mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-05 16:53:55 -06:00
docs/can: convert to restructuredText
Buglink: https://gitlab.com/qemu-project/qemu/-/issues/527 Signed-off-by: Lucas Ramage <lucas.ramage@infinite-omicron.com> Message-id: 20220105205628.5491-1-oxr463@gmx.us Reviewed-by: Peter Maydell <peter.maydell@linaro.org> [PMM: Move to docs/system/devices/ rather than top-level; fix a pre-existing typo in passing] Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
3cda85b203
commit
87f14eaa51
2 changed files with 41 additions and 50 deletions
188
docs/system/devices/can.rst
Normal file
188
docs/system/devices/can.rst
Normal file
|
@ -0,0 +1,188 @@
|
|||
CAN Bus Emulation Support
|
||||
=========================
|
||||
The CAN bus emulation provides mechanism to connect multiple
|
||||
emulated CAN controller chips together by one or multiple CAN busses
|
||||
(the controller device "canbus" parameter). The individual busses
|
||||
can be connected to host system CAN API (at this time only Linux
|
||||
SocketCAN is supported).
|
||||
|
||||
The concept of busses is generic and different CAN controllers
|
||||
can be implemented.
|
||||
|
||||
The initial submission implemented SJA1000 controller which
|
||||
is common and well supported by by drivers for the most operating
|
||||
systems.
|
||||
|
||||
The PCI addon card hardware has been selected as the first CAN
|
||||
interface to implement because such device can be easily connected
|
||||
to systems with different CPU architectures (x86, PowerPC, Arm, etc.).
|
||||
|
||||
In 2020, CTU CAN FD controller model has been added as part
|
||||
of the bachelor thesis of Jan Charvat. This controller is complete
|
||||
open-source/design/hardware solution. The core designer
|
||||
of the project is Ondrej Ille, the financial support has been
|
||||
provided by CTU, and more companies including Volkswagen subsidiaries.
|
||||
|
||||
The project has been initially started in frame of RTEMS GSoC 2013
|
||||
slot by Jin Yang under our mentoring The initial idea was to provide generic
|
||||
CAN subsystem for RTEMS. But lack of common environment for code and RTEMS
|
||||
testing lead to goal change to provide environment which provides complete
|
||||
emulated environment for testing and RTEMS GSoC slot has been donated
|
||||
to work on CAN hardware emulation on QEMU.
|
||||
|
||||
Examples how to use CAN emulation for SJA1000 based boards
|
||||
----------------------------------------------------------
|
||||
When QEMU with CAN PCI support is compiled then one of the next
|
||||
CAN boards can be selected
|
||||
|
||||
(1) CAN bus Kvaser PCI CAN-S (single SJA1000 channel) board. QEMU startup options::
|
||||
|
||||
-object can-bus,id=canbus0
|
||||
-device kvaser_pci,canbus=canbus0
|
||||
|
||||
Add "can-host-socketcan" object to connect device to host system CAN bus::
|
||||
|
||||
-object can-host-socketcan,id=canhost0,if=can0,canbus=canbus0
|
||||
|
||||
(2) CAN bus PCM-3680I PCI (dual SJA1000 channel) emulation::
|
||||
|
||||
-object can-bus,id=canbus0
|
||||
-device pcm3680_pci,canbus0=canbus0,canbus1=canbus0
|
||||
|
||||
Another example::
|
||||
|
||||
-object can-bus,id=canbus0
|
||||
-object can-bus,id=canbus1
|
||||
-device pcm3680_pci,canbus0=canbus0,canbus1=canbus1
|
||||
|
||||
(3) CAN bus MIOe-3680 PCI (dual SJA1000 channel) emulation::
|
||||
|
||||
-device mioe3680_pci,canbus0=canbus0
|
||||
|
||||
The ''kvaser_pci'' board/device model is compatible with and has been tested with
|
||||
the ''kvaser_pci'' driver included in mainline Linux kernel.
|
||||
The tested setup was Linux 4.9 kernel on the host and guest side.
|
||||
|
||||
Example for qemu-system-x86_64::
|
||||
|
||||
qemu-system-x86_64 -accel kvm -kernel /boot/vmlinuz-4.9.0-4-amd64 \
|
||||
-initrd ramdisk.cpio \
|
||||
-virtfs local,path=shareddir,security_model=none,mount_tag=shareddir \
|
||||
-object can-bus,id=canbus0 \
|
||||
-object can-host-socketcan,id=canhost0,if=can0,canbus=canbus0 \
|
||||
-device kvaser_pci,canbus=canbus0 \
|
||||
-nographic -append "console=ttyS0"
|
||||
|
||||
Example for qemu-system-arm::
|
||||
|
||||
qemu-system-arm -cpu arm1176 -m 256 -M versatilepb \
|
||||
-kernel kernel-qemu-arm1176-versatilepb \
|
||||
-hda rpi-wheezy-overlay \
|
||||
-append "console=ttyAMA0 root=/dev/sda2 ro init=/sbin/init-overlay" \
|
||||
-nographic \
|
||||
-virtfs local,path=shareddir,security_model=none,mount_tag=shareddir \
|
||||
-object can-bus,id=canbus0 \
|
||||
-object can-host-socketcan,id=canhost0,if=can0,canbus=canbus0 \
|
||||
-device kvaser_pci,canbus=canbus0,host=can0 \
|
||||
|
||||
The CAN interface of the host system has to be configured for proper
|
||||
bitrate and set up. Configuration is not propagated from emulated
|
||||
devices through bus to the physical host device. Example configuration
|
||||
for 1 Mbit/s::
|
||||
|
||||
ip link set can0 type can bitrate 1000000
|
||||
ip link set can0 up
|
||||
|
||||
Virtual (host local only) can interface can be used on the host
|
||||
side instead of physical interface::
|
||||
|
||||
ip link add dev can0 type vcan
|
||||
|
||||
The CAN interface on the host side can be used to analyze CAN
|
||||
traffic with "candump" command which is included in "can-utils"::
|
||||
|
||||
candump can0
|
||||
|
||||
CTU CAN FD support examples
|
||||
---------------------------
|
||||
This open-source core provides CAN FD support. CAN FD drames are
|
||||
delivered even to the host systems when SocketCAN interface is found
|
||||
CAN FD capable.
|
||||
|
||||
The PCIe board emulation is provided for now (the device identifier is
|
||||
ctucan_pci). The default build defines two CTU CAN FD cores
|
||||
on the board.
|
||||
|
||||
Example how to connect the canbus0-bus (virtual wire) to the host
|
||||
Linux system (SocketCAN used) and to both CTU CAN FD cores emulated
|
||||
on the corresponding PCI card expects that host system CAN bus
|
||||
is setup according to the previous SJA1000 section::
|
||||
|
||||
qemu-system-x86_64 -enable-kvm -kernel /boot/vmlinuz-4.19.52+ \
|
||||
-initrd ramdisk.cpio \
|
||||
-virtfs local,path=shareddir,security_model=none,mount_tag=shareddir \
|
||||
-vga cirrus \
|
||||
-append "console=ttyS0" \
|
||||
-object can-bus,id=canbus0-bus \
|
||||
-object can-host-socketcan,if=can0,canbus=canbus0-bus,id=canbus0-socketcan \
|
||||
-device ctucan_pci,canbus0=canbus0-bus,canbus1=canbus0-bus \
|
||||
-nographic
|
||||
|
||||
Setup of CTU CAN FD controller in a guest Linux system::
|
||||
|
||||
insmod ctucanfd.ko || modprobe ctucanfd
|
||||
insmod ctucanfd_pci.ko || modprobe ctucanfd_pci
|
||||
|
||||
for ifc in /sys/class/net/can* ; do
|
||||
if [ -e $ifc/device/vendor ] ; then
|
||||
if ! grep -q 0x1760 $ifc/device/vendor ; then
|
||||
continue;
|
||||
fi
|
||||
else
|
||||
continue;
|
||||
fi
|
||||
if [ -e $ifc/device/device ] ; then
|
||||
if ! grep -q 0xff00 $ifc/device/device ; then
|
||||
continue;
|
||||
fi
|
||||
else
|
||||
continue;
|
||||
fi
|
||||
ifc=$(basename $ifc)
|
||||
/bin/ip link set $ifc type can bitrate 1000000 dbitrate 10000000 fd on
|
||||
/bin/ip link set $ifc up
|
||||
done
|
||||
|
||||
The test can run for example::
|
||||
|
||||
candump can1
|
||||
|
||||
in the guest system and next commands in the host system for basic CAN::
|
||||
|
||||
cangen can0
|
||||
|
||||
for CAN FD without bitrate switch::
|
||||
|
||||
cangen can0 -f
|
||||
|
||||
and with bitrate switch::
|
||||
|
||||
cangen can0 -b
|
||||
|
||||
The test can be run viceversa, generate messages in the guest system and capture them
|
||||
in the host one and much more combinations.
|
||||
|
||||
Links to other resources
|
||||
------------------------
|
||||
|
||||
(1) `CAN related projects at Czech Technical University, Faculty of Electrical Engineering <http://canbus.pages.fel.cvut.cz>`_
|
||||
(2) `Repository with development can-pci branch at Czech Technical University <https://gitlab.fel.cvut.cz/canbus/qemu-canbus>`_
|
||||
(3) `RTEMS page describing project <https://devel.rtems.org/wiki/Developer/Simulators/QEMU/CANEmulation>`_
|
||||
(4) `RTLWS 2015 article about the project and its use with CANopen emulation <http://cmp.felk.cvut.cz/~pisa/can/doc/rtlws-17-pisa-qemu-can.pdf>`_
|
||||
(5) `GNU/Linux, CAN and CANopen in Real-time Control Applications Slides from LinuxDays 2017 (include updated RTLWS 2015 content) <https://www.linuxdays.cz/2017/video/Pavel_Pisa-CAN_canopen.pdf>`_
|
||||
(6) `Linux SocketCAN utilities <https://github.com/linux-can/can-utils>`_
|
||||
(7) `CTU CAN FD project including core VHDL design, Linux driver, test utilities etc. <https://gitlab.fel.cvut.cz/canbus/ctucanfd_ip_core>`_
|
||||
(8) `CTU CAN FD Core Datasheet Documentation <http://canbus.pages.fel.cvut.cz/ctucanfd_ip_core/Progdokum.pdf>`_
|
||||
(9) `CTU CAN FD Core System Architecture Documentation <http://canbus.pages.fel.cvut.cz/ctucanfd_ip_core/ctu_can_fd_architecture.pdf>`_
|
||||
(10) `CTU CAN FD Driver Documentation <http://canbus.pages.fel.cvut.cz/ctucanfd_ip_core/driver_doc/ctucanfd-driver.html>`_
|
||||
(11) `Integration with PCIe interfacing for Intel/Altera Cyclone IV based board <https://gitlab.fel.cvut.cz/canbus/pcie-ctu_can_fd>`_
|
Loading…
Add table
Add a link
Reference in a new issue