softfloat: Move sqrt_float to softfloat-parts.c.inc

Rename to parts$N_sqrt.
Reimplement float128_sqrt with FloatParts128.

Reimplement with the inverse sqrt newton-raphson algorithm from musl.
This is significantly faster than even the berkeley sqrt n-r algorithm,
because it does not use division instructions, only multiplication.

Ordinarily, changing algorithms at the same time as migrating code is
a bad idea, but this is the only way I found that didn't break one of
the routines at the same time.

Tested-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2020-11-18 12:14:37 -08:00
parent 39626b0ce8
commit 9261b245f0
2 changed files with 261 additions and 152 deletions

View file

@ -597,6 +597,212 @@ static FloatPartsN *partsN(div)(FloatPartsN *a, FloatPartsN *b,
return a;
}
/*
* Square Root
*
* The base algorithm is lifted from
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtf.c
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrt.c
* https://git.musl-libc.org/cgit/musl/tree/src/math/sqrtl.c
* and is thus MIT licenced.
*/
static void partsN(sqrt)(FloatPartsN *a, float_status *status,
const FloatFmt *fmt)
{
const uint32_t three32 = 3u << 30;
const uint64_t three64 = 3ull << 62;
uint32_t d32, m32, r32, s32, u32; /* 32-bit computation */
uint64_t d64, m64, r64, s64, u64; /* 64-bit computation */
uint64_t dh, dl, rh, rl, sh, sl, uh, ul; /* 128-bit computation */
uint64_t d0h, d0l, d1h, d1l, d2h, d2l;
uint64_t discard;
bool exp_odd;
size_t index;
if (unlikely(a->cls != float_class_normal)) {
switch (a->cls) {
case float_class_snan:
case float_class_qnan:
parts_return_nan(a, status);
return;
case float_class_zero:
return;
case float_class_inf:
if (unlikely(a->sign)) {
goto d_nan;
}
return;
default:
g_assert_not_reached();
}
}
if (unlikely(a->sign)) {
goto d_nan;
}
/*
* Argument reduction.
* x = 4^e frac; with integer e, and frac in [1, 4)
* m = frac fixed point at bit 62, since we're in base 4.
* If base-2 exponent is odd, exchange that for multiply by 2,
* which results in no shift.
*/
exp_odd = a->exp & 1;
index = extract64(a->frac_hi, 57, 6) | (!exp_odd << 6);
if (!exp_odd) {
frac_shr(a, 1);
}
/*
* Approximate r ~= 1/sqrt(m) and s ~= sqrt(m) when m in [1, 4).
*
* Initial estimate:
* 7-bit lookup table (1-bit exponent and 6-bit significand).
*
* The relative error (e = r0*sqrt(m)-1) of a linear estimate
* (r0 = a*m + b) is |e| < 0.085955 ~ 0x1.6p-4 at best;
* a table lookup is faster and needs one less iteration.
* The 7-bit table gives |e| < 0x1.fdp-9.
*
* A Newton-Raphson iteration for r is
* s = m*r
* d = s*r
* u = 3 - d
* r = r*u/2
*
* Fixed point representations:
* m, s, d, u, three are all 2.30; r is 0.32
*/
m64 = a->frac_hi;
m32 = m64 >> 32;
r32 = rsqrt_tab[index] << 16;
/* |r*sqrt(m) - 1| < 0x1.FDp-9 */
s32 = ((uint64_t)m32 * r32) >> 32;
d32 = ((uint64_t)s32 * r32) >> 32;
u32 = three32 - d32;
if (N == 64) {
/* float64 or smaller */
r32 = ((uint64_t)r32 * u32) >> 31;
/* |r*sqrt(m) - 1| < 0x1.7Bp-16 */
s32 = ((uint64_t)m32 * r32) >> 32;
d32 = ((uint64_t)s32 * r32) >> 32;
u32 = three32 - d32;
if (fmt->frac_size <= 23) {
/* float32 or smaller */
s32 = ((uint64_t)s32 * u32) >> 32; /* 3.29 */
s32 = (s32 - 1) >> 6; /* 9.23 */
/* s < sqrt(m) < s + 0x1.08p-23 */
/* compute nearest rounded result to 2.23 bits */
uint32_t d0 = (m32 << 16) - s32 * s32;
uint32_t d1 = s32 - d0;
uint32_t d2 = d1 + s32 + 1;
s32 += d1 >> 31;
a->frac_hi = (uint64_t)s32 << (64 - 25);
/* increment or decrement for inexact */
if (d2 != 0) {
a->frac_hi += ((int32_t)(d1 ^ d2) < 0 ? -1 : 1);
}
goto done;
}
/* float64 */
r64 = (uint64_t)r32 * u32 * 2;
/* |r*sqrt(m) - 1| < 0x1.37-p29; convert to 64-bit arithmetic */
mul64To128(m64, r64, &s64, &discard);
mul64To128(s64, r64, &d64, &discard);
u64 = three64 - d64;
mul64To128(s64, u64, &s64, &discard); /* 3.61 */
s64 = (s64 - 2) >> 9; /* 12.52 */
/* Compute nearest rounded result */
uint64_t d0 = (m64 << 42) - s64 * s64;
uint64_t d1 = s64 - d0;
uint64_t d2 = d1 + s64 + 1;
s64 += d1 >> 63;
a->frac_hi = s64 << (64 - 54);
/* increment or decrement for inexact */
if (d2 != 0) {
a->frac_hi += ((int64_t)(d1 ^ d2) < 0 ? -1 : 1);
}
goto done;
}
r64 = (uint64_t)r32 * u32 * 2;
/* |r*sqrt(m) - 1| < 0x1.7Bp-16; convert to 64-bit arithmetic */
mul64To128(m64, r64, &s64, &discard);
mul64To128(s64, r64, &d64, &discard);
u64 = three64 - d64;
mul64To128(u64, r64, &r64, &discard);
r64 <<= 1;
/* |r*sqrt(m) - 1| < 0x1.a5p-31 */
mul64To128(m64, r64, &s64, &discard);
mul64To128(s64, r64, &d64, &discard);
u64 = three64 - d64;
mul64To128(u64, r64, &rh, &rl);
add128(rh, rl, rh, rl, &rh, &rl);
/* |r*sqrt(m) - 1| < 0x1.c001p-59; change to 128-bit arithmetic */
mul128To256(a->frac_hi, a->frac_lo, rh, rl, &sh, &sl, &discard, &discard);
mul128To256(sh, sl, rh, rl, &dh, &dl, &discard, &discard);
sub128(three64, 0, dh, dl, &uh, &ul);
mul128To256(uh, ul, sh, sl, &sh, &sl, &discard, &discard); /* 3.125 */
/* -0x1p-116 < s - sqrt(m) < 0x3.8001p-125 */
sub128(sh, sl, 0, 4, &sh, &sl);
shift128Right(sh, sl, 13, &sh, &sl); /* 16.112 */
/* s < sqrt(m) < s + 1ulp */
/* Compute nearest rounded result */
mul64To128(sl, sl, &d0h, &d0l);
d0h += 2 * sh * sl;
sub128(a->frac_lo << 34, 0, d0h, d0l, &d0h, &d0l);
sub128(sh, sl, d0h, d0l, &d1h, &d1l);
add128(sh, sl, 0, 1, &d2h, &d2l);
add128(d2h, d2l, d1h, d1l, &d2h, &d2l);
add128(sh, sl, 0, d1h >> 63, &sh, &sl);
shift128Left(sh, sl, 128 - 114, &sh, &sl);
/* increment or decrement for inexact */
if (d2h | d2l) {
if ((int64_t)(d1h ^ d2h) < 0) {
sub128(sh, sl, 0, 1, &sh, &sl);
} else {
add128(sh, sl, 0, 1, &sh, &sl);
}
}
a->frac_lo = sl;
a->frac_hi = sh;
done:
/* Convert back from base 4 to base 2. */
a->exp >>= 1;
if (!(a->frac_hi & DECOMPOSED_IMPLICIT_BIT)) {
frac_add(a, a, a);
} else {
a->exp += 1;
}
return;
d_nan:
float_raise(float_flag_invalid, status);
parts_default_nan(a, status);
}
/*
* Rounds the floating-point value `a' to an integer, and returns the
* result as a floating-point value. The operation is performed