python: remove the old QMP package

Thank you for your service!

Signed-off-by: John Snow <jsnow@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Reviewed-by: Beraldo Leal <bleal@redhat.com>
Message-id: 20220330172812.3427355-6-jsnow@redhat.com
Signed-off-by: John Snow <jsnow@redhat.com>
This commit is contained in:
John Snow 2022-03-30 13:28:08 -04:00
parent b0654f4f98
commit adaca6e085
6 changed files with 4 additions and 410 deletions

View file

@ -8,11 +8,11 @@ to change at any time.
Usage Usage
----- -----
The ``qemu.qmp`` subpackage provides a library for communicating with The ``qemu.aqmp`` subpackage provides a library for communicating with
QMP servers. The ``qemu.machine`` subpackage offers rudimentary QMP servers. The ``qemu.machine`` subpackage offers rudimentary
facilities for launching and managing QEMU processes. Refer to each facilities for launching and managing QEMU processes. Refer to each
package's documentation package's documentation
(``>>> help(qemu.qmp)``, ``>>> help(qemu.machine)``) (``>>> help(qemu.aqmp)``, ``>>> help(qemu.machine)``)
for more information. for more information.
Contributing Contributing

View file

@ -3,7 +3,7 @@ QEMU Python Tooling
This directory houses Python tooling used by the QEMU project to build, This directory houses Python tooling used by the QEMU project to build,
configure, and test QEMU. It is organized by namespace (``qemu``), and configure, and test QEMU. It is organized by namespace (``qemu``), and
then by package (e.g. ``qemu/machine``, ``qemu/qmp``, etc). then by package (e.g. ``qemu/machine``, ``qemu/aqmp``, etc).
``setup.py`` is used by ``pip`` to install this tooling to the current ``setup.py`` is used by ``pip`` to install this tooling to the current
environment. ``setup.cfg`` provides the packaging configuration used by environment. ``setup.cfg`` provides the packaging configuration used by

View file

@ -1,9 +0,0 @@
qemu.qmp package
================
This package provides a library used for connecting to and communicating
with QMP servers. It is used extensively by iotests, vm tests,
avocado tests, and other utilities in the ./scripts directory. It is
not a fully-fledged SDK and is subject to change at any time.
See the documentation in ``__init__.py`` for more information.

View file

@ -1,396 +0,0 @@
"""
QEMU Monitor Protocol (QMP) development library & tooling.
This package provides a fairly low-level class for communicating to QMP
protocol servers, as implemented by QEMU, the QEMU Guest Agent, and the
QEMU Storage Daemon. This library is not intended for production use.
`QEMUMonitorProtocol` is the primary class of interest, and all errors
raised derive from `QMPError`.
"""
# Copyright (C) 2009, 2010 Red Hat Inc.
#
# Authors:
# Luiz Capitulino <lcapitulino@redhat.com>
#
# This work is licensed under the terms of the GNU GPL, version 2. See
# the COPYING file in the top-level directory.
import errno
import json
import logging
import socket
import struct
from types import TracebackType
from typing import (
Any,
Dict,
List,
Optional,
TextIO,
Tuple,
Type,
TypeVar,
Union,
cast,
)
#: QMPMessage is an entire QMP message of any kind.
QMPMessage = Dict[str, Any]
#: QMPReturnValue is the 'return' value of a command.
QMPReturnValue = object
#: QMPObject is any object in a QMP message.
QMPObject = Dict[str, object]
# QMPMessage can be outgoing commands or incoming events/returns.
# QMPReturnValue is usually a dict/json object, but due to QAPI's
# 'returns-whitelist', it can actually be anything.
#
# {'return': {}} is a QMPMessage,
# {} is the QMPReturnValue.
InternetAddrT = Tuple[str, int]
UnixAddrT = str
SocketAddrT = Union[InternetAddrT, UnixAddrT]
class QMPError(Exception):
"""
QMP base exception
"""
class QMPConnectError(QMPError):
"""
QMP connection exception
"""
class QMPCapabilitiesError(QMPError):
"""
QMP negotiate capabilities exception
"""
class QMPTimeoutError(QMPError):
"""
QMP timeout exception
"""
class QMPProtocolError(QMPError):
"""
QMP protocol error; unexpected response
"""
class QMPResponseError(QMPError):
"""
Represents erroneous QMP monitor reply
"""
def __init__(self, reply: QMPMessage):
try:
desc = reply['error']['desc']
except KeyError:
desc = reply
super().__init__(desc)
self.reply = reply
class QEMUMonitorProtocol:
"""
Provide an API to connect to QEMU via QEMU Monitor Protocol (QMP) and then
allow to handle commands and events.
"""
#: Logger object for debugging messages
logger = logging.getLogger('QMP')
def __init__(self, address: SocketAddrT,
server: bool = False,
nickname: Optional[str] = None):
"""
Create a QEMUMonitorProtocol class.
@param address: QEMU address, can be either a unix socket path (string)
or a tuple in the form ( address, port ) for a TCP
connection
@param server: server mode listens on the socket (bool)
@raise OSError on socket connection errors
@note No connection is established, this is done by the connect() or
accept() methods
"""
self.__events: List[QMPMessage] = []
self.__address = address
self.__sock = self.__get_sock()
self.__sockfile: Optional[TextIO] = None
self._nickname = nickname
if self._nickname:
self.logger = logging.getLogger('QMP').getChild(self._nickname)
if server:
self.__sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.__sock.bind(self.__address)
self.__sock.listen(1)
def __get_sock(self) -> socket.socket:
if isinstance(self.__address, tuple):
family = socket.AF_INET
else:
family = socket.AF_UNIX
return socket.socket(family, socket.SOCK_STREAM)
def __negotiate_capabilities(self) -> QMPMessage:
greeting = self.__json_read()
if greeting is None or "QMP" not in greeting:
raise QMPConnectError
# Greeting seems ok, negotiate capabilities
resp = self.cmd('qmp_capabilities')
if resp and "return" in resp:
return greeting
raise QMPCapabilitiesError
def __json_read(self, only_event: bool = False) -> Optional[QMPMessage]:
assert self.__sockfile is not None
while True:
data = self.__sockfile.readline()
if not data:
return None
# By definition, any JSON received from QMP is a QMPMessage,
# and we are asserting only at static analysis time that it
# has a particular shape.
resp: QMPMessage = json.loads(data)
if 'event' in resp:
self.logger.debug("<<< %s", resp)
self.__events.append(resp)
if not only_event:
continue
return resp
def __get_events(self, wait: Union[bool, float] = False) -> None:
"""
Check for new events in the stream and cache them in __events.
@param wait (bool): block until an event is available.
@param wait (float): If wait is a float, treat it as a timeout value.
@raise QMPTimeoutError: If a timeout float is provided and the timeout
period elapses.
@raise QMPConnectError: If wait is True but no events could be
retrieved or if some other error occurred.
"""
# Current timeout and blocking status
current_timeout = self.__sock.gettimeout()
# Check for new events regardless and pull them into the cache:
self.__sock.settimeout(0) # i.e. setblocking(False)
try:
self.__json_read()
except OSError as err:
# EAGAIN: No data available; not critical
if err.errno != errno.EAGAIN:
raise
finally:
self.__sock.settimeout(current_timeout)
# Wait for new events, if needed.
# if wait is 0.0, this means "no wait" and is also implicitly false.
if not self.__events and wait:
if isinstance(wait, float):
self.__sock.settimeout(wait)
try:
ret = self.__json_read(only_event=True)
except socket.timeout as err:
raise QMPTimeoutError("Timeout waiting for event") from err
except Exception as err:
msg = "Error while reading from socket"
raise QMPConnectError(msg) from err
finally:
self.__sock.settimeout(current_timeout)
if ret is None:
raise QMPConnectError("Error while reading from socket")
T = TypeVar('T')
def __enter__(self: T) -> T:
# Implement context manager enter function.
return self
def __exit__(self,
# pylint: disable=duplicate-code
# see https://github.com/PyCQA/pylint/issues/3619
exc_type: Optional[Type[BaseException]],
exc_val: Optional[BaseException],
exc_tb: Optional[TracebackType]) -> None:
# Implement context manager exit function.
self.close()
def connect(self, negotiate: bool = True) -> Optional[QMPMessage]:
"""
Connect to the QMP Monitor and perform capabilities negotiation.
@return QMP greeting dict, or None if negotiate is false
@raise OSError on socket connection errors
@raise QMPConnectError if the greeting is not received
@raise QMPCapabilitiesError if fails to negotiate capabilities
"""
self.__sock.connect(self.__address)
self.__sockfile = self.__sock.makefile(mode='r')
if negotiate:
return self.__negotiate_capabilities()
return None
def accept(self, timeout: Optional[float] = 15.0) -> QMPMessage:
"""
Await connection from QMP Monitor and perform capabilities negotiation.
@param timeout: timeout in seconds (nonnegative float number, or
None). The value passed will set the behavior of the
underneath QMP socket as described in [1].
Default value is set to 15.0.
@return QMP greeting dict
@raise OSError on socket connection errors
@raise QMPConnectError if the greeting is not received
@raise QMPCapabilitiesError if fails to negotiate capabilities
[1]
https://docs.python.org/3/library/socket.html#socket.socket.settimeout
"""
self.__sock.settimeout(timeout)
self.__sock, _ = self.__sock.accept()
self.__sockfile = self.__sock.makefile(mode='r')
return self.__negotiate_capabilities()
def cmd_obj(self, qmp_cmd: QMPMessage) -> QMPMessage:
"""
Send a QMP command to the QMP Monitor.
@param qmp_cmd: QMP command to be sent as a Python dict
@return QMP response as a Python dict
"""
self.logger.debug(">>> %s", qmp_cmd)
self.__sock.sendall(json.dumps(qmp_cmd).encode('utf-8'))
resp = self.__json_read()
if resp is None:
raise QMPConnectError("Unexpected empty reply from server")
self.logger.debug("<<< %s", resp)
return resp
def cmd(self, name: str,
args: Optional[Dict[str, object]] = None,
cmd_id: Optional[object] = None) -> QMPMessage:
"""
Build a QMP command and send it to the QMP Monitor.
@param name: command name (string)
@param args: command arguments (dict)
@param cmd_id: command id (dict, list, string or int)
"""
qmp_cmd: QMPMessage = {'execute': name}
if args:
qmp_cmd['arguments'] = args
if cmd_id:
qmp_cmd['id'] = cmd_id
return self.cmd_obj(qmp_cmd)
def command(self, cmd: str, **kwds: object) -> QMPReturnValue:
"""
Build and send a QMP command to the monitor, report errors if any
"""
ret = self.cmd(cmd, kwds)
if 'error' in ret:
raise QMPResponseError(ret)
if 'return' not in ret:
raise QMPProtocolError(
"'return' key not found in QMP response '{}'".format(str(ret))
)
return cast(QMPReturnValue, ret['return'])
def pull_event(self,
wait: Union[bool, float] = False) -> Optional[QMPMessage]:
"""
Pulls a single event.
@param wait (bool): block until an event is available.
@param wait (float): If wait is a float, treat it as a timeout value.
@raise QMPTimeoutError: If a timeout float is provided and the timeout
period elapses.
@raise QMPConnectError: If wait is True but no events could be
retrieved or if some other error occurred.
@return The first available QMP event, or None.
"""
self.__get_events(wait)
if self.__events:
return self.__events.pop(0)
return None
def get_events(self, wait: bool = False) -> List[QMPMessage]:
"""
Get a list of available QMP events and clear all pending events.
@param wait (bool): block until an event is available.
@param wait (float): If wait is a float, treat it as a timeout value.
@raise QMPTimeoutError: If a timeout float is provided and the timeout
period elapses.
@raise QMPConnectError: If wait is True but no events could be
retrieved or if some other error occurred.
@return The list of available QMP events.
"""
self.__get_events(wait)
events = self.__events
self.__events = []
return events
def clear_events(self) -> None:
"""
Clear current list of pending events.
"""
self.__events = []
def close(self) -> None:
"""
Close the socket and socket file.
"""
if self.__sock:
self.__sock.close()
if self.__sockfile:
self.__sockfile.close()
def settimeout(self, timeout: Optional[float]) -> None:
"""
Set the socket timeout.
@param timeout (float): timeout in seconds (non-zero), or None.
@note This is a wrap around socket.settimeout
@raise ValueError: if timeout was set to 0.
"""
if timeout == 0:
msg = "timeout cannot be 0; this engages non-blocking mode."
msg += " Use 'None' instead to disable timeouts."
raise ValueError(msg)
self.__sock.settimeout(timeout)
def send_fd_scm(self, fd: int) -> None:
"""
Send a file descriptor to the remote via SCM_RIGHTS.
"""
if self.__sock.family != socket.AF_UNIX:
raise RuntimeError("Can't use SCM_RIGHTS on non-AF_UNIX socket.")
self.__sock.sendmsg(
[b' '],
[(socket.SOL_SOCKET, socket.SCM_RIGHTS, struct.pack('@i', fd))]
)

View file

@ -24,10 +24,9 @@ classifiers =
[options] [options]
python_requires = >= 3.6 python_requires = >= 3.6
packages = packages =
qemu.qmp qemu.aqmp
qemu.machine qemu.machine
qemu.utils qemu.utils
qemu.aqmp
[options.package_data] [options.package_data]
* = py.typed * = py.typed