accel: Rename 'cpu_state' -> 'cs'

Most of the codebase uses 'CPUState *cpu' or 'CPUState *cs'.
While 'cpu_state' is kind of explicit, it makes the code
harder to review. Simply rename as 'cs'.

Acked-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Tested-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <20230624174121.11508-16-philmd@linaro.org>
This commit is contained in:
Philippe Mathieu-Daudé 2023-06-21 13:14:06 +02:00
parent 441f244911
commit a715924428
2 changed files with 195 additions and 195 deletions

View file

@ -32,14 +32,14 @@
#include <Hypervisor/hv.h> #include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h> #include <Hypervisor/hv_vmx.h>
void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg, void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg,
SegmentCache *qseg, bool is_tr) SegmentCache *qseg, bool is_tr)
{ {
vmx_seg->sel = qseg->selector; vmx_seg->sel = qseg->selector;
vmx_seg->base = qseg->base; vmx_seg->base = qseg->base;
vmx_seg->limit = qseg->limit; vmx_seg->limit = qseg->limit;
if (!qseg->selector && !x86_is_real(cpu) && !is_tr) { if (!qseg->selector && !x86_is_real(cs) && !is_tr) {
/* the TR register is usable after processor reset despite /* the TR register is usable after processor reset despite
* having a null selector */ * having a null selector */
vmx_seg->ar = 1 << 16; vmx_seg->ar = 1 << 16;
@ -70,279 +70,279 @@ void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg)
(((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT); (((vmx_seg->ar >> 15) & 1) << DESC_G_SHIFT);
} }
void hvf_put_xsave(CPUState *cpu_state) void hvf_put_xsave(CPUState *cs)
{ {
void *xsave = X86_CPU(cpu_state)->env.xsave_buf; void *xsave = X86_CPU(cs)->env.xsave_buf;
uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
x86_cpu_xsave_all_areas(X86_CPU(cpu_state), xsave, xsave_len); x86_cpu_xsave_all_areas(X86_CPU(cs), xsave, xsave_len);
if (hv_vcpu_write_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) { if (hv_vcpu_write_fpstate(cs->hvf->fd, xsave, xsave_len)) {
abort(); abort();
} }
} }
static void hvf_put_segments(CPUState *cpu_state) static void hvf_put_segments(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
struct vmx_segment seg; struct vmx_segment seg;
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit); wvmcs(cs->hvf->fd, VMCS_GUEST_IDTR_LIMIT, env->idt.limit);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base); wvmcs(cs->hvf->fd, VMCS_GUEST_IDTR_BASE, env->idt.base);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit); wvmcs(cs->hvf->fd, VMCS_GUEST_GDTR_LIMIT, env->gdt.limit);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base); wvmcs(cs->hvf->fd, VMCS_GUEST_GDTR_BASE, env->gdt.base);
/* wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */ /* wvmcs(cs->hvf->fd, VMCS_GUEST_CR2, env->cr[2]); */
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3, env->cr[3]); wvmcs(cs->hvf->fd, VMCS_GUEST_CR3, env->cr[3]);
vmx_update_tpr(cpu_state); vmx_update_tpr(cs);
wvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer); wvmcs(cs->hvf->fd, VMCS_GUEST_IA32_EFER, env->efer);
macvm_set_cr4(cpu_state->hvf->fd, env->cr[4]); macvm_set_cr4(cs->hvf->fd, env->cr[4]);
macvm_set_cr0(cpu_state->hvf->fd, env->cr[0]); macvm_set_cr0(cs->hvf->fd, env->cr[0]);
hvf_set_segment(cpu_state, &seg, &env->segs[R_CS], false); hvf_set_segment(cs, &seg, &env->segs[R_CS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_CS); vmx_write_segment_descriptor(cs, &seg, R_CS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_DS], false); hvf_set_segment(cs, &seg, &env->segs[R_DS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_DS); vmx_write_segment_descriptor(cs, &seg, R_DS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_ES], false); hvf_set_segment(cs, &seg, &env->segs[R_ES], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_ES); vmx_write_segment_descriptor(cs, &seg, R_ES);
hvf_set_segment(cpu_state, &seg, &env->segs[R_SS], false); hvf_set_segment(cs, &seg, &env->segs[R_SS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_SS); vmx_write_segment_descriptor(cs, &seg, R_SS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_FS], false); hvf_set_segment(cs, &seg, &env->segs[R_FS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_FS); vmx_write_segment_descriptor(cs, &seg, R_FS);
hvf_set_segment(cpu_state, &seg, &env->segs[R_GS], false); hvf_set_segment(cs, &seg, &env->segs[R_GS], false);
vmx_write_segment_descriptor(cpu_state, &seg, R_GS); vmx_write_segment_descriptor(cs, &seg, R_GS);
hvf_set_segment(cpu_state, &seg, &env->tr, true); hvf_set_segment(cs, &seg, &env->tr, true);
vmx_write_segment_descriptor(cpu_state, &seg, R_TR); vmx_write_segment_descriptor(cs, &seg, R_TR);
hvf_set_segment(cpu_state, &seg, &env->ldt, false); hvf_set_segment(cs, &seg, &env->ldt, false);
vmx_write_segment_descriptor(cpu_state, &seg, R_LDTR); vmx_write_segment_descriptor(cs, &seg, R_LDTR);
} }
void hvf_put_msrs(CPUState *cpu_state) void hvf_put_msrs(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, hv_vcpu_write_msr(cs->hvf->fd, MSR_IA32_SYSENTER_CS,
env->sysenter_cs); env->sysenter_cs);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, hv_vcpu_write_msr(cs->hvf->fd, MSR_IA32_SYSENTER_ESP,
env->sysenter_esp); env->sysenter_esp);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, hv_vcpu_write_msr(cs->hvf->fd, MSR_IA32_SYSENTER_EIP,
env->sysenter_eip); env->sysenter_eip);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_STAR, env->star); hv_vcpu_write_msr(cs->hvf->fd, MSR_STAR, env->star);
#ifdef TARGET_X86_64 #ifdef TARGET_X86_64
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_CSTAR, env->cstar); hv_vcpu_write_msr(cs->hvf->fd, MSR_CSTAR, env->cstar);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase); hv_vcpu_write_msr(cs->hvf->fd, MSR_KERNELGSBASE, env->kernelgsbase);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FMASK, env->fmask); hv_vcpu_write_msr(cs->hvf->fd, MSR_FMASK, env->fmask);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_LSTAR, env->lstar); hv_vcpu_write_msr(cs->hvf->fd, MSR_LSTAR, env->lstar);
#endif #endif
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_GSBASE, env->segs[R_GS].base); hv_vcpu_write_msr(cs->hvf->fd, MSR_GSBASE, env->segs[R_GS].base);
hv_vcpu_write_msr(cpu_state->hvf->fd, MSR_FSBASE, env->segs[R_FS].base); hv_vcpu_write_msr(cs->hvf->fd, MSR_FSBASE, env->segs[R_FS].base);
} }
void hvf_get_xsave(CPUState *cpu_state) void hvf_get_xsave(CPUState *cs)
{ {
void *xsave = X86_CPU(cpu_state)->env.xsave_buf; void *xsave = X86_CPU(cs)->env.xsave_buf;
uint32_t xsave_len = X86_CPU(cpu_state)->env.xsave_buf_len; uint32_t xsave_len = X86_CPU(cs)->env.xsave_buf_len;
if (hv_vcpu_read_fpstate(cpu_state->hvf->fd, xsave, xsave_len)) { if (hv_vcpu_read_fpstate(cs->hvf->fd, xsave, xsave_len)) {
abort(); abort();
} }
x86_cpu_xrstor_all_areas(X86_CPU(cpu_state), xsave, xsave_len); x86_cpu_xrstor_all_areas(X86_CPU(cs), xsave, xsave_len);
} }
static void hvf_get_segments(CPUState *cpu_state) static void hvf_get_segments(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
struct vmx_segment seg; struct vmx_segment seg;
env->interrupt_injected = -1; env->interrupt_injected = -1;
vmx_read_segment_descriptor(cpu_state, &seg, R_CS); vmx_read_segment_descriptor(cs, &seg, R_CS);
hvf_get_segment(&env->segs[R_CS], &seg); hvf_get_segment(&env->segs[R_CS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_DS); vmx_read_segment_descriptor(cs, &seg, R_DS);
hvf_get_segment(&env->segs[R_DS], &seg); hvf_get_segment(&env->segs[R_DS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_ES); vmx_read_segment_descriptor(cs, &seg, R_ES);
hvf_get_segment(&env->segs[R_ES], &seg); hvf_get_segment(&env->segs[R_ES], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_FS); vmx_read_segment_descriptor(cs, &seg, R_FS);
hvf_get_segment(&env->segs[R_FS], &seg); hvf_get_segment(&env->segs[R_FS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_GS); vmx_read_segment_descriptor(cs, &seg, R_GS);
hvf_get_segment(&env->segs[R_GS], &seg); hvf_get_segment(&env->segs[R_GS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_SS); vmx_read_segment_descriptor(cs, &seg, R_SS);
hvf_get_segment(&env->segs[R_SS], &seg); hvf_get_segment(&env->segs[R_SS], &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_TR); vmx_read_segment_descriptor(cs, &seg, R_TR);
hvf_get_segment(&env->tr, &seg); hvf_get_segment(&env->tr, &seg);
vmx_read_segment_descriptor(cpu_state, &seg, R_LDTR); vmx_read_segment_descriptor(cs, &seg, R_LDTR);
hvf_get_segment(&env->ldt, &seg); hvf_get_segment(&env->ldt, &seg);
env->idt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_LIMIT); env->idt.limit = rvmcs(cs->hvf->fd, VMCS_GUEST_IDTR_LIMIT);
env->idt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IDTR_BASE); env->idt.base = rvmcs(cs->hvf->fd, VMCS_GUEST_IDTR_BASE);
env->gdt.limit = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_LIMIT); env->gdt.limit = rvmcs(cs->hvf->fd, VMCS_GUEST_GDTR_LIMIT);
env->gdt.base = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_GDTR_BASE); env->gdt.base = rvmcs(cs->hvf->fd, VMCS_GUEST_GDTR_BASE);
env->cr[0] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR0); env->cr[0] = rvmcs(cs->hvf->fd, VMCS_GUEST_CR0);
env->cr[2] = 0; env->cr[2] = 0;
env->cr[3] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR3); env->cr[3] = rvmcs(cs->hvf->fd, VMCS_GUEST_CR3);
env->cr[4] = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_CR4); env->cr[4] = rvmcs(cs->hvf->fd, VMCS_GUEST_CR4);
env->efer = rvmcs(cpu_state->hvf->fd, VMCS_GUEST_IA32_EFER); env->efer = rvmcs(cs->hvf->fd, VMCS_GUEST_IA32_EFER);
} }
void hvf_get_msrs(CPUState *cpu_state) void hvf_get_msrs(CPUState *cs)
{ {
CPUX86State *env = &X86_CPU(cpu_state)->env; CPUX86State *env = &X86_CPU(cs)->env;
uint64_t tmp; uint64_t tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp); hv_vcpu_read_msr(cs->hvf->fd, MSR_IA32_SYSENTER_CS, &tmp);
env->sysenter_cs = tmp; env->sysenter_cs = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp); hv_vcpu_read_msr(cs->hvf->fd, MSR_IA32_SYSENTER_ESP, &tmp);
env->sysenter_esp = tmp; env->sysenter_esp = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp); hv_vcpu_read_msr(cs->hvf->fd, MSR_IA32_SYSENTER_EIP, &tmp);
env->sysenter_eip = tmp; env->sysenter_eip = tmp;
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_STAR, &env->star); hv_vcpu_read_msr(cs->hvf->fd, MSR_STAR, &env->star);
#ifdef TARGET_X86_64 #ifdef TARGET_X86_64
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_CSTAR, &env->cstar); hv_vcpu_read_msr(cs->hvf->fd, MSR_CSTAR, &env->cstar);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase); hv_vcpu_read_msr(cs->hvf->fd, MSR_KERNELGSBASE, &env->kernelgsbase);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_FMASK, &env->fmask); hv_vcpu_read_msr(cs->hvf->fd, MSR_FMASK, &env->fmask);
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_LSTAR, &env->lstar); hv_vcpu_read_msr(cs->hvf->fd, MSR_LSTAR, &env->lstar);
#endif #endif
hv_vcpu_read_msr(cpu_state->hvf->fd, MSR_IA32_APICBASE, &tmp); hv_vcpu_read_msr(cs->hvf->fd, MSR_IA32_APICBASE, &tmp);
env->tsc = rdtscp() + rvmcs(cpu_state->hvf->fd, VMCS_TSC_OFFSET); env->tsc = rdtscp() + rvmcs(cs->hvf->fd, VMCS_TSC_OFFSET);
} }
int hvf_put_registers(CPUState *cpu_state) int hvf_put_registers(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
wreg(cpu_state->hvf->fd, HV_X86_RAX, env->regs[R_EAX]); wreg(cs->hvf->fd, HV_X86_RAX, env->regs[R_EAX]);
wreg(cpu_state->hvf->fd, HV_X86_RBX, env->regs[R_EBX]); wreg(cs->hvf->fd, HV_X86_RBX, env->regs[R_EBX]);
wreg(cpu_state->hvf->fd, HV_X86_RCX, env->regs[R_ECX]); wreg(cs->hvf->fd, HV_X86_RCX, env->regs[R_ECX]);
wreg(cpu_state->hvf->fd, HV_X86_RDX, env->regs[R_EDX]); wreg(cs->hvf->fd, HV_X86_RDX, env->regs[R_EDX]);
wreg(cpu_state->hvf->fd, HV_X86_RBP, env->regs[R_EBP]); wreg(cs->hvf->fd, HV_X86_RBP, env->regs[R_EBP]);
wreg(cpu_state->hvf->fd, HV_X86_RSP, env->regs[R_ESP]); wreg(cs->hvf->fd, HV_X86_RSP, env->regs[R_ESP]);
wreg(cpu_state->hvf->fd, HV_X86_RSI, env->regs[R_ESI]); wreg(cs->hvf->fd, HV_X86_RSI, env->regs[R_ESI]);
wreg(cpu_state->hvf->fd, HV_X86_RDI, env->regs[R_EDI]); wreg(cs->hvf->fd, HV_X86_RDI, env->regs[R_EDI]);
wreg(cpu_state->hvf->fd, HV_X86_R8, env->regs[8]); wreg(cs->hvf->fd, HV_X86_R8, env->regs[8]);
wreg(cpu_state->hvf->fd, HV_X86_R9, env->regs[9]); wreg(cs->hvf->fd, HV_X86_R9, env->regs[9]);
wreg(cpu_state->hvf->fd, HV_X86_R10, env->regs[10]); wreg(cs->hvf->fd, HV_X86_R10, env->regs[10]);
wreg(cpu_state->hvf->fd, HV_X86_R11, env->regs[11]); wreg(cs->hvf->fd, HV_X86_R11, env->regs[11]);
wreg(cpu_state->hvf->fd, HV_X86_R12, env->regs[12]); wreg(cs->hvf->fd, HV_X86_R12, env->regs[12]);
wreg(cpu_state->hvf->fd, HV_X86_R13, env->regs[13]); wreg(cs->hvf->fd, HV_X86_R13, env->regs[13]);
wreg(cpu_state->hvf->fd, HV_X86_R14, env->regs[14]); wreg(cs->hvf->fd, HV_X86_R14, env->regs[14]);
wreg(cpu_state->hvf->fd, HV_X86_R15, env->regs[15]); wreg(cs->hvf->fd, HV_X86_R15, env->regs[15]);
wreg(cpu_state->hvf->fd, HV_X86_RFLAGS, env->eflags); wreg(cs->hvf->fd, HV_X86_RFLAGS, env->eflags);
wreg(cpu_state->hvf->fd, HV_X86_RIP, env->eip); wreg(cs->hvf->fd, HV_X86_RIP, env->eip);
wreg(cpu_state->hvf->fd, HV_X86_XCR0, env->xcr0); wreg(cs->hvf->fd, HV_X86_XCR0, env->xcr0);
hvf_put_xsave(cpu_state); hvf_put_xsave(cs);
hvf_put_segments(cpu_state); hvf_put_segments(cs);
hvf_put_msrs(cpu_state); hvf_put_msrs(cs);
wreg(cpu_state->hvf->fd, HV_X86_DR0, env->dr[0]); wreg(cs->hvf->fd, HV_X86_DR0, env->dr[0]);
wreg(cpu_state->hvf->fd, HV_X86_DR1, env->dr[1]); wreg(cs->hvf->fd, HV_X86_DR1, env->dr[1]);
wreg(cpu_state->hvf->fd, HV_X86_DR2, env->dr[2]); wreg(cs->hvf->fd, HV_X86_DR2, env->dr[2]);
wreg(cpu_state->hvf->fd, HV_X86_DR3, env->dr[3]); wreg(cs->hvf->fd, HV_X86_DR3, env->dr[3]);
wreg(cpu_state->hvf->fd, HV_X86_DR4, env->dr[4]); wreg(cs->hvf->fd, HV_X86_DR4, env->dr[4]);
wreg(cpu_state->hvf->fd, HV_X86_DR5, env->dr[5]); wreg(cs->hvf->fd, HV_X86_DR5, env->dr[5]);
wreg(cpu_state->hvf->fd, HV_X86_DR6, env->dr[6]); wreg(cs->hvf->fd, HV_X86_DR6, env->dr[6]);
wreg(cpu_state->hvf->fd, HV_X86_DR7, env->dr[7]); wreg(cs->hvf->fd, HV_X86_DR7, env->dr[7]);
return 0; return 0;
} }
int hvf_get_registers(CPUState *cpu_state) int hvf_get_registers(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
env->regs[R_EAX] = rreg(cpu_state->hvf->fd, HV_X86_RAX); env->regs[R_EAX] = rreg(cs->hvf->fd, HV_X86_RAX);
env->regs[R_EBX] = rreg(cpu_state->hvf->fd, HV_X86_RBX); env->regs[R_EBX] = rreg(cs->hvf->fd, HV_X86_RBX);
env->regs[R_ECX] = rreg(cpu_state->hvf->fd, HV_X86_RCX); env->regs[R_ECX] = rreg(cs->hvf->fd, HV_X86_RCX);
env->regs[R_EDX] = rreg(cpu_state->hvf->fd, HV_X86_RDX); env->regs[R_EDX] = rreg(cs->hvf->fd, HV_X86_RDX);
env->regs[R_EBP] = rreg(cpu_state->hvf->fd, HV_X86_RBP); env->regs[R_EBP] = rreg(cs->hvf->fd, HV_X86_RBP);
env->regs[R_ESP] = rreg(cpu_state->hvf->fd, HV_X86_RSP); env->regs[R_ESP] = rreg(cs->hvf->fd, HV_X86_RSP);
env->regs[R_ESI] = rreg(cpu_state->hvf->fd, HV_X86_RSI); env->regs[R_ESI] = rreg(cs->hvf->fd, HV_X86_RSI);
env->regs[R_EDI] = rreg(cpu_state->hvf->fd, HV_X86_RDI); env->regs[R_EDI] = rreg(cs->hvf->fd, HV_X86_RDI);
env->regs[8] = rreg(cpu_state->hvf->fd, HV_X86_R8); env->regs[8] = rreg(cs->hvf->fd, HV_X86_R8);
env->regs[9] = rreg(cpu_state->hvf->fd, HV_X86_R9); env->regs[9] = rreg(cs->hvf->fd, HV_X86_R9);
env->regs[10] = rreg(cpu_state->hvf->fd, HV_X86_R10); env->regs[10] = rreg(cs->hvf->fd, HV_X86_R10);
env->regs[11] = rreg(cpu_state->hvf->fd, HV_X86_R11); env->regs[11] = rreg(cs->hvf->fd, HV_X86_R11);
env->regs[12] = rreg(cpu_state->hvf->fd, HV_X86_R12); env->regs[12] = rreg(cs->hvf->fd, HV_X86_R12);
env->regs[13] = rreg(cpu_state->hvf->fd, HV_X86_R13); env->regs[13] = rreg(cs->hvf->fd, HV_X86_R13);
env->regs[14] = rreg(cpu_state->hvf->fd, HV_X86_R14); env->regs[14] = rreg(cs->hvf->fd, HV_X86_R14);
env->regs[15] = rreg(cpu_state->hvf->fd, HV_X86_R15); env->regs[15] = rreg(cs->hvf->fd, HV_X86_R15);
env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cs->hvf->fd, HV_X86_RFLAGS);
env->eip = rreg(cpu_state->hvf->fd, HV_X86_RIP); env->eip = rreg(cs->hvf->fd, HV_X86_RIP);
hvf_get_xsave(cpu_state); hvf_get_xsave(cs);
env->xcr0 = rreg(cpu_state->hvf->fd, HV_X86_XCR0); env->xcr0 = rreg(cs->hvf->fd, HV_X86_XCR0);
hvf_get_segments(cpu_state); hvf_get_segments(cs);
hvf_get_msrs(cpu_state); hvf_get_msrs(cs);
env->dr[0] = rreg(cpu_state->hvf->fd, HV_X86_DR0); env->dr[0] = rreg(cs->hvf->fd, HV_X86_DR0);
env->dr[1] = rreg(cpu_state->hvf->fd, HV_X86_DR1); env->dr[1] = rreg(cs->hvf->fd, HV_X86_DR1);
env->dr[2] = rreg(cpu_state->hvf->fd, HV_X86_DR2); env->dr[2] = rreg(cs->hvf->fd, HV_X86_DR2);
env->dr[3] = rreg(cpu_state->hvf->fd, HV_X86_DR3); env->dr[3] = rreg(cs->hvf->fd, HV_X86_DR3);
env->dr[4] = rreg(cpu_state->hvf->fd, HV_X86_DR4); env->dr[4] = rreg(cs->hvf->fd, HV_X86_DR4);
env->dr[5] = rreg(cpu_state->hvf->fd, HV_X86_DR5); env->dr[5] = rreg(cs->hvf->fd, HV_X86_DR5);
env->dr[6] = rreg(cpu_state->hvf->fd, HV_X86_DR6); env->dr[6] = rreg(cs->hvf->fd, HV_X86_DR6);
env->dr[7] = rreg(cpu_state->hvf->fd, HV_X86_DR7); env->dr[7] = rreg(cs->hvf->fd, HV_X86_DR7);
x86_update_hflags(env); x86_update_hflags(env);
return 0; return 0;
} }
static void vmx_set_int_window_exiting(CPUState *cpu) static void vmx_set_int_window_exiting(CPUState *cs)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cs->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val | wvmcs(cs->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val |
VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
} }
void vmx_clear_int_window_exiting(CPUState *cpu) void vmx_clear_int_window_exiting(CPUState *cs)
{ {
uint64_t val; uint64_t val;
val = rvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS); val = rvmcs(cs->hvf->fd, VMCS_PRI_PROC_BASED_CTLS);
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val & wvmcs(cs->hvf->fd, VMCS_PRI_PROC_BASED_CTLS, val &
~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING); ~VMCS_PRI_PROC_BASED_CTLS_INT_WINDOW_EXITING);
} }
bool hvf_inject_interrupts(CPUState *cpu_state) bool hvf_inject_interrupts(CPUState *cs)
{ {
X86CPU *x86cpu = X86_CPU(cpu_state); X86CPU *x86cpu = X86_CPU(cs);
CPUX86State *env = &x86cpu->env; CPUX86State *env = &x86cpu->env;
uint8_t vector; uint8_t vector;
@ -372,89 +372,89 @@ bool hvf_inject_interrupts(CPUState *cpu_state)
uint64_t info = 0; uint64_t info = 0;
if (have_event) { if (have_event) {
info = vector | intr_type | VMCS_INTR_VALID; info = vector | intr_type | VMCS_INTR_VALID;
uint64_t reason = rvmcs(cpu_state->hvf->fd, VMCS_EXIT_REASON); uint64_t reason = rvmcs(cs->hvf->fd, VMCS_EXIT_REASON);
if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) { if (env->nmi_injected && reason != EXIT_REASON_TASK_SWITCH) {
vmx_clear_nmi_blocking(cpu_state); vmx_clear_nmi_blocking(cs);
} }
if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) { if (!(env->hflags2 & HF2_NMI_MASK) || intr_type != VMCS_INTR_T_NMI) {
info &= ~(1 << 12); /* clear undefined bit */ info &= ~(1 << 12); /* clear undefined bit */
if (intr_type == VMCS_INTR_T_SWINTR || if (intr_type == VMCS_INTR_T_SWINTR ||
intr_type == VMCS_INTR_T_SWEXCEPTION) { intr_type == VMCS_INTR_T_SWEXCEPTION) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len); wvmcs(cs->hvf->fd, VMCS_ENTRY_INST_LENGTH, env->ins_len);
} }
if (env->has_error_code) { if (env->has_error_code) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR, wvmcs(cs->hvf->fd, VMCS_ENTRY_EXCEPTION_ERROR,
env->error_code); env->error_code);
/* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */ /* Indicate that VMCS_ENTRY_EXCEPTION_ERROR is valid */
info |= VMCS_INTR_DEL_ERRCODE; info |= VMCS_INTR_DEL_ERRCODE;
} }
/*printf("reinject %lx err %d\n", info, err);*/ /*printf("reinject %lx err %d\n", info, err);*/
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info); wvmcs(cs->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
}; };
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_NMI) { if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) { if (!(env->hflags2 & HF2_NMI_MASK) && !(info & VMCS_INTR_VALID)) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_NMI; cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI; info = VMCS_INTR_VALID | VMCS_INTR_T_NMI | EXCP02_NMI;
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, info); wvmcs(cs->hvf->fd, VMCS_ENTRY_INTR_INFO, info);
} else { } else {
vmx_set_nmi_window_exiting(cpu_state); vmx_set_nmi_window_exiting(cs);
} }
} }
if (!(env->hflags & HF_INHIBIT_IRQ_MASK) && if (!(env->hflags & HF_INHIBIT_IRQ_MASK) &&
(cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && (cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) { (env->eflags & IF_MASK) && !(info & VMCS_INTR_VALID)) {
int line = cpu_get_pic_interrupt(&x86cpu->env); int line = cpu_get_pic_interrupt(&x86cpu->env);
cpu_state->interrupt_request &= ~CPU_INTERRUPT_HARD; cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
if (line >= 0) { if (line >= 0) {
wvmcs(cpu_state->hvf->fd, VMCS_ENTRY_INTR_INFO, line | wvmcs(cs->hvf->fd, VMCS_ENTRY_INTR_INFO, line |
VMCS_INTR_VALID | VMCS_INTR_T_HWINTR); VMCS_INTR_VALID | VMCS_INTR_T_HWINTR);
} }
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_HARD) { if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
vmx_set_int_window_exiting(cpu_state); vmx_set_int_window_exiting(cs);
} }
return (cpu_state->interrupt_request return (cs->interrupt_request
& (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)); & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR));
} }
int hvf_process_events(CPUState *cpu_state) int hvf_process_events(CPUState *cs)
{ {
X86CPU *cpu = X86_CPU(cpu_state); X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env; CPUX86State *env = &cpu->env;
if (!cpu_state->vcpu_dirty) { if (!cs->vcpu_dirty) {
/* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */ /* light weight sync for CPU_INTERRUPT_HARD and IF_MASK */
env->eflags = rreg(cpu_state->hvf->fd, HV_X86_RFLAGS); env->eflags = rreg(cs->hvf->fd, HV_X86_RFLAGS);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_INIT) { if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
do_cpu_init(cpu); do_cpu_init(cpu);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_POLL) { if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_POLL; cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
apic_poll_irq(cpu->apic_state); apic_poll_irq(cpu->apic_state);
} }
if (((cpu_state->interrupt_request & CPU_INTERRUPT_HARD) && if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) || (env->eflags & IF_MASK)) ||
(cpu_state->interrupt_request & CPU_INTERRUPT_NMI)) { (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
cpu_state->halted = 0; cs->halted = 0;
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_SIPI) { if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
do_cpu_sipi(cpu); do_cpu_sipi(cpu);
} }
if (cpu_state->interrupt_request & CPU_INTERRUPT_TPR) { if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
cpu_state->interrupt_request &= ~CPU_INTERRUPT_TPR; cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
cpu_synchronize_state(cpu_state); cpu_synchronize_state(cs);
apic_handle_tpr_access_report(cpu->apic_state, env->eip, apic_handle_tpr_access_report(cpu->apic_state, env->eip,
env->tpr_access_type); env->tpr_access_type);
} }
return cpu_state->halted; return cs->halted;
} }

View file

@ -20,15 +20,15 @@
#include "cpu.h" #include "cpu.h"
#include "x86_descr.h" #include "x86_descr.h"
int hvf_process_events(CPUState *); int hvf_process_events(CPUState *cs);
bool hvf_inject_interrupts(CPUState *); bool hvf_inject_interrupts(CPUState *cs);
void hvf_set_segment(struct CPUState *cpu, struct vmx_segment *vmx_seg, void hvf_set_segment(CPUState *cs, struct vmx_segment *vmx_seg,
SegmentCache *qseg, bool is_tr); SegmentCache *qseg, bool is_tr);
void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg); void hvf_get_segment(SegmentCache *qseg, struct vmx_segment *vmx_seg);
void hvf_put_xsave(CPUState *cpu_state); void hvf_put_xsave(CPUState *cs);
void hvf_put_msrs(CPUState *cpu_state); void hvf_put_msrs(CPUState *cs);
void hvf_get_xsave(CPUState *cpu_state); void hvf_get_xsave(CPUState *cs);
void hvf_get_msrs(CPUState *cpu_state); void hvf_get_msrs(CPUState *cs);
void vmx_clear_int_window_exiting(CPUState *cpu); void vmx_clear_int_window_exiting(CPUState *cs);
void vmx_update_tpr(CPUState *cpu); void vmx_update_tpr(CPUState *cs);
#endif #endif