr)) {
page = (uint64_t) qemu_plugin_hwaddr_device_offset(hwaddr);
} else {
page = vaddr;
}
}
page &= ~page_mask;
g_mutex_lock(&lock);
count = (PageCounters *) g_hash_table_lookup(pages, GUINT_TO_POINTER(page));
if (!count) {
count = g_new0(PageCounters, 1);
count->page_address = page;
g_hash_table_insert(pages, GUINT_TO_POINTER(page), (gpointer) count);
}
if (qemu_plugin_mem_is_store(meminfo)) {
count->writes++;
count->cpu_write |= (1 << cpu_index);
} else {
count->reads++;
count->cpu_read |= (1 << cpu_index);
}
g_mutex_unlock(&lock);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n = qemu_plugin_tb_n_insns(tb);
size_t i;
for (i = 0; i < n; i++) {
struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
qemu_plugin_register_vcpu_mem_cb(insn, vcpu_haddr,
QEMU_PLUGIN_CB_NO_REGS,
rw, NULL);
}
}
QEMU_PLUGIN_EXPORT
int qemu_plugin_install(qemu_plugin_id_t id, const qemu_info_t *info,
int argc, char **argv)
{
int i;
for (i = 0; i < argc; i++) {
char *opt = argv[i];
if (g_strcmp0(opt, "reads") == 0) {
sort_by = SORT_R;
} else if (g_strcmp0(opt, "writes") == 0) {
sort_by = SORT_W;
} else if (g_strcmp0(opt, "address") == 0) {
sort_by = SORT_A;
} else if (g_strcmp0(opt, "io") == 0) {
track_io = true;
} else if (g_str_has_prefix(opt, "pagesize=")) {
page_size = g_ascii_strtoull(opt + 9, NULL, 10);
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
plugin_init();
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}

362
contrib/plugins/howvec.c Normal file
View file

@ -0,0 +1,362 @@
/*
* Copyright (C) 2019, Alex Bennée <alex.bennee@linaro.org>
*
* How vectorised is this code?
*
* Attempt to measure the amount of vectorisation that has been done
* on some code by counting classes of instruction.
*
* License: GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include <inttypes.h>
#include <assert.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <glib.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
typedef enum {
COUNT_CLASS,
COUNT_INDIVIDUAL,
COUNT_NONE
} CountType;
static int limit = 50;
static bool do_inline;
static bool verbose;
static GMutex lock;
static GHashTable *insns;
typedef struct {
const char *class;
const char *opt;
uint32_t mask;
uint32_t pattern;
CountType what;
uint64_t count;
} InsnClassExecCount;
typedef struct {
char *insn;
uint32_t opcode;
uint64_t count;
InsnClassExecCount *class;
} InsnExecCount;
/*
* Matchers for classes of instructions, order is important.
*
* Your most precise match must be before looser matches. If no match
* is found in the table we can create an individual entry.
*
* 31..28 27..24 23..20 19..16 15..12 11..8 7..4 3..0
*/
static InsnClassExecCount aarch64_insn_classes[] = {
/* "Reserved"" */
{ " UDEF", "udef", 0xffff0000, 0x00000000, COUNT_NONE},
{ " SVE", "sve", 0x1e000000, 0x04000000, COUNT_CLASS},
{ "Reserved", "res", 0x1e000000, 0x00000000, COUNT_CLASS},
/* Data Processing Immediate */
{ " PCrel addr", "pcrel", 0x1f000000, 0x10000000, COUNT_CLASS},
{ " Add/Sub (imm,tags)","asit", 0x1f800000, 0x11800000, COUNT_CLASS},
{ " Add/Sub (imm)", "asi", 0x1f000000, 0x11000000, COUNT_CLASS},
{ " Logical (imm)", "logi", 0x1f800000, 0x12000000, COUNT_CLASS},
{ " Move Wide (imm)", "movwi", 0x1f800000, 0x12800000, COUNT_CLASS},
{ " Bitfield", "bitf", 0x1f800000, 0x13000000, COUNT_CLASS},
{ " Extract", "extr", 0x1f800000, 0x13800000, COUNT_CLASS},
{ "Data Proc Imm", "dpri", 0x1c000000, 0x10000000, COUNT_CLASS},
/* Branches */
{ " Cond Branch (imm)", "cndb", 0xfe000000, 0x54000000, COUNT_CLASS},
{ " Exception Gen", "excp", 0xff000000, 0xd4000000, COUNT_CLASS},
{ " NOP", "nop", 0xffffffff, 0xd503201f, COUNT_NONE},
{ " Hints", "hint", 0xfffff000, 0xd5032000, COUNT_CLASS},
{ " Barriers", "barr", 0xfffff000, 0xd5033000, COUNT_CLASS},
{ " PSTATE", "psta", 0xfff8f000, 0xd5004000, COUNT_CLASS},
{ " System Insn", "sins", 0xffd80000, 0xd5080000, COUNT_CLASS},
{ " System Reg", "sreg", 0xffd00000, 0xd5100000, COUNT_CLASS},
{ " Branch (reg)", "breg", 0xfe000000, 0xd6000000, COUNT_CLASS},
{ " Branch (imm)", "bimm", 0x7c000000, 0x14000000, COUNT_CLASS},
{ " Cmp & Branch", "cmpb", 0x7e000000, 0x34000000, COUNT_CLASS},
{ " Tst & Branch", "tstb", 0x7e000000, 0x36000000, COUNT_CLASS},
{ "Branches", "branch", 0x1c000000, 0x14000000, COUNT_CLASS},
/* Loads and Stores */
{ " AdvSimd ldstmult", "advlsm", 0xbfbf0000, 0x0c000000, COUNT_CLASS},
{ " AdvSimd ldstmult++","advlsmp",0xbfb00000, 0x0c800000, COUNT_CLASS},
{ " AdvSimd ldst", "advlss", 0xbf9f0000, 0x0d000000, COUNT_CLASS},
{ " AdvSimd ldst++", "advlssp",0xbf800000, 0x0d800000, COUNT_CLASS},
{ " ldst excl", "ldstx", 0x3f000000, 0x08000000, COUNT_CLASS},
{ " Prefetch", "prfm", 0xff000000, 0xd8000000, COUNT_CLASS},
{ " Load Reg (lit)", "ldlit", 0x1b000000, 0x18000000, COUNT_CLASS},
{ " ldst noalloc pair", "ldstnap",0x3b800000, 0x28000000, COUNT_CLASS},
{ " ldst pair", "ldstp", 0x38000000, 0x28000000, COUNT_CLASS},
{ " ldst reg", "ldstr", 0x3b200000, 0x38000000, COUNT_CLASS},
{ " Atomic ldst", "atomic", 0x3b200c00, 0x38200000, COUNT_CLASS},
{ " ldst reg (reg off)","ldstro", 0x3b200b00, 0x38200800, COUNT_CLASS},
{ " ldst reg (pac)", "ldstpa", 0x3b200200, 0x38200800, COUNT_CLASS},
{ " ldst reg (imm)", "ldsti", 0x3b000000, 0x39000000, COUNT_CLASS},
{ "Loads & Stores", "ldst", 0x0a000000, 0x08000000, COUNT_CLASS},
/* Data Processing Register */
{ "Data Proc Reg", "dprr", 0x0e000000, 0x0a000000, COUNT_CLASS},
/* Scalar FP */
{ "Scalar FP ", "fpsimd", 0x0e000000, 0x0e000000, COUNT_CLASS},
/* Unclassified */
{ "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_CLASS},
};
static InsnClassExecCount sparc32_insn_classes[] = {
{ "Call", "call", 0xc0000000, 0x40000000, COUNT_CLASS},
{ "Branch ICond", "bcc", 0xc1c00000, 0x00800000, COUNT_CLASS},
{ "Branch Fcond", "fbcc", 0xc1c00000, 0x01800000, COUNT_CLASS},
{ "SetHi", "sethi", 0xc1c00000, 0x01000000, COUNT_CLASS},
{ "FPU ALU", "fpu", 0xc1f00000, 0x81a00000, COUNT_CLASS},
{ "ALU", "alu", 0xc0000000, 0x80000000, COUNT_CLASS},
{ "Load/Store", "ldst", 0xc0000000, 0xc0000000, COUNT_CLASS},
/* Unclassified */
{ "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL},
};
static InsnClassExecCount sparc64_insn_classes[] = {
{ "SetHi & Branches", "op0", 0xc0000000, 0x00000000, COUNT_CLASS},
{ "Call", "op1", 0xc0000000, 0x40000000, COUNT_CLASS},
{ "Arith/Logical/Move", "op2", 0xc0000000, 0x80000000, COUNT_CLASS},
{ "Arith/Logical/Move", "op3", 0xc0000000, 0xc0000000, COUNT_CLASS},
/* Unclassified */
{ "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL},
};
/* Default matcher for currently unclassified architectures */
static InsnClassExecCount default_insn_classes[] = {
{ "Unclassified", "unclas", 0x00000000, 0x00000000, COUNT_INDIVIDUAL},
};
typedef struct {
const char *qemu_target;
InsnClassExecCount *table;
int table_sz;
} ClassSelector;
static ClassSelector class_tables[] =
{
{ "aarch64", aarch64_insn_classes, ARRAY_SIZE(aarch64_insn_classes) },
{ "sparc", sparc32_insn_classes, ARRAY_SIZE(sparc32_insn_classes) },
{ "sparc64", sparc64_insn_classes, ARRAY_SIZE(sparc64_insn_classes) },
{ NULL, default_insn_classes, ARRAY_SIZE(default_insn_classes) },
};
static InsnClassExecCount *class_table;
static int class_table_sz;
static gint cmp_exec_count(gconstpointer a, gconstpointer b)
{
InsnExecCount *ea = (InsnExecCount *) a;
InsnExecCount *eb = (InsnExecCount *) b;
return ea->count > eb->count ? -1 : 1;
}
static void free_record(gpointer data)
{
InsnExecCount *rec = (InsnExecCount *) data;
g_free(rec->insn);
g_free(rec);
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) report = g_string_new("Instruction Classes:\n");
int i;
GList *counts;
InsnClassExecCount *class = NULL;
for (i = 0; i < class_table_sz; i++) {
class = &class_table[i];
switch (class->what) {
case COUNT_CLASS:
if (class->count || verbose) {
g_string_append_printf(report, "Class: %-24s\t(%ld hits)\n",
class->class,
class->count);
}
break;
case COUNT_INDIVIDUAL:
g_string_append_printf(report, "Class: %-24s\tcounted individually\n",
class->class);
break;
case COUNT_NONE:
g_string_append_printf(report, "Class: %-24s\tnot counted\n",
class->class);
break;
default:
break;
}
}
counts = g_hash_table_get_values(insns);
if (counts && g_list_next(counts)) {
g_string_append_printf(report,"Individual Instructions:\n");
counts = g_list_sort(counts, cmp_exec_count);
for (i = 0; i < limit && g_list_next(counts);
i++, counts = g_list_next(counts)) {
InsnExecCount *rec = (InsnExecCount *) counts->data;
g_string_append_printf(report,
"Instr: %-24s\t(%ld hits)\t(op=%#08x/%s)\n",
rec->insn,
rec->count,
rec->opcode,
rec->class ?
rec->class->class : "un-categorised");
}
g_list_free(counts);
}
g_hash_table_destroy(insns);
qemu_plugin_outs(report->str);
}
static void plugin_init(void)
{
insns = g_hash_table_new_full(NULL, g_direct_equal, NULL, &free_record);
}
static void vcpu_insn_exec_before(unsigned int cpu_index, void *udata)
{
uint64_t *count = (uint64_t *) udata;
(*count)++;
}
static uint64_t * find_counter(struct qemu_plugin_insn *insn)
{
int i;
uint64_t *cnt = NULL;
uint32_t opcode;
InsnClassExecCount *class = NULL;
/*
* We only match the first 32 bits of the instruction which is
* fine for most RISCs but a bit limiting for CISC architectures.
* They would probably benefit from a more tailored plugin.
* However we can fall back to individual instruction counting.
*/
opcode = *((uint32_t *)qemu_plugin_insn_data(insn));
for (i = 0; !cnt && i < class_table_sz; i++) {
class = &class_table[i];
uint32_t masked_bits = opcode & class->mask;
if (masked_bits == class->pattern) {
break;
}
}
g_assert(class);
switch (class->what) {
case COUNT_NONE:
return NULL;
case COUNT_CLASS:
return &class->count;
case COUNT_INDIVIDUAL:
{
InsnExecCount *icount;
g_mutex_lock(&lock);
icount = (InsnExecCount *) g_hash_table_lookup(insns,
GUINT_TO_POINTER(opcode));
if (!icount) {
icount = g_new0(InsnExecCount, 1);
icount->opcode = opcode;
icount->insn = qemu_plugin_insn_disas(insn);
icount->class = class;
g_hash_table_insert(insns, GUINT_TO_POINTER(opcode),
(gpointer) icount);
}
g_mutex_unlock(&lock);
return &icount->count;
}
default:
g_assert_not_reached();
}
return NULL;
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n = qemu_plugin_tb_n_insns(tb);
size_t i;
for (i = 0; i < n; i++) {
uint64_t *cnt;
struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
cnt = find_counter(insn);
if (cnt) {
if (do_inline) {
qemu_plugin_register_vcpu_insn_exec_inline(
insn, QEMU_PLUGIN_INLINE_ADD_U64, cnt, 1);
} else {
qemu_plugin_register_vcpu_insn_exec_cb(
insn, vcpu_insn_exec_before, QEMU_PLUGIN_CB_NO_REGS, cnt);
}
}
}
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info,
int argc, char **argv)
{
int i;
/* Select a class table appropriate to the guest architecture */
for (i = 0; i < ARRAY_SIZE(class_tables); i++) {
ClassSelector *entry = &class_tables[i];
if (!entry->qemu_target ||
strcmp(entry->qemu_target, info->target_name) == 0) {
class_table = entry->table;
class_table_sz = entry->table_sz;
break;
}
}
for (i = 0; i < argc; i++) {
char *p = argv[i];
if (strcmp(p, "inline") == 0) {
do_inline = true;
} else if (strcmp(p, "verbose") == 0) {
verbose = true;
} else {
int j;
CountType type = COUNT_INDIVIDUAL;
if (*p == '!') {
type = COUNT_NONE;
p++;
}
for (j = 0; j < class_table_sz; j++) {
if (strcmp(p, class_table[j].opt) == 0) {
class_table[j].what = type;
break;
}
}
}
}
plugin_init();
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}

340
contrib/plugins/lockstep.c Normal file
View file

@ -0,0 +1,340 @@
/*
* Lockstep Execution Plugin
*
* Allows you to execute two QEMU instances in lockstep and report
* when their execution diverges. This is mainly useful for developers
* who want to see where a change to TCG code generation has
* introduced a subtle and hard to find bug.
*
* Caveats:
* - single-threaded linux-user apps only with non-deterministic syscalls
* - no MTTCG enabled system emulation (icount may help)
*
* While icount makes things more deterministic it doesn't mean a
* particular run may execute the exact same sequence of blocks. An
* asynchronous event (for example X11 graphics update) may cause a
* block to end early and a new partial block to start. This means
* serial only test cases are a better bet. -d nochain may also help.
*
* This code is not thread safe!
*
* Copyright (c) 2020 Linaro Ltd
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <glib.h>
#include <inttypes.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <stdio.h>
#include <errno.h>
#include <qemu-plugin.h>
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
/* saved so we can uninstall later */
static qemu_plugin_id_t our_id;
static unsigned long bb_count;
static unsigned long insn_count;
/* Information about a translated block */
typedef struct {
uint64_t pc;
uint64_t insns;
} BlockInfo;
/* Information about an execution state in the log */
typedef struct {
BlockInfo *block;
unsigned long insn_count;
unsigned long block_count;
} ExecInfo;
/* The execution state we compare */
typedef struct {
uint64_t pc;
unsigned long insn_count;
} ExecState;
typedef struct {
GSList *log_pos;
int distance;
} DivergeState;
/* list of translated block info */
static GSList *blocks;
/* execution log and points of divergence */
static GSList *log, *divergence_log;
static int socket_fd;
static char *path_to_unlink;
static bool verbose;
static void plugin_cleanup(qemu_plugin_id_t id)
{
/* Free our block data */
g_slist_free_full(blocks, &g_free);
g_slist_free_full(log, &g_free);
g_slist_free(divergence_log);
close(socket_fd);
if (path_to_unlink) {
unlink(path_to_unlink);
}
}
static void plugin_exit(qemu_plugin_id_t id, void *p)
{
g_autoptr(GString) out = g_string_new("No divergence :-)\n");
g_string_append_printf(out, "Executed %ld/%d blocks\n",
bb_count, g_slist_length(log));
g_string_append_printf(out, "Executed ~%ld instructions\n", insn_count);
qemu_plugin_outs(out->str);
plugin_cleanup(id);
}
static void report_divergance(ExecState *us, ExecState *them)
{
DivergeState divrec = { log, 0 };
g_autoptr(GString) out = g_string_new("");
bool diverged = false;
/*
* If we have diverged before did we get back on track or are we
* totally loosing it?
*/
if (divergence_log) {
DivergeState *last = (DivergeState *) divergence_log->data;
GSList *entry;
for (entry = log; g_slist_next(entry); entry = g_slist_next(entry)) {
if (entry == last->log_pos) {
break;
}
divrec.distance++;
}
/*
* If the last two records are so close it is likely we will
* not recover synchronisation with the other end.
*/
if (divrec.distance == 1 && last->distance == 1) {
diverged = true;
}
}
divergence_log = g_slist_prepend(divergence_log,
g_memdup(&divrec, sizeof(divrec)));
/* Output short log entry of going out of sync... */
if (verbose || divrec.distance == 1 || diverged) {
g_string_printf(out, "@ %#016lx vs %#016lx (%d/%d since last)\n",
us->pc, them->pc, g_slist_length(divergence_log),
divrec.distance);
qemu_plugin_outs(out->str);
}
if (diverged) {
int i;
GSList *entry;
g_string_printf(out, "Δ insn_count @ %#016lx (%ld) vs %#016lx (%ld)\n",
us->pc, us->insn_count, them->pc, them->insn_count);
for (entry = log, i = 0;
g_slist_next(entry) && i < 5;
entry = g_slist_next(entry), i++) {
ExecInfo *prev = (ExecInfo *) entry->data;
g_string_append_printf(out,
" previously @ %#016lx/%ld (%ld insns)\n",
prev->block->pc, prev->block->insns,
prev->insn_count);
}
qemu_plugin_outs(out->str);
qemu_plugin_outs("too much divergence... giving up.");
qemu_plugin_uninstall(our_id, plugin_cleanup);
}
}
static void vcpu_tb_exec(unsigned int cpu_index, void *udata)
{
BlockInfo *bi = (BlockInfo *) udata;
ExecState us, them;
ssize_t bytes;
ExecInfo *exec;
us.pc = bi->pc;
us.insn_count = insn_count;
/*
* Write our current position to the other end. If we fail the
* other end has probably died and we should shut down gracefully.
*/
bytes = write(socket_fd, &us, sizeof(ExecState));
if (bytes < sizeof(ExecState)) {
qemu_plugin_outs(bytes < 0 ?
"problem writing to socket" :
"wrote less than expected to socket");
qemu_plugin_uninstall(our_id, plugin_cleanup);
return;
}
/*
* Now read where our peer has reached. Again a failure probably
* indicates the other end died and we should close down cleanly.
*/
bytes = read(socket_fd, &them, sizeof(ExecState));
if (bytes < sizeof(ExecState)) {
qemu_plugin_outs(bytes < 0 ?
"problem reading from socket" :
"read less than expected");
qemu_plugin_uninstall(our_id, plugin_cleanup);
return;
}
/*
* Compare and report if we have diverged.
*/
if (us.pc != them.pc) {
report_divergance(&us, &them);
}
/*
* Assume this block will execute fully and record it
* in the execution log.
*/
insn_count += bi->insns;
bb_count++;
exec = g_new0(ExecInfo, 1);
exec->block = bi;
exec->insn_count = insn_count;
exec->block_count = bb_count;
log = g_slist_prepend(log, exec);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
BlockInfo *bi = g_new0(BlockInfo, 1);
bi->pc = qemu_plugin_tb_vaddr(tb);
bi->insns = qemu_plugin_tb_n_insns(tb);
/* save a reference so we can free later */
blocks = g_slist_prepend(blocks, bi);
qemu_plugin_register_vcpu_tb_exec_cb(tb, vcpu_tb_exec,
QEMU_PLUGIN_CB_NO_REGS, (void *)bi);
}
/*
* Instead of encoding master/slave status into what is essentially
* two peers we shall just take the simple approach of checking for
* the existence of the pipe and assuming if it's not there we are the
* first process.
*/
static bool setup_socket(const char *path)
{
struct sockaddr_un sockaddr;
int fd;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
perror("create socket");
return false;
}
sockaddr.sun_family = AF_UNIX;
g_strlcpy(sockaddr.sun_path, path, sizeof(sockaddr.sun_path) - 1);
if (bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) {
perror("bind socket");
close(fd);
return false;
}
/* remember to clean-up */
path_to_unlink = g_strdup(path);
if (listen(fd, 1) < 0) {
perror("listen socket");
close(fd);
return false;
}
socket_fd = accept(fd, NULL, NULL);
if (socket_fd < 0 && errno != EINTR) {
perror("accept socket");
return false;
}
qemu_plugin_outs("setup_socket::ready\n");
return true;
}
static bool connect_socket(const char *path)
{
int fd;
struct sockaddr_un sockaddr;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
perror("create socket");
return false;
}
sockaddr.sun_family = AF_UNIX;
g_strlcpy(sockaddr.sun_path, path, sizeof(sockaddr.sun_path) - 1);
if (connect(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr)) < 0) {
perror("failed to connect");
return false;
}
qemu_plugin_outs("connect_socket::ready\n");
socket_fd = fd;
return true;
}
static bool setup_unix_socket(const char *path)
{
if (g_file_test(path, G_FILE_TEST_EXISTS)) {
return connect_socket(path);
} else {
return setup_socket(path);
}
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info,
int argc, char **argv)
{
int i;
if (!argc || !argv[0]) {
qemu_plugin_outs("Need a socket path to talk to other instance.");
return -1;
}
for (i = 0; i < argc; i++) {
char *p = argv[i];
if (strcmp(p, "verbose") == 0) {
verbose = true;
} else if (!setup_unix_socket(argv[0])) {
qemu_plugin_outs("Failed to setup socket for communications.");
return -1;
}
}
our_id = id;
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
qemu_plugin_register_atexit_cb(id, plugin_exit, NULL);
return 0;
}