sparc merge (Blue Swirl)

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1098 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-10-04 21:23:09 +00:00
parent 023fcb9507
commit 8d5f07fa3b
23 changed files with 492 additions and 592 deletions

View file

@ -28,12 +28,26 @@
#define MMU_CONTEXT_TBL 0x00003000
#define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400)
#define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800)
#define ROMVEC_DATA (MMU_CONTEXT_TBL + 0x1800)
#define PROM_ADDR 0xffd04000
#define PROM_FILENAME "proll.bin"
#define PROM_FILENAMEB "proll.bin"
#define PROM_FILENAMEE "proll.elf"
#define PROLL_MAGIC_ADDR 0x20000000
#define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */
#define PHYS_JJ_IDPROM_OFF 0x1FD8
#define PHYS_JJ_EEPROM_SIZE 0x2000
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
#define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */
#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */
#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */
#define PHYS_JJ_LE_IRQ 6
#define PHYS_JJ_CLOCK 0x71D00000
#define PHYS_JJ_CLOCK_IRQ 10
#define PHYS_JJ_CLOCK1 0x71D10000
#define PHYS_JJ_CLOCK1_IRQ 14
#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
/* TSC handling */
@ -44,8 +58,6 @@ uint64_t cpu_get_tsc()
void DMA_run() {}
void SB16_run() {}
void vga_invalidate_display() {}
void vga_screen_dump(const char *filename) {}
int serial_can_receive(SerialState *s) { return 0; }
void serial_receive_byte(SerialState *s, int ch) {}
void serial_receive_break(SerialState *s) {}
@ -59,7 +71,7 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
const char *initrd_filename)
{
char buf[1024];
int ret, linux_boot, bios_size;
int ret, linux_boot;
unsigned long bios_offset;
linux_boot = (kernel_filename != NULL);
@ -68,32 +80,21 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
cpu_register_physical_memory(0, ram_size, 0);
bios_offset = ram_size;
iommu_init();
sched_init();
tcx_init(ds);
lance_init(&nd_table[0], 6);
nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
#if 0
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
bios_size = get_image_size(buf);
ret = load_image(buf, phys_ram_base + bios_offset);
if (ret != bios_size) {
fprintf(stderr, "qemu: could not load prom '%s'\n", buf);
exit(1);
}
cpu_register_physical_memory(PROM_ADDR,
bios_size, bios_offset | IO_MEM_ROM);
#endif
iommu_init(PHYS_JJ_IOMMU);
sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
tcx_init(ds, PHYS_JJ_TCX_FB);
lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr);
timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ);
timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR);
/* We load Proll as the kernel and start it. It will issue a magic
IO to load the real kernel */
if (linux_boot) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME);
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
ret = load_kernel(buf,
phys_ram_base + KERNEL_LOAD_ADDR);
phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
buf);
@ -103,28 +104,10 @@ void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
/* Setup a MMU entry for entire address space */
stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
#if 0
stl_raw(phys_ram_base + MMU_L1PTP + (0x50 << 2), (MMU_L2PTP >> 4) | 1); // frame buffer at 50..
#endif
stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00..
/* 3 = U:RWX S:RWX */
stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
#if 0
stl_raw(phys_ram_base + MMU_L2PTP + 0x84, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
stl_raw(phys_ram_base + MMU_L2PTP + 0x88, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
stl_raw(phys_ram_base + MMU_L2PTP + 0x140, (PHYS_JJ_TCX_FB >> 4) \
| (3 << PTE_ACCESS_SHIFT) | 2); // frame buf
// "Empirical constant"
stl_raw(phys_ram_base + ROMVEC_DATA, 0x10010407);
// Version: V3 prom
stl_raw(phys_ram_base + ROMVEC_DATA + 4, 3);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x1c, ROMVEC_DATA+0x400);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x400, ROMVEC_DATA+0x404);
stl_raw(phys_ram_base + ROMVEC_DATA + 0x404, 0x81c3e008); // retl
stl_raw(phys_ram_base + ROMVEC_DATA + 0x408, 0x01000000); // nop
#endif
stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2);
}