target/avr: Fix buffer read in avr_print_insn

target/avr: Improve decode of LDS, STS
 target/avr: Move cpu register accesses into system memory
 target/avr: Increase TARGET_PAGE_BITS to 10
 -----BEGIN PGP SIGNATURE-----
 
 iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmgIBb4dHHJpY2hhcmQu
 aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV9wcgf/b0pwvg5GlDEtowUU
 L21jCyzh0zkYTBQ4SYiGKI1jYx3wuJAEyDx8jQ8iFZA+5Vv43aUQO0ghy301Xmc+
 wrBDhVbd+cSCNPobd8uthoDfBoMO6IIvQ10Rc9S/iCVs7idhrS/vCk25UqWkHHo6
 BYI8mZCTwIo/UnE4B9g5+ccvTqiXIzOYDWxRo31Fb4GJclPlELV0MS/IO377W3Rs
 t43BGDbzyJW1irUOzBsCxqZ8QogUwOve5h67tzJK53ETqqZVlRnuH3mvirtlL3R0
 0AMFYwm0ygr+rkmQ/AfQ2D1QPiVz0oALV0P1KKNaUuv39WAeWEVEcIuDMvwy9XqG
 pgI+uw==
 =/fBY
 -----END PGP SIGNATURE-----

Merge tag 'pull-avr-20250422' of https://gitlab.com/rth7680/qemu into staging

target/avr: Fix buffer read in avr_print_insn
target/avr: Improve decode of LDS, STS
target/avr: Move cpu register accesses into system memory
target/avr: Increase TARGET_PAGE_BITS to 10

# -----BEGIN PGP SIGNATURE-----
#
# iQFRBAABCgA7FiEEekgeeIaLTbaoWgXAZN846K9+IV8FAmgIBb4dHHJpY2hhcmQu
# aGVuZGVyc29uQGxpbmFyby5vcmcACgkQZN846K9+IV9wcgf/b0pwvg5GlDEtowUU
# L21jCyzh0zkYTBQ4SYiGKI1jYx3wuJAEyDx8jQ8iFZA+5Vv43aUQO0ghy301Xmc+
# wrBDhVbd+cSCNPobd8uthoDfBoMO6IIvQ10Rc9S/iCVs7idhrS/vCk25UqWkHHo6
# BYI8mZCTwIo/UnE4B9g5+ccvTqiXIzOYDWxRo31Fb4GJclPlELV0MS/IO377W3Rs
# t43BGDbzyJW1irUOzBsCxqZ8QogUwOve5h67tzJK53ETqqZVlRnuH3mvirtlL3R0
# 0AMFYwm0ygr+rkmQ/AfQ2D1QPiVz0oALV0P1KKNaUuv39WAeWEVEcIuDMvwy9XqG
# pgI+uw==
# =/fBY
# -----END PGP SIGNATURE-----
# gpg: Signature made Tue 22 Apr 2025 17:10:22 EDT
# gpg:                using RSA key 7A481E78868B4DB6A85A05C064DF38E8AF7E215F
# gpg:                issuer "richard.henderson@linaro.org"
# gpg: Good signature from "Richard Henderson <richard.henderson@linaro.org>" [full]
# Primary key fingerprint: 7A48 1E78 868B 4DB6 A85A  05C0 64DF 38E8 AF7E 215F

* tag 'pull-avr-20250422' of https://gitlab.com/rth7680/qemu:
  target/avr: Increase TARGET_PAGE_BITS to 10
  hw/avr: Prepare for TARGET_PAGE_SIZE > 256
  target/avr: Use do_stb in avr_cpu_do_interrupt
  target/avr: Use cpu_stb_mmuidx_ra in helper_fullwr
  target/avr: Remove NUMBER_OF_IO_REGISTERS
  target/avr: Move cpu register accesses into system memory
  target/avr: Add defines for i/o port registers
  target/avr: Remove OFFSET_CPU_REGISTERS
  target/avr: Improve decode of LDS, STS

Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
Stefan Hajnoczi 2025-04-23 09:29:33 -04:00
commit 91d0d16b44
9 changed files with 205 additions and 196 deletions

View file

@ -19,6 +19,7 @@
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/misc/unimp.h"
#include "migration/vmstate.h"
#include "atmega.h"
enum AtmegaPeripheral {
@ -224,8 +225,6 @@ static void atmega_realize(DeviceState *dev, Error **errp)
char *devname;
size_t i;
assert(mc->io_size <= 0x200);
if (!s->xtal_freq_hz) {
error_setg(errp, "\"xtal-frequency-hz\" property must be provided.");
return;
@ -240,11 +239,37 @@ static void atmega_realize(DeviceState *dev, Error **errp)
qdev_realize(DEVICE(&s->cpu), NULL, &error_abort);
cpudev = DEVICE(&s->cpu);
/* SRAM */
memory_region_init_ram(&s->sram, OBJECT(dev), "sram", mc->sram_size,
&error_abort);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + mc->io_size, &s->sram);
/*
* SRAM
*
* Softmmu is not able mix i/o and ram on the same page.
* Therefore in all cases, the first page exclusively contains i/o.
*
* If the MCU's i/o region matches the page size, then we can simply
* allocate all ram starting at the second page. Otherwise, we must
* allocate some ram as i/o to complete the first page.
*/
assert(mc->io_size == 0x100 || mc->io_size == 0x200);
if (mc->io_size >= TARGET_PAGE_SIZE) {
memory_region_init_ram(&s->sram, OBJECT(dev), "sram", mc->sram_size,
&error_abort);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + mc->io_size, &s->sram);
} else {
int sram_io_size = TARGET_PAGE_SIZE - mc->io_size;
void *sram_io_mem = g_malloc0(sram_io_size);
memory_region_init_ram_device_ptr(&s->sram_io, OBJECT(dev), "sram-as-io",
sram_io_size, sram_io_mem);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + mc->io_size, &s->sram_io);
vmstate_register_ram(&s->sram_io, dev);
memory_region_init_ram(&s->sram, OBJECT(dev), "sram",
mc->sram_size - sram_io_size, &error_abort);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + TARGET_PAGE_SIZE, &s->sram);
}
/* Flash */
memory_region_init_rom(&s->flash, OBJECT(dev),

View file

@ -41,6 +41,7 @@ struct AtmegaMcuState {
MemoryRegion flash;
MemoryRegion eeprom;
MemoryRegion sram;
MemoryRegion sram_io;
DeviceState *io;
AVRMaskState pwr[POWER_MAX];
AVRUsartState usart[USART_MAX];

View file

@ -21,13 +21,7 @@
#ifndef AVR_CPU_PARAM_H
#define AVR_CPU_PARAM_H
/*
* TARGET_PAGE_BITS cannot be more than 8 bits because
* 1. all IO registers occupy [0x0000 .. 0x00ff] address range, and they
* should be implemented as a device and not memory
* 2. SRAM starts at the address 0x0100
*/
#define TARGET_PAGE_BITS 8
#define TARGET_PAGE_BITS 10
#define TARGET_PHYS_ADDR_SPACE_BITS 24
#define TARGET_VIRT_ADDR_SPACE_BITS 24

View file

@ -23,6 +23,7 @@
#include "qemu/qemu-print.h"
#include "exec/exec-all.h"
#include "exec/translation-block.h"
#include "exec/address-spaces.h"
#include "cpu.h"
#include "disas/dis-asm.h"
#include "tcg/debug-assert.h"
@ -110,6 +111,8 @@ static void avr_cpu_disas_set_info(CPUState *cpu, disassemble_info *info)
static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
CPUAVRState *env = cpu_env(cs);
AVRCPU *cpu = env_archcpu(env);
AVRCPUClass *mcc = AVR_CPU_GET_CLASS(dev);
Error *local_err = NULL;
@ -122,6 +125,19 @@ static void avr_cpu_realizefn(DeviceState *dev, Error **errp)
cpu_reset(cs);
mcc->parent_realize(dev, errp);
/*
* Two blocks in the low data space loop back into cpu registers.
*/
memory_region_init_io(&cpu->cpu_reg1, OBJECT(cpu), &avr_cpu_reg1, env,
"avr-cpu-reg1", 32);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA, &cpu->cpu_reg1);
memory_region_init_io(&cpu->cpu_reg2, OBJECT(cpu), &avr_cpu_reg2, env,
"avr-cpu-reg2", 8);
memory_region_add_subregion(get_system_memory(),
OFFSET_DATA + 0x58, &cpu->cpu_reg2);
}
static void avr_cpu_set_int(void *opaque, int irq, int level)

View file

@ -23,6 +23,7 @@
#include "cpu-qom.h"
#include "exec/cpu-defs.h"
#include "exec/memory.h"
#ifdef CONFIG_USER_ONLY
#error "AVR 8-bit does not support user mode"
@ -44,8 +45,16 @@
/* Number of CPU registers */
#define NUMBER_OF_CPU_REGISTERS 32
/* Number of IO registers accessible by ld/st/in/out */
#define NUMBER_OF_IO_REGISTERS 64
/* CPU registers mapped into i/o ports 0x38-0x3f. */
#define REG_38_RAMPD 0
#define REG_38_RAMPX 1
#define REG_38_RAMPY 2
#define REG_38_RAMPZ 3
#define REG_38_EIDN 4
#define REG_38_SPL 5
#define REG_38_SPH 6
#define REG_38_SREG 7
/*
* Offsets of AVR memory regions in host memory space.
@ -60,8 +69,6 @@
#define OFFSET_CODE 0x00000000
/* CPU registers, IO registers, and SRAM */
#define OFFSET_DATA 0x00800000
/* CPU registers specifically, these are mapped at the start of data */
#define OFFSET_CPU_REGISTERS OFFSET_DATA
/*
* IO registers, including status register, stack pointer, and memory
* mapped peripherals, mapped just after CPU registers
@ -144,6 +151,9 @@ struct ArchCPU {
CPUAVRState env;
MemoryRegion cpu_reg1;
MemoryRegion cpu_reg2;
/* Initial value of stack pointer */
uint32_t init_sp;
};
@ -244,6 +254,9 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
extern const MemoryRegionOps avr_cpu_reg1;
extern const MemoryRegionOps avr_cpu_reg2;
#include "exec/cpu-all.h"
#endif /* QEMU_AVR_CPU_H */

View file

@ -23,10 +23,10 @@
#include "qemu/error-report.h"
#include "cpu.h"
#include "accel/tcg/cpu-ops.h"
#include "accel/tcg/getpc.h"
#include "exec/cputlb.h"
#include "exec/page-protection.h"
#include "exec/cpu_ldst.h"
#include "exec/address-spaces.h"
#include "exec/helper-proto.h"
bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
@ -67,6 +67,11 @@ bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
return false;
}
static void do_stb(CPUAVRState *env, uint32_t addr, uint8_t data, uintptr_t ra)
{
cpu_stb_mmuidx_ra(env, addr, data, MMU_DATA_IDX, ra);
}
void avr_cpu_do_interrupt(CPUState *cs)
{
CPUAVRState *env = cpu_env(cs);
@ -83,14 +88,14 @@ void avr_cpu_do_interrupt(CPUState *cs)
}
if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
do_stb(env, env->sp--, ret, 0);
do_stb(env, env->sp--, ret >> 8, 0);
do_stb(env, env->sp--, ret >> 16, 0);
} else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
do_stb(env, env->sp--, ret, 0);
do_stb(env, env->sp--, ret >> 8, 0);
} else {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
do_stb(env, env->sp--, ret, 0);
}
env->pc_w = base + vector * size;
@ -108,7 +113,7 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
int prot, page_size = TARGET_PAGE_SIZE;
int prot;
uint32_t paddr;
address &= TARGET_PAGE_MASK;
@ -133,23 +138,9 @@ bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
/* Access to memory. */
paddr = OFFSET_DATA + address;
prot = PAGE_READ | PAGE_WRITE;
if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/*
* Access to CPU registers, exit and rebuilt this TB to use
* full access in case it touches specially handled registers
* like SREG or SP. For probing, set page_size = 1, in order
* to force tlb_fill to be called for the next access.
*/
if (probe) {
page_size = 1;
} else {
cpu_env(cs)->fullacc = 1;
cpu_loop_exit_restore(cs, retaddr);
}
}
}
tlb_set_page(cs, address, paddr, prot, mmu_idx, page_size);
tlb_set_page(cs, address, paddr, prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
@ -203,134 +194,78 @@ void helper_wdr(CPUAVRState *env)
}
/*
* This function implements IN instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is read and returned
* b. otherwise io address is translated to mem address and physical memory
* is read.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
* The first 32 bytes of the data space are mapped to the cpu regs.
* We cannot write these from normal store operations because TCG
* does not expect global temps to be modified -- a global may be
* live in a host cpu register across the store. We can however
* read these, as TCG does make sure the global temps are saved
* in case the load operation traps.
*/
target_ulong helper_inb(CPUAVRState *env, uint32_t port)
static uint64_t avr_cpu_reg1_read(void *opaque, hwaddr addr, unsigned size)
{
target_ulong data = 0;
CPUAVRState *env = opaque;
switch (port) {
case 0x38: /* RAMPD */
data = 0xff & (env->rampD >> 16);
break;
case 0x39: /* RAMPX */
data = 0xff & (env->rampX >> 16);
break;
case 0x3a: /* RAMPY */
data = 0xff & (env->rampY >> 16);
break;
case 0x3b: /* RAMPZ */
data = 0xff & (env->rampZ >> 16);
break;
case 0x3c: /* EIND */
data = 0xff & (env->eind >> 16);
break;
case 0x3d: /* SPL */
data = env->sp & 0x00ff;
break;
case 0x3e: /* SPH */
data = env->sp >> 8;
break;
case 0x3f: /* SREG */
data = cpu_get_sreg(env);
break;
default:
/* not a special register, pass to normal memory access */
data = address_space_ldub(&address_space_memory,
OFFSET_IO_REGISTERS + port,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
assert(addr < 32);
return env->r[addr];
}
/*
* This function implements OUT instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is written into the register
* b. otherwise io address is translated to mem address and physical memory
* is written.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
* The range 0x38-0x3f of the i/o space is mapped to cpu regs.
* As above, we cannot write these from normal store operations.
*/
void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
{
data &= 0x000000ff;
switch (port) {
case 0x38: /* RAMPD */
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = (data & 0xff) << 16;
}
break;
case 0x39: /* RAMPX */
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = (data & 0xff) << 16;
}
break;
case 0x3a: /* RAMPY */
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = (data & 0xff) << 16;
}
break;
case 0x3b: /* RAMPZ */
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = (data & 0xff) << 16;
}
break;
case 0x3c: /* EIDN */
env->eind = (data & 0xff) << 16;
break;
case 0x3d: /* SPL */
env->sp = (env->sp & 0xff00) | (data);
break;
case 0x3e: /* SPH */
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case 0x3f: /* SREG */
cpu_set_sreg(env, data);
break;
default:
/* not a special register, pass to normal memory access */
address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
data, MEMTXATTRS_UNSPECIFIED, NULL);
static uint64_t avr_cpu_reg2_read(void *opaque, hwaddr addr, unsigned size)
{
CPUAVRState *env = opaque;
switch (addr) {
case REG_38_RAMPD:
return 0xff & (env->rampD >> 16);
case REG_38_RAMPX:
return 0xff & (env->rampX >> 16);
case REG_38_RAMPY:
return 0xff & (env->rampY >> 16);
case REG_38_RAMPZ:
return 0xff & (env->rampZ >> 16);
case REG_38_EIDN:
return 0xff & (env->eind >> 16);
case REG_38_SPL:
return env->sp & 0x00ff;
case REG_38_SPH:
return 0xff & (env->sp >> 8);
case REG_38_SREG:
return cpu_get_sreg(env);
}
g_assert_not_reached();
}
/*
* this function implements LD instruction when there is a possibility to read
* from a CPU register
*/
target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
static void avr_cpu_trap_write(void *opaque, hwaddr addr,
uint64_t data64, unsigned size)
{
uint8_t data;
CPUAVRState *env = opaque;
CPUState *cs = env_cpu(env);
env->fullacc = false;
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
data = env->r[addr];
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
} else {
/* memory */
data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
env->fullacc = true;
cpu_loop_exit_restore(cs, cs->mem_io_pc);
}
const MemoryRegionOps avr_cpu_reg1 = {
.read = avr_cpu_reg1_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
const MemoryRegionOps avr_cpu_reg2 = {
.read = avr_cpu_reg2_read,
.write = avr_cpu_trap_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 1,
};
/*
* this function implements ST instruction when there is a possibility to write
* into a CPU register
@ -339,20 +274,49 @@ void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
{
env->fullacc = false;
/* Following logic assumes this: */
assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
NUMBER_OF_CPU_REGISTERS);
if (addr < NUMBER_OF_CPU_REGISTERS) {
switch (addr) {
case 0 ... 31:
/* CPU registers */
env->r[addr] = data;
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
} else {
/* memory */
address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
MEMTXATTRS_UNSPECIFIED, NULL);
break;
case REG_38_RAMPD + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = data << 16;
}
break;
case REG_38_RAMPX + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = data << 16;
}
break;
case REG_38_RAMPY + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = data << 16;
}
break;
case REG_38_RAMPZ + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = data << 16;
}
break;
case REG_38_EIDN + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->eind = data << 16;
break;
case REG_38_SPL + 0x38 + NUMBER_OF_CPU_REGISTERS:
env->sp = (env->sp & 0xff00) | data;
break;
case REG_38_SPH + 0x38 + NUMBER_OF_CPU_REGISTERS:
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case REG_38_SREG + 0x38 + NUMBER_OF_CPU_REGISTERS:
cpu_set_sreg(env, data);
break;
default:
do_stb(env, addr, data, GETPC());
break;
}
}

View file

@ -23,7 +23,4 @@ DEF_HELPER_1(debug, noreturn, env)
DEF_HELPER_1(break, noreturn, env)
DEF_HELPER_1(sleep, noreturn, env)
DEF_HELPER_1(unsupported, noreturn, env)
DEF_HELPER_3(outb, void, env, i32, i32)
DEF_HELPER_2(inb, tl, env, i32)
DEF_HELPER_3(fullwr, void, env, i32, i32)
DEF_HELPER_2(fullrd, tl, env, i32)

View file

@ -118,11 +118,8 @@ BRBC 1111 01 ....... ... @op_bit_imm
@io_rd_imm .... . .. ..... .... &rd_imm rd=%rd imm=%io_imm
@ldst_d .. . . .. . rd:5 . ... &rd_imm imm=%ldst_d_imm
# The 16-bit immediate is completely in the next word.
# Fields cannot be defined with no bits, so we cannot play
# the same trick and append to a zero-bit value.
# Defer reading the immediate until trans_{LDS,STS}.
@ldst_s .... ... rd:5 .... imm=0
%ldst_imm !function=next_word
@ldst_s .... ... rd:5 .... imm=%ldst_imm
MOV 0010 11 . ..... .... @op_rd_rr
MOVW 0000 0001 .... .... &rd_rr rd=%rd_d rr=%rr_d

View file

@ -194,6 +194,9 @@ static bool avr_have_feature(DisasContext *ctx, int feature)
static bool decode_insn(DisasContext *ctx, uint16_t insn);
#include "decode-insn.c.inc"
static void gen_inb(DisasContext *ctx, TCGv data, int port);
static void gen_outb(DisasContext *ctx, TCGv data, int port);
/*
* Arithmetic Instructions
*/
@ -1293,9 +1296,8 @@ static bool trans_SBRS(DisasContext *ctx, arg_SBRS *a)
static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_EQ;
ctx->skip_var0 = data;
@ -1311,9 +1313,8 @@ static bool trans_SBIC(DisasContext *ctx, arg_SBIC *a)
static bool trans_SBIS(DisasContext *ctx, arg_SBIS *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, 1 << a->bit);
ctx->skip_cond = TCG_COND_NE;
ctx->skip_var0 = data;
@ -1502,11 +1503,18 @@ static void gen_data_store(DisasContext *ctx, TCGv data, TCGv addr)
static void gen_data_load(DisasContext *ctx, TCGv data, TCGv addr)
{
if (ctx->base.tb->flags & TB_FLAGS_FULL_ACCESS) {
gen_helper_fullrd(data, tcg_env, addr);
} else {
tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB);
}
tcg_gen_qemu_ld_tl(data, addr, MMU_DATA_IDX, MO_UB);
}
static void gen_inb(DisasContext *ctx, TCGv data, int port)
{
gen_data_load(ctx, data, tcg_constant_i32(port + NUMBER_OF_CPU_REGISTERS));
}
static void gen_outb(DisasContext *ctx, TCGv data, int port)
{
gen_helper_fullwr(tcg_env, data,
tcg_constant_i32(port + NUMBER_OF_CPU_REGISTERS));
}
/*
@ -1578,7 +1586,6 @@ static bool trans_LDS(DisasContext *ctx, arg_LDS *a)
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_rampD;
a->imm = next_word(ctx);
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
tcg_gen_shli_tl(addr, addr, 16);
@ -1783,7 +1790,6 @@ static bool trans_STS(DisasContext *ctx, arg_STS *a)
TCGv Rd = cpu_r[a->rd];
TCGv addr = tcg_temp_new_i32();
TCGv H = cpu_rampD;
a->imm = next_word(ctx);
tcg_gen_mov_tl(addr, H); /* addr = H:M:L */
tcg_gen_shli_tl(addr, addr, 16);
@ -2128,9 +2134,8 @@ static bool trans_SPMX(DisasContext *ctx, arg_SPMX *a)
static bool trans_IN(DisasContext *ctx, arg_IN *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_inb(Rd, tcg_env, port);
gen_inb(ctx, Rd, a->imm);
return true;
}
@ -2141,9 +2146,8 @@ static bool trans_IN(DisasContext *ctx, arg_IN *a)
static bool trans_OUT(DisasContext *ctx, arg_OUT *a)
{
TCGv Rd = cpu_r[a->rd];
TCGv port = tcg_constant_i32(a->imm);
gen_helper_outb(tcg_env, port, Rd);
gen_outb(ctx, Rd, a->imm);
return true;
}
@ -2409,11 +2413,10 @@ static bool trans_SWAP(DisasContext *ctx, arg_SWAP *a)
static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_ori_tl(data, data, 1 << a->bit);
gen_helper_outb(tcg_env, port, data);
gen_outb(ctx, data, a->reg);
return true;
}
@ -2424,11 +2427,10 @@ static bool trans_SBI(DisasContext *ctx, arg_SBI *a)
static bool trans_CBI(DisasContext *ctx, arg_CBI *a)
{
TCGv data = tcg_temp_new_i32();
TCGv port = tcg_constant_i32(a->reg);
gen_helper_inb(data, tcg_env, port);
gen_inb(ctx, data, a->reg);
tcg_gen_andi_tl(data, data, ~(1 << a->bit));
gen_helper_outb(tcg_env, port, data);
gen_outb(ctx, data, a->reg);
return true;
}