vfio queue:

* Small downtime optimisation for VFIO migration
 * P2P support for VFIO migration
 * Introduction of a save_prepare() handler to fail VFIO migration
 * Fix on DMA logging ranges calculation for OVMF enabling dynamic window
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEEoPZlSPBIlev+awtgUaNDx8/77KEFAmT+uZQACgkQUaNDx8/7
 7KGFSw//UIqSet6MUxZZh/t7yfNFUTnxx6iPdChC3BphBaDDh99FCQrw5mPZ8ImF
 4rz0cIwSaHXraugEsC42TDaGjEmcAmYD0Crz+pSpLU21nKtYyWtZy6+9kyYslMNF
 bUq0UwD0RGTP+ZZi6GBy1hM30y/JbNAGeC6uX8kyJRuK5Korfzoa/X5h+B2XfouW
 78G1mARHq5eOkGy91+rAJowdjqtkpKrzkfCJu83330Bb035qAT/PEzGs5LxdfTla
 ORNqWHy3W+d8ZBicBQ5vwrk6D5JIZWma7vdXJRhs1wGO615cuyt1L8nWLFr8klW5
 MJl+wM7DZ6UlSODq7r839GtSuWAnQc2j7JKc+iqZuBBk1v9fGXv2tZmtuTGkG2hN
 nYXSQfuq1igu1nGVdxJv6WorDxsK9wzLNO2ckrOcKTT28RFl8oCDNSPPTKpwmfb5
 i5RrGreeXXqRXIw0VHhq5EqpROLjAFwE9tkJndO8765Ag154plxssaKTUWo5wm7/
 kjQVuRuhs5nnMXfL9ixLZkwD1aFn5fWAIaR0psH5vGD0fnB1Pba+Ux9ZzHvxp5D8
 Kg3H6dKlht6VXdQ/qb0Up1LXCGEa70QM6Th2iO924ydZkkmqrSj+CFwGHvBsINa4
 89fYd77nbRbdwWurj3JIznJYVipau2PmfbjZ/jTed4RxjBQ+fPA=
 =44e0
 -----END PGP SIGNATURE-----

Merge tag 'pull-vfio-20230911' of https://github.com/legoater/qemu into staging

vfio queue:

* Small downtime optimisation for VFIO migration
* P2P support for VFIO migration
* Introduction of a save_prepare() handler to fail VFIO migration
* Fix on DMA logging ranges calculation for OVMF enabling dynamic window

# -----BEGIN PGP SIGNATURE-----
#
# iQIzBAABCAAdFiEEoPZlSPBIlev+awtgUaNDx8/77KEFAmT+uZQACgkQUaNDx8/7
# 7KGFSw//UIqSet6MUxZZh/t7yfNFUTnxx6iPdChC3BphBaDDh99FCQrw5mPZ8ImF
# 4rz0cIwSaHXraugEsC42TDaGjEmcAmYD0Crz+pSpLU21nKtYyWtZy6+9kyYslMNF
# bUq0UwD0RGTP+ZZi6GBy1hM30y/JbNAGeC6uX8kyJRuK5Korfzoa/X5h+B2XfouW
# 78G1mARHq5eOkGy91+rAJowdjqtkpKrzkfCJu83330Bb035qAT/PEzGs5LxdfTla
# ORNqWHy3W+d8ZBicBQ5vwrk6D5JIZWma7vdXJRhs1wGO615cuyt1L8nWLFr8klW5
# MJl+wM7DZ6UlSODq7r839GtSuWAnQc2j7JKc+iqZuBBk1v9fGXv2tZmtuTGkG2hN
# nYXSQfuq1igu1nGVdxJv6WorDxsK9wzLNO2ckrOcKTT28RFl8oCDNSPPTKpwmfb5
# i5RrGreeXXqRXIw0VHhq5EqpROLjAFwE9tkJndO8765Ag154plxssaKTUWo5wm7/
# kjQVuRuhs5nnMXfL9ixLZkwD1aFn5fWAIaR0psH5vGD0fnB1Pba+Ux9ZzHvxp5D8
# Kg3H6dKlht6VXdQ/qb0Up1LXCGEa70QM6Th2iO924ydZkkmqrSj+CFwGHvBsINa4
# 89fYd77nbRbdwWurj3JIznJYVipau2PmfbjZ/jTed4RxjBQ+fPA=
# =44e0
# -----END PGP SIGNATURE-----
# gpg: Signature made Mon 11 Sep 2023 02:54:12 EDT
# gpg:                using RSA key A0F66548F04895EBFE6B0B6051A343C7CFFBECA1
# gpg: Good signature from "Cédric Le Goater <clg@redhat.com>" [unknown]
# gpg:                 aka "Cédric Le Goater <clg@kaod.org>" [unknown]
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg:          There is no indication that the signature belongs to the owner.
# Primary key fingerprint: A0F6 6548 F048 95EB FE6B  0B60 51A3 43C7 CFFB ECA1

* tag 'pull-vfio-20230911' of https://github.com/legoater/qemu:
  vfio/common: Separate vfio-pci ranges
  vfio/migration: Block VFIO migration with background snapshot
  vfio/migration: Block VFIO migration with postcopy migration
  migration: Add .save_prepare() handler to struct SaveVMHandlers
  migration: Move more initializations to migrate_init()
  vfio/migration: Fail adding device with enable-migration=on and existing blocker
  migration: Add migration prefix to functions in target.c
  vfio/migration: Allow migration of multiple P2P supporting devices
  vfio/migration: Add P2P support for VFIO migration
  vfio/migration: Refactor PRE_COPY and RUNNING state checks
  qdev: Add qdev_add_vm_change_state_handler_full()
  sysemu: Add prepare callback to struct VMChangeStateEntry
  vfio/migration: Move from STOP_COPY to STOP in vfio_save_cleanup()

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2023-09-11 09:13:08 -04:00
commit 9ef497755a
14 changed files with 377 additions and 99 deletions

View file

@ -23,9 +23,21 @@ and recommends that the initial bytes are sent and loaded in the destination
before stopping the source VM. Enabling this migration capability will
guarantee that and thus, can potentially reduce downtime even further.
Note that currently VFIO migration is supported only for a single device. This
is due to VFIO migration's lack of P2P support. However, P2P support is planned
to be added later on.
To support migration of multiple devices that might do P2P transactions between
themselves, VFIO migration uAPI defines an intermediate P2P quiescent state.
While in the P2P quiescent state, P2P DMA transactions cannot be initiated by
the device, but the device can respond to incoming ones. Additionally, all
outstanding P2P transactions are guaranteed to have been completed by the time
the device enters this state.
All the devices that support P2P migration are first transitioned to the P2P
quiescent state and only then are they stopped or started. This makes migration
safe P2P-wise, since starting and stopping the devices is not done atomically
for all the devices together.
Thus, multiple VFIO devices migration is allowed only if all the devices
support P2P migration. Single VFIO device migration is allowed regardless of
P2P migration support.
A detailed description of the UAPI for VFIO device migration can be found in
the comment for the ``vfio_device_mig_state`` structure in the header file
@ -132,54 +144,63 @@ will be blocked.
Flow of state changes during Live migration
===========================================
Below is the flow of state change during live migration.
Below is the state change flow during live migration for a VFIO device that
supports both precopy and P2P migration. The flow for devices that don't
support it is similar, except that the relevant states for precopy and P2P are
skipped.
The values in the parentheses represent the VM state, the migration state, and
the VFIO device state, respectively.
The text in the square brackets represents the flow if the VFIO device supports
pre-copy.
Live migration save path
------------------------
::
QEMU normal running state
(RUNNING, _NONE, _RUNNING)
|
QEMU normal running state
(RUNNING, _NONE, _RUNNING)
|
migrate_init spawns migration_thread
Migration thread then calls each device's .save_setup()
(RUNNING, _SETUP, _RUNNING [_PRE_COPY])
|
(RUNNING, _ACTIVE, _RUNNING [_PRE_COPY])
If device is active, get pending_bytes by .state_pending_{estimate,exact}()
If total pending_bytes >= threshold_size, call .save_live_iterate()
[Data of VFIO device for pre-copy phase is copied]
Iterate till total pending bytes converge and are less than threshold
|
On migration completion, vCPU stops and calls .save_live_complete_precopy for
each active device. The VFIO device is then transitioned into _STOP_COPY state
(FINISH_MIGRATE, _DEVICE, _STOP_COPY)
|
For the VFIO device, iterate in .save_live_complete_precopy until
pending data is 0
(FINISH_MIGRATE, _DEVICE, _STOP)
|
(FINISH_MIGRATE, _COMPLETED, _STOP)
Migraton thread schedules cleanup bottom half and exits
Migration thread then calls each device's .save_setup()
(RUNNING, _SETUP, _PRE_COPY)
|
(RUNNING, _ACTIVE, _PRE_COPY)
If device is active, get pending_bytes by .state_pending_{estimate,exact}()
If total pending_bytes >= threshold_size, call .save_live_iterate()
Data of VFIO device for pre-copy phase is copied
Iterate till total pending bytes converge and are less than threshold
|
On migration completion, the vCPUs and the VFIO device are stopped
The VFIO device is first put in P2P quiescent state
(FINISH_MIGRATE, _ACTIVE, _PRE_COPY_P2P)
|
Then the VFIO device is put in _STOP_COPY state
(FINISH_MIGRATE, _ACTIVE, _STOP_COPY)
.save_live_complete_precopy() is called for each active device
For the VFIO device, iterate in .save_live_complete_precopy() until
pending data is 0
|
(POSTMIGRATE, _COMPLETED, _STOP_COPY)
Migraton thread schedules cleanup bottom half and exits
|
.save_cleanup() is called
(POSTMIGRATE, _COMPLETED, _STOP)
Live migration resume path
--------------------------
::
Incoming migration calls .load_setup for each device
(RESTORE_VM, _ACTIVE, _STOP)
|
For each device, .load_state is called for that device section data
(RESTORE_VM, _ACTIVE, _RESUMING)
|
At the end, .load_cleanup is called for each device and vCPUs are started
(RUNNING, _NONE, _RUNNING)
Incoming migration calls .load_setup() for each device
(RESTORE_VM, _ACTIVE, _STOP)
|
For each device, .load_state() is called for that device section data
(RESTORE_VM, _ACTIVE, _RESUMING)
|
At the end, .load_cleanup() is called for each device and vCPUs are started
The VFIO device is first put in P2P quiescent state
(RUNNING, _ACTIVE, _RUNNING_P2P)
|
(RUNNING, _NONE, _RUNNING)
Postcopy
========