linux-headers: Update to v6.2-rc8

Update to commit ceaa837f96ad ("Linux 6.2-rc8").

Signed-off-by: Avihai Horon <avihaih@nvidia.com>
Link: https://lore.kernel.org/r/20230216143630.25610-2-avihaih@nvidia.com
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
This commit is contained in:
Avihai Horon 2023-02-16 16:36:20 +02:00 committed by Alex Williamson
parent 6dffbe36af
commit 93d7620c25
13 changed files with 231 additions and 40 deletions

View file

@ -819,12 +819,20 @@ struct vfio_device_feature {
* VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P means that RUNNING_P2P
* is supported in addition to the STOP_COPY states.
*
* VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_PRE_COPY means that
* PRE_COPY is supported in addition to the STOP_COPY states.
*
* VFIO_MIGRATION_STOP_COPY | VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY
* means that RUNNING_P2P, PRE_COPY and PRE_COPY_P2P are supported
* in addition to the STOP_COPY states.
*
* Other combinations of flags have behavior to be defined in the future.
*/
struct vfio_device_feature_migration {
__aligned_u64 flags;
#define VFIO_MIGRATION_STOP_COPY (1 << 0)
#define VFIO_MIGRATION_P2P (1 << 1)
#define VFIO_MIGRATION_PRE_COPY (1 << 2)
};
#define VFIO_DEVICE_FEATURE_MIGRATION 1
@ -875,8 +883,13 @@ struct vfio_device_feature_mig_state {
* RESUMING - The device is stopped and is loading a new internal state
* ERROR - The device has failed and must be reset
*
* And 1 optional state to support VFIO_MIGRATION_P2P:
* And optional states to support VFIO_MIGRATION_P2P:
* RUNNING_P2P - RUNNING, except the device cannot do peer to peer DMA
* And VFIO_MIGRATION_PRE_COPY:
* PRE_COPY - The device is running normally but tracking internal state
* changes
* And VFIO_MIGRATION_P2P | VFIO_MIGRATION_PRE_COPY:
* PRE_COPY_P2P - PRE_COPY, except the device cannot do peer to peer DMA
*
* The FSM takes actions on the arcs between FSM states. The driver implements
* the following behavior for the FSM arcs:
@ -908,20 +921,48 @@ struct vfio_device_feature_mig_state {
*
* To abort a RESUMING session the device must be reset.
*
* PRE_COPY -> RUNNING
* RUNNING_P2P -> RUNNING
* While in RUNNING the device is fully operational, the device may generate
* interrupts, DMA, respond to MMIO, all vfio device regions are functional,
* and the device may advance its internal state.
*
* The PRE_COPY arc will terminate a data transfer session.
*
* PRE_COPY_P2P -> RUNNING_P2P
* RUNNING -> RUNNING_P2P
* STOP -> RUNNING_P2P
* While in RUNNING_P2P the device is partially running in the P2P quiescent
* state defined below.
*
* STOP -> STOP_COPY
* This arc begin the process of saving the device state and will return a
* new data_fd.
* The PRE_COPY_P2P arc will terminate a data transfer session.
*
* RUNNING -> PRE_COPY
* RUNNING_P2P -> PRE_COPY_P2P
* STOP -> STOP_COPY
* PRE_COPY, PRE_COPY_P2P and STOP_COPY form the "saving group" of states
* which share a data transfer session. Moving between these states alters
* what is streamed in session, but does not terminate or otherwise affect
* the associated fd.
*
* These arcs begin the process of saving the device state and will return a
* new data_fd. The migration driver may perform actions such as enabling
* dirty logging of device state when entering PRE_COPY or PER_COPY_P2P.
*
* Each arc does not change the device operation, the device remains
* RUNNING, P2P quiesced or in STOP. The STOP_COPY state is described below
* in PRE_COPY_P2P -> STOP_COPY.
*
* PRE_COPY -> PRE_COPY_P2P
* Entering PRE_COPY_P2P continues all the behaviors of PRE_COPY above.
* However, while in the PRE_COPY_P2P state, the device is partially running
* in the P2P quiescent state defined below, like RUNNING_P2P.
*
* PRE_COPY_P2P -> PRE_COPY
* This arc allows returning the device to a full RUNNING behavior while
* continuing all the behaviors of PRE_COPY.
*
* PRE_COPY_P2P -> STOP_COPY
* While in the STOP_COPY state the device has the same behavior as STOP
* with the addition that the data transfers session continues to stream the
* migration state. End of stream on the FD indicates the entire device
@ -939,6 +980,13 @@ struct vfio_device_feature_mig_state {
* device state for this arc if required to prepare the device to receive the
* migration data.
*
* STOP_COPY -> PRE_COPY
* STOP_COPY -> PRE_COPY_P2P
* These arcs are not permitted and return error if requested. Future
* revisions of this API may define behaviors for these arcs, in this case
* support will be discoverable by a new flag in
* VFIO_DEVICE_FEATURE_MIGRATION.
*
* any -> ERROR
* ERROR cannot be specified as a device state, however any transition request
* can be failed with an errno return and may then move the device_state into
@ -950,7 +998,7 @@ struct vfio_device_feature_mig_state {
* The optional peer to peer (P2P) quiescent state is intended to be a quiescent
* state for the device for the purposes of managing multiple devices within a
* user context where peer-to-peer DMA between devices may be active. The
* RUNNING_P2P states must prevent the device from initiating
* RUNNING_P2P and PRE_COPY_P2P states must prevent the device from initiating
* any new P2P DMA transactions. If the device can identify P2P transactions
* then it can stop only P2P DMA, otherwise it must stop all DMA. The migration
* driver must complete any such outstanding operations prior to completing the
@ -963,6 +1011,8 @@ struct vfio_device_feature_mig_state {
* above FSM arcs. As there are multiple paths through the FSM arcs the path
* should be selected based on the following rules:
* - Select the shortest path.
* - The path cannot have saving group states as interior arcs, only
* starting/end states.
* Refer to vfio_mig_get_next_state() for the result of the algorithm.
*
* The automatic transit through the FSM arcs that make up the combination
@ -976,6 +1026,9 @@ struct vfio_device_feature_mig_state {
* support them. The user can discover if these states are supported by using
* VFIO_DEVICE_FEATURE_MIGRATION. By using combination transitions the user can
* avoid knowing about these optional states if the kernel driver supports them.
*
* Arcs touching PRE_COPY and PRE_COPY_P2P are removed if support for PRE_COPY
* is not present.
*/
enum vfio_device_mig_state {
VFIO_DEVICE_STATE_ERROR = 0,
@ -984,8 +1037,70 @@ enum vfio_device_mig_state {
VFIO_DEVICE_STATE_STOP_COPY = 3,
VFIO_DEVICE_STATE_RESUMING = 4,
VFIO_DEVICE_STATE_RUNNING_P2P = 5,
VFIO_DEVICE_STATE_PRE_COPY = 6,
VFIO_DEVICE_STATE_PRE_COPY_P2P = 7,
};
/**
* VFIO_MIG_GET_PRECOPY_INFO - _IO(VFIO_TYPE, VFIO_BASE + 21)
*
* This ioctl is used on the migration data FD in the precopy phase of the
* migration data transfer. It returns an estimate of the current data sizes
* remaining to be transferred. It allows the user to judge when it is
* appropriate to leave PRE_COPY for STOP_COPY.
*
* This ioctl is valid only in PRE_COPY states and kernel driver should
* return -EINVAL from any other migration state.
*
* The vfio_precopy_info data structure returned by this ioctl provides
* estimates of data available from the device during the PRE_COPY states.
* This estimate is split into two categories, initial_bytes and
* dirty_bytes.
*
* The initial_bytes field indicates the amount of initial precopy
* data available from the device. This field should have a non-zero initial
* value and decrease as migration data is read from the device.
* It is recommended to leave PRE_COPY for STOP_COPY only after this field
* reaches zero. Leaving PRE_COPY earlier might make things slower.
*
* The dirty_bytes field tracks device state changes relative to data
* previously retrieved. This field starts at zero and may increase as
* the internal device state is modified or decrease as that modified
* state is read from the device.
*
* Userspace may use the combination of these fields to estimate the
* potential data size available during the PRE_COPY phases, as well as
* trends relative to the rate the device is dirtying its internal
* state, but these fields are not required to have any bearing relative
* to the data size available during the STOP_COPY phase.
*
* Drivers have a lot of flexibility in when and what they transfer during the
* PRE_COPY phase, and how they report this from VFIO_MIG_GET_PRECOPY_INFO.
*
* During pre-copy the migration data FD has a temporary "end of stream" that is
* reached when both initial_bytes and dirty_byte are zero. For instance, this
* may indicate that the device is idle and not currently dirtying any internal
* state. When read() is done on this temporary end of stream the kernel driver
* should return ENOMSG from read(). Userspace can wait for more data (which may
* never come) by using poll.
*
* Once in STOP_COPY the migration data FD has a permanent end of stream
* signaled in the usual way by read() always returning 0 and poll always
* returning readable. ENOMSG may not be returned in STOP_COPY.
* Support for this ioctl is mandatory if a driver claims to support
* VFIO_MIGRATION_PRE_COPY.
*
* Return: 0 on success, -1 and errno set on failure.
*/
struct vfio_precopy_info {
__u32 argsz;
__u32 flags;
__aligned_u64 initial_bytes;
__aligned_u64 dirty_bytes;
};
#define VFIO_MIG_GET_PRECOPY_INFO _IO(VFIO_TYPE, VFIO_BASE + 21)
/*
* Upon VFIO_DEVICE_FEATURE_SET, allow the device to be moved into a low power
* state with the platform-based power management. Device use of lower power
@ -1128,6 +1243,19 @@ struct vfio_device_feature_dma_logging_report {
#define VFIO_DEVICE_FEATURE_DMA_LOGGING_REPORT 8
/*
* Upon VFIO_DEVICE_FEATURE_GET read back the estimated data length that will
* be required to complete stop copy.
*
* Note: Can be called on each device state.
*/
struct vfio_device_feature_mig_data_size {
__aligned_u64 stop_copy_length;
};
#define VFIO_DEVICE_FEATURE_MIG_DATA_SIZE 9
/* -------- API for Type1 VFIO IOMMU -------- */
/**