ptimer: Remove old ptimer_init_with_bh() API

Now all the users of ptimers have converted to the transaction-based
API, we can remove ptimer_init_with_bh() and all the code paths
that are used only by bottom-half based ptimers, and tidy up the
documentation comments to consider the transaction-based API the
only possibility.

The code changes result from:
 * s->bh no longer exists
 * s->callback is now always non-NULL

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20191025142411.17085-1-peter.maydell@linaro.org
This commit is contained in:
Peter Maydell 2019-11-11 13:44:16 +00:00
parent 654efcb511
commit af2a580f7e
2 changed files with 36 additions and 100 deletions

View file

@ -10,15 +10,24 @@
#include "qemu/timer.h"
/* The ptimer API implements a simple periodic countdown timer.
/*
* The ptimer API implements a simple periodic countdown timer.
* The countdown timer has a value (which can be read and written via
* ptimer_get_count() and ptimer_set_count()). When it is enabled
* using ptimer_run(), the value will count downwards at the frequency
* which has been configured using ptimer_set_period() or ptimer_set_freq().
* When it reaches zero it will trigger a QEMU bottom half handler, and
* When it reaches zero it will trigger a callback function, and
* can be set to either reload itself from a specified limit value
* and keep counting down, or to stop (as a one-shot timer).
*
* A transaction-based API is used for modifying ptimer state: all calls
* to functions which modify ptimer state must be between matched calls to
* ptimer_transaction_begin() and ptimer_transaction_commit().
* When ptimer_transaction_commit() is called it will evaluate the state
* of the timer after all the changes in the transaction, and call the
* callback if necessary. (See the ptimer_init() documentation for the full
* list of state-modifying functions and detailed semantics of the callback.)
*
* Forgetting to set the period/frequency (or setting it to zero) is a
* bug in the QEMU device and will cause warning messages to be printed
* to stderr when the guest attempts to enable the timer.
@ -72,7 +81,7 @@
* ptimer_set_count() or ptimer_set_limit() will not trigger the timer
* (though it will cause a reload). Only a counter decrement to "0"
* will cause a trigger. Not compatible with NO_IMMEDIATE_TRIGGER;
* ptimer_init_with_bh() will assert() that you don't set both.
* ptimer_init() will assert() that you don't set both.
*/
#define PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT (1 << 5)
@ -80,17 +89,6 @@
typedef struct ptimer_state ptimer_state;
typedef void (*ptimer_cb)(void *opaque);
/**
* ptimer_init_with_bh - Allocate and return a new ptimer
* @bh: QEMU bottom half which is run on timer expiry
* @policy: PTIMER_POLICY_* bits specifying behaviour
*
* The ptimer returned must be freed using ptimer_free().
* The ptimer takes ownership of @bh and will delete it
* when the ptimer is eventually freed.
*/
ptimer_state *ptimer_init_with_bh(QEMUBH *bh, uint8_t policy_mask);
/**
* ptimer_init - Allocate and return a new ptimer
* @callback: function to call on ptimer expiry
@ -127,8 +125,7 @@ ptimer_state *ptimer_init(ptimer_cb callback,
* ptimer_free - Free a ptimer
* @s: timer to free
*
* Free a ptimer created using ptimer_init_with_bh() (including
* deleting the bottom half which it is using).
* Free a ptimer created using ptimer_init().
*/
void ptimer_free(ptimer_state *s);
@ -164,7 +161,7 @@ void ptimer_transaction_commit(ptimer_state *s);
* may be more appropriate.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_set_period(ptimer_state *s, int64_t period);
@ -180,7 +177,7 @@ void ptimer_set_period(ptimer_state *s, int64_t period);
* precise to fractions of a nanosecond, avoiding rounding errors.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_set_freq(ptimer_state *s, uint32_t freq);
@ -210,7 +207,7 @@ uint64_t ptimer_get_limit(ptimer_state *s);
* reload the counter when their reload register is written to.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload);
@ -234,7 +231,7 @@ uint64_t ptimer_get_count(ptimer_state *s);
* point in the future.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_set_count(ptimer_state *s, uint64_t count);
@ -243,15 +240,15 @@ void ptimer_set_count(ptimer_state *s, uint64_t count);
* @s: ptimer
* @oneshot: non-zero if this timer should only count down once
*
* Start a ptimer counting down; when it reaches zero the bottom half
* passed to ptimer_init_with_bh() will be invoked.
* Start a ptimer counting down; when it reaches zero the callback function
* passed to ptimer_init() will be invoked.
* If the @oneshot argument is zero,
* the counter value will then be reloaded from the limit and it will
* start counting down again. If @oneshot is non-zero, then the counter
* will disable itself when it reaches zero.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_run(ptimer_state *s, int oneshot);
@ -266,7 +263,7 @@ void ptimer_run(ptimer_state *s, int oneshot);
* restarted.
*
* This function will assert if it is called outside a
* ptimer_transaction_begin/commit block, unless this is a bottom-half ptimer.
* ptimer_transaction_begin/commit block.
*/
void ptimer_stop(ptimer_state *s);