mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-08 18:23:57 -06:00
cpu-timers, icount: new modules
refactoring of cpus.c continues with cpu timer state extraction. cpu-timers: responsible for the softmmu cpu timers state, including cpu clocks and ticks. icount: counts the TCG instructions executed. As such it is specific to the TCG accelerator. Therefore, it is built only under CONFIG_TCG. One complication is due to qtest, which uses an icount field to warp time as part of qtest (qtest_clock_warp). In order to solve this problem, provide a separate counter for qtest. This requires fixing assumptions scattered in the code that qtest_enabled() implies icount_enabled(), checking each specific case. Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> [remove redundant initialization with qemu_spice_init] Reviewed-by: Alex Bennée <alex.bennee@linaro.org> [fix lingering calls to icount_get] Signed-off-by: Claudio Fontana <cfontana@suse.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
0ac0b47c44
commit
740b175973
37 changed files with 1128 additions and 843 deletions
744
softmmu/cpus.c
744
softmmu/cpus.c
|
@ -58,11 +58,10 @@
|
|||
#include "hw/nmi.h"
|
||||
#include "sysemu/replay.h"
|
||||
#include "sysemu/runstate.h"
|
||||
#include "sysemu/cpu-timers.h"
|
||||
#include "hw/boards.h"
|
||||
#include "hw/hw.h"
|
||||
|
||||
#include "sysemu/cpu-throttle.h"
|
||||
|
||||
#ifdef CONFIG_LINUX
|
||||
|
||||
#include <sys/prctl.h>
|
||||
|
@ -83,9 +82,6 @@
|
|||
|
||||
static QemuMutex qemu_global_mutex;
|
||||
|
||||
int64_t max_delay;
|
||||
int64_t max_advance;
|
||||
|
||||
bool cpu_is_stopped(CPUState *cpu)
|
||||
{
|
||||
return cpu->stopped || !runstate_is_running();
|
||||
|
@ -116,7 +112,7 @@ static bool cpu_thread_is_idle(CPUState *cpu)
|
|||
return true;
|
||||
}
|
||||
|
||||
static bool all_cpu_threads_idle(void)
|
||||
bool all_cpu_threads_idle(void)
|
||||
{
|
||||
CPUState *cpu;
|
||||
|
||||
|
@ -128,688 +124,9 @@ static bool all_cpu_threads_idle(void)
|
|||
return true;
|
||||
}
|
||||
|
||||
/***********************************************************/
|
||||
/* guest cycle counter */
|
||||
|
||||
/* Protected by TimersState seqlock */
|
||||
|
||||
static bool icount_sleep = true;
|
||||
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
|
||||
#define MAX_ICOUNT_SHIFT 10
|
||||
|
||||
typedef struct TimersState {
|
||||
/* Protected by BQL. */
|
||||
int64_t cpu_ticks_prev;
|
||||
int64_t cpu_ticks_offset;
|
||||
|
||||
/* Protect fields that can be respectively read outside the
|
||||
* BQL, and written from multiple threads.
|
||||
*/
|
||||
QemuSeqLock vm_clock_seqlock;
|
||||
QemuSpin vm_clock_lock;
|
||||
|
||||
int16_t cpu_ticks_enabled;
|
||||
|
||||
/* Conversion factor from emulated instructions to virtual clock ticks. */
|
||||
int16_t icount_time_shift;
|
||||
|
||||
/* Compensate for varying guest execution speed. */
|
||||
int64_t qemu_icount_bias;
|
||||
|
||||
int64_t vm_clock_warp_start;
|
||||
int64_t cpu_clock_offset;
|
||||
|
||||
/* Only written by TCG thread */
|
||||
int64_t qemu_icount;
|
||||
|
||||
/* for adjusting icount */
|
||||
QEMUTimer *icount_rt_timer;
|
||||
QEMUTimer *icount_vm_timer;
|
||||
QEMUTimer *icount_warp_timer;
|
||||
} TimersState;
|
||||
|
||||
static TimersState timers_state;
|
||||
bool mttcg_enabled;
|
||||
|
||||
|
||||
/* The current number of executed instructions is based on what we
|
||||
* originally budgeted minus the current state of the decrementing
|
||||
* icount counters in extra/u16.low.
|
||||
*/
|
||||
static int64_t cpu_get_icount_executed(CPUState *cpu)
|
||||
{
|
||||
return (cpu->icount_budget -
|
||||
(cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
|
||||
}
|
||||
|
||||
/*
|
||||
* Update the global shared timer_state.qemu_icount to take into
|
||||
* account executed instructions. This is done by the TCG vCPU
|
||||
* thread so the main-loop can see time has moved forward.
|
||||
*/
|
||||
static void cpu_update_icount_locked(CPUState *cpu)
|
||||
{
|
||||
int64_t executed = cpu_get_icount_executed(cpu);
|
||||
cpu->icount_budget -= executed;
|
||||
|
||||
qatomic_set_i64(&timers_state.qemu_icount,
|
||||
timers_state.qemu_icount + executed);
|
||||
}
|
||||
|
||||
/*
|
||||
* Update the global shared timer_state.qemu_icount to take into
|
||||
* account executed instructions. This is done by the TCG vCPU
|
||||
* thread so the main-loop can see time has moved forward.
|
||||
*/
|
||||
void cpu_update_icount(CPUState *cpu)
|
||||
{
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
cpu_update_icount_locked(cpu);
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
}
|
||||
|
||||
static int64_t cpu_get_icount_raw_locked(void)
|
||||
{
|
||||
CPUState *cpu = current_cpu;
|
||||
|
||||
if (cpu && cpu->running) {
|
||||
if (!cpu->can_do_io) {
|
||||
error_report("Bad icount read");
|
||||
exit(1);
|
||||
}
|
||||
/* Take into account what has run */
|
||||
cpu_update_icount_locked(cpu);
|
||||
}
|
||||
/* The read is protected by the seqlock, but needs atomic64 to avoid UB */
|
||||
return qatomic_read_i64(&timers_state.qemu_icount);
|
||||
}
|
||||
|
||||
static int64_t cpu_get_icount_locked(void)
|
||||
{
|
||||
int64_t icount = cpu_get_icount_raw_locked();
|
||||
return qatomic_read_i64(&timers_state.qemu_icount_bias) +
|
||||
cpu_icount_to_ns(icount);
|
||||
}
|
||||
|
||||
int64_t cpu_get_icount_raw(void)
|
||||
{
|
||||
int64_t icount;
|
||||
unsigned start;
|
||||
|
||||
do {
|
||||
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
||||
icount = cpu_get_icount_raw_locked();
|
||||
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
||||
|
||||
return icount;
|
||||
}
|
||||
|
||||
/* Return the virtual CPU time, based on the instruction counter. */
|
||||
int64_t cpu_get_icount(void)
|
||||
{
|
||||
int64_t icount;
|
||||
unsigned start;
|
||||
|
||||
do {
|
||||
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
||||
icount = cpu_get_icount_locked();
|
||||
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
||||
|
||||
return icount;
|
||||
}
|
||||
|
||||
int64_t cpu_icount_to_ns(int64_t icount)
|
||||
{
|
||||
return icount << qatomic_read(&timers_state.icount_time_shift);
|
||||
}
|
||||
|
||||
static int64_t cpu_get_ticks_locked(void)
|
||||
{
|
||||
int64_t ticks = timers_state.cpu_ticks_offset;
|
||||
if (timers_state.cpu_ticks_enabled) {
|
||||
ticks += cpu_get_host_ticks();
|
||||
}
|
||||
|
||||
if (timers_state.cpu_ticks_prev > ticks) {
|
||||
/* Non increasing ticks may happen if the host uses software suspend. */
|
||||
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
|
||||
ticks = timers_state.cpu_ticks_prev;
|
||||
}
|
||||
|
||||
timers_state.cpu_ticks_prev = ticks;
|
||||
return ticks;
|
||||
}
|
||||
|
||||
/* return the time elapsed in VM between vm_start and vm_stop. Unless
|
||||
* icount is active, cpu_get_ticks() uses units of the host CPU cycle
|
||||
* counter.
|
||||
*/
|
||||
int64_t cpu_get_ticks(void)
|
||||
{
|
||||
int64_t ticks;
|
||||
|
||||
if (use_icount) {
|
||||
return cpu_get_icount();
|
||||
}
|
||||
|
||||
qemu_spin_lock(&timers_state.vm_clock_lock);
|
||||
ticks = cpu_get_ticks_locked();
|
||||
qemu_spin_unlock(&timers_state.vm_clock_lock);
|
||||
return ticks;
|
||||
}
|
||||
|
||||
static int64_t cpu_get_clock_locked(void)
|
||||
{
|
||||
int64_t time;
|
||||
|
||||
time = timers_state.cpu_clock_offset;
|
||||
if (timers_state.cpu_ticks_enabled) {
|
||||
time += get_clock();
|
||||
}
|
||||
|
||||
return time;
|
||||
}
|
||||
|
||||
/* Return the monotonic time elapsed in VM, i.e.,
|
||||
* the time between vm_start and vm_stop
|
||||
*/
|
||||
int64_t cpu_get_clock(void)
|
||||
{
|
||||
int64_t ti;
|
||||
unsigned start;
|
||||
|
||||
do {
|
||||
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
||||
ti = cpu_get_clock_locked();
|
||||
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
||||
|
||||
return ti;
|
||||
}
|
||||
|
||||
/* enable cpu_get_ticks()
|
||||
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
||||
*/
|
||||
void cpu_enable_ticks(void)
|
||||
{
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
if (!timers_state.cpu_ticks_enabled) {
|
||||
timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
|
||||
timers_state.cpu_clock_offset -= get_clock();
|
||||
timers_state.cpu_ticks_enabled = 1;
|
||||
}
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
}
|
||||
|
||||
/* disable cpu_get_ticks() : the clock is stopped. You must not call
|
||||
* cpu_get_ticks() after that.
|
||||
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
||||
*/
|
||||
void cpu_disable_ticks(void)
|
||||
{
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
if (timers_state.cpu_ticks_enabled) {
|
||||
timers_state.cpu_ticks_offset += cpu_get_host_ticks();
|
||||
timers_state.cpu_clock_offset = cpu_get_clock_locked();
|
||||
timers_state.cpu_ticks_enabled = 0;
|
||||
}
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
}
|
||||
|
||||
/* Correlation between real and virtual time is always going to be
|
||||
fairly approximate, so ignore small variation.
|
||||
When the guest is idle real and virtual time will be aligned in
|
||||
the IO wait loop. */
|
||||
#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
|
||||
|
||||
static void icount_adjust(void)
|
||||
{
|
||||
int64_t cur_time;
|
||||
int64_t cur_icount;
|
||||
int64_t delta;
|
||||
|
||||
/* Protected by TimersState mutex. */
|
||||
static int64_t last_delta;
|
||||
|
||||
/* If the VM is not running, then do nothing. */
|
||||
if (!runstate_is_running()) {
|
||||
return;
|
||||
}
|
||||
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
|
||||
cpu_get_clock_locked());
|
||||
cur_icount = cpu_get_icount_locked();
|
||||
|
||||
delta = cur_icount - cur_time;
|
||||
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
|
||||
if (delta > 0
|
||||
&& last_delta + ICOUNT_WOBBLE < delta * 2
|
||||
&& timers_state.icount_time_shift > 0) {
|
||||
/* The guest is getting too far ahead. Slow time down. */
|
||||
qatomic_set(&timers_state.icount_time_shift,
|
||||
timers_state.icount_time_shift - 1);
|
||||
}
|
||||
if (delta < 0
|
||||
&& last_delta - ICOUNT_WOBBLE > delta * 2
|
||||
&& timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
|
||||
/* The guest is getting too far behind. Speed time up. */
|
||||
qatomic_set(&timers_state.icount_time_shift,
|
||||
timers_state.icount_time_shift + 1);
|
||||
}
|
||||
last_delta = delta;
|
||||
qatomic_set_i64(&timers_state.qemu_icount_bias,
|
||||
cur_icount - (timers_state.qemu_icount
|
||||
<< timers_state.icount_time_shift));
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
}
|
||||
|
||||
static void icount_adjust_rt(void *opaque)
|
||||
{
|
||||
timer_mod(timers_state.icount_rt_timer,
|
||||
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
||||
icount_adjust();
|
||||
}
|
||||
|
||||
static void icount_adjust_vm(void *opaque)
|
||||
{
|
||||
timer_mod(timers_state.icount_vm_timer,
|
||||
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
||||
NANOSECONDS_PER_SECOND / 10);
|
||||
icount_adjust();
|
||||
}
|
||||
|
||||
static int64_t qemu_icount_round(int64_t count)
|
||||
{
|
||||
int shift = qatomic_read(&timers_state.icount_time_shift);
|
||||
return (count + (1 << shift) - 1) >> shift;
|
||||
}
|
||||
|
||||
static void icount_warp_rt(void)
|
||||
{
|
||||
unsigned seq;
|
||||
int64_t warp_start;
|
||||
|
||||
/* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
|
||||
* changes from -1 to another value, so the race here is okay.
|
||||
*/
|
||||
do {
|
||||
seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
||||
warp_start = timers_state.vm_clock_warp_start;
|
||||
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
|
||||
|
||||
if (warp_start == -1) {
|
||||
return;
|
||||
}
|
||||
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
if (runstate_is_running()) {
|
||||
int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
|
||||
cpu_get_clock_locked());
|
||||
int64_t warp_delta;
|
||||
|
||||
warp_delta = clock - timers_state.vm_clock_warp_start;
|
||||
if (use_icount == 2) {
|
||||
/*
|
||||
* In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
|
||||
* far ahead of real time.
|
||||
*/
|
||||
int64_t cur_icount = cpu_get_icount_locked();
|
||||
int64_t delta = clock - cur_icount;
|
||||
warp_delta = MIN(warp_delta, delta);
|
||||
}
|
||||
qatomic_set_i64(&timers_state.qemu_icount_bias,
|
||||
timers_state.qemu_icount_bias + warp_delta);
|
||||
}
|
||||
timers_state.vm_clock_warp_start = -1;
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
|
||||
if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
|
||||
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
||||
}
|
||||
}
|
||||
|
||||
static void icount_timer_cb(void *opaque)
|
||||
{
|
||||
/* No need for a checkpoint because the timer already synchronizes
|
||||
* with CHECKPOINT_CLOCK_VIRTUAL_RT.
|
||||
*/
|
||||
icount_warp_rt();
|
||||
}
|
||||
|
||||
void qtest_clock_warp(int64_t dest)
|
||||
{
|
||||
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||||
AioContext *aio_context;
|
||||
assert(qtest_enabled());
|
||||
aio_context = qemu_get_aio_context();
|
||||
while (clock < dest) {
|
||||
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
||||
QEMU_TIMER_ATTR_ALL);
|
||||
int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
|
||||
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
qatomic_set_i64(&timers_state.qemu_icount_bias,
|
||||
timers_state.qemu_icount_bias + warp);
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
|
||||
qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
|
||||
timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
|
||||
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
||||
}
|
||||
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
||||
}
|
||||
|
||||
void qemu_start_warp_timer(void)
|
||||
{
|
||||
int64_t clock;
|
||||
int64_t deadline;
|
||||
|
||||
if (!use_icount) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
||||
* do not fire, so computing the deadline does not make sense.
|
||||
*/
|
||||
if (!runstate_is_running()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (replay_mode != REPLAY_MODE_PLAY) {
|
||||
if (!all_cpu_threads_idle()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (qtest_enabled()) {
|
||||
/* When testing, qtest commands advance icount. */
|
||||
return;
|
||||
}
|
||||
|
||||
replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
|
||||
} else {
|
||||
/* warp clock deterministically in record/replay mode */
|
||||
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
|
||||
/* vCPU is sleeping and warp can't be started.
|
||||
It is probably a race condition: notification sent
|
||||
to vCPU was processed in advance and vCPU went to sleep.
|
||||
Therefore we have to wake it up for doing someting. */
|
||||
if (replay_has_checkpoint()) {
|
||||
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/* We want to use the earliest deadline from ALL vm_clocks */
|
||||
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
|
||||
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
||||
~QEMU_TIMER_ATTR_EXTERNAL);
|
||||
if (deadline < 0) {
|
||||
static bool notified;
|
||||
if (!icount_sleep && !notified) {
|
||||
warn_report("icount sleep disabled and no active timers");
|
||||
notified = true;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (deadline > 0) {
|
||||
/*
|
||||
* Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
|
||||
* sleep. Otherwise, the CPU might be waiting for a future timer
|
||||
* interrupt to wake it up, but the interrupt never comes because
|
||||
* the vCPU isn't running any insns and thus doesn't advance the
|
||||
* QEMU_CLOCK_VIRTUAL.
|
||||
*/
|
||||
if (!icount_sleep) {
|
||||
/*
|
||||
* We never let VCPUs sleep in no sleep icount mode.
|
||||
* If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
|
||||
* to the next QEMU_CLOCK_VIRTUAL event and notify it.
|
||||
* It is useful when we want a deterministic execution time,
|
||||
* isolated from host latencies.
|
||||
*/
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
qatomic_set_i64(&timers_state.qemu_icount_bias,
|
||||
timers_state.qemu_icount_bias + deadline);
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
||||
} else {
|
||||
/*
|
||||
* We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
|
||||
* "real" time, (related to the time left until the next event) has
|
||||
* passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
|
||||
* This avoids that the warps are visible externally; for example,
|
||||
* you will not be sending network packets continuously instead of
|
||||
* every 100ms.
|
||||
*/
|
||||
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
if (timers_state.vm_clock_warp_start == -1
|
||||
|| timers_state.vm_clock_warp_start > clock) {
|
||||
timers_state.vm_clock_warp_start = clock;
|
||||
}
|
||||
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
||||
&timers_state.vm_clock_lock);
|
||||
timer_mod_anticipate(timers_state.icount_warp_timer,
|
||||
clock + deadline);
|
||||
}
|
||||
} else if (deadline == 0) {
|
||||
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
||||
}
|
||||
}
|
||||
|
||||
static void qemu_account_warp_timer(void)
|
||||
{
|
||||
if (!use_icount || !icount_sleep) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
||||
* do not fire, so computing the deadline does not make sense.
|
||||
*/
|
||||
if (!runstate_is_running()) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* warp clock deterministically in record/replay mode */
|
||||
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
|
||||
return;
|
||||
}
|
||||
|
||||
timer_del(timers_state.icount_warp_timer);
|
||||
icount_warp_rt();
|
||||
}
|
||||
|
||||
static bool icount_state_needed(void *opaque)
|
||||
{
|
||||
return use_icount;
|
||||
}
|
||||
|
||||
static bool warp_timer_state_needed(void *opaque)
|
||||
{
|
||||
TimersState *s = opaque;
|
||||
return s->icount_warp_timer != NULL;
|
||||
}
|
||||
|
||||
static bool adjust_timers_state_needed(void *opaque)
|
||||
{
|
||||
TimersState *s = opaque;
|
||||
return s->icount_rt_timer != NULL;
|
||||
}
|
||||
|
||||
static bool shift_state_needed(void *opaque)
|
||||
{
|
||||
return use_icount == 2;
|
||||
}
|
||||
|
||||
/*
|
||||
* Subsection for warp timer migration is optional, because may not be created
|
||||
*/
|
||||
static const VMStateDescription icount_vmstate_warp_timer = {
|
||||
.name = "timer/icount/warp_timer",
|
||||
.version_id = 1,
|
||||
.minimum_version_id = 1,
|
||||
.needed = warp_timer_state_needed,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_INT64(vm_clock_warp_start, TimersState),
|
||||
VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
|
||||
VMSTATE_END_OF_LIST()
|
||||
}
|
||||
};
|
||||
|
||||
static const VMStateDescription icount_vmstate_adjust_timers = {
|
||||
.name = "timer/icount/timers",
|
||||
.version_id = 1,
|
||||
.minimum_version_id = 1,
|
||||
.needed = adjust_timers_state_needed,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
|
||||
VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
|
||||
VMSTATE_END_OF_LIST()
|
||||
}
|
||||
};
|
||||
|
||||
static const VMStateDescription icount_vmstate_shift = {
|
||||
.name = "timer/icount/shift",
|
||||
.version_id = 1,
|
||||
.minimum_version_id = 1,
|
||||
.needed = shift_state_needed,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_INT16(icount_time_shift, TimersState),
|
||||
VMSTATE_END_OF_LIST()
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
* This is a subsection for icount migration.
|
||||
*/
|
||||
static const VMStateDescription icount_vmstate_timers = {
|
||||
.name = "timer/icount",
|
||||
.version_id = 1,
|
||||
.minimum_version_id = 1,
|
||||
.needed = icount_state_needed,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_INT64(qemu_icount_bias, TimersState),
|
||||
VMSTATE_INT64(qemu_icount, TimersState),
|
||||
VMSTATE_END_OF_LIST()
|
||||
},
|
||||
.subsections = (const VMStateDescription*[]) {
|
||||
&icount_vmstate_warp_timer,
|
||||
&icount_vmstate_adjust_timers,
|
||||
&icount_vmstate_shift,
|
||||
NULL
|
||||
}
|
||||
};
|
||||
|
||||
static const VMStateDescription vmstate_timers = {
|
||||
.name = "timer",
|
||||
.version_id = 2,
|
||||
.minimum_version_id = 1,
|
||||
.fields = (VMStateField[]) {
|
||||
VMSTATE_INT64(cpu_ticks_offset, TimersState),
|
||||
VMSTATE_UNUSED(8),
|
||||
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
|
||||
VMSTATE_END_OF_LIST()
|
||||
},
|
||||
.subsections = (const VMStateDescription*[]) {
|
||||
&icount_vmstate_timers,
|
||||
NULL
|
||||
}
|
||||
};
|
||||
|
||||
void cpu_ticks_init(void)
|
||||
{
|
||||
seqlock_init(&timers_state.vm_clock_seqlock);
|
||||
qemu_spin_init(&timers_state.vm_clock_lock);
|
||||
vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
|
||||
cpu_throttle_init();
|
||||
}
|
||||
|
||||
void configure_icount(QemuOpts *opts, Error **errp)
|
||||
{
|
||||
const char *option = qemu_opt_get(opts, "shift");
|
||||
bool sleep = qemu_opt_get_bool(opts, "sleep", true);
|
||||
bool align = qemu_opt_get_bool(opts, "align", false);
|
||||
long time_shift = -1;
|
||||
|
||||
if (!option) {
|
||||
if (qemu_opt_get(opts, "align") != NULL) {
|
||||
error_setg(errp, "Please specify shift option when using align");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (align && !sleep) {
|
||||
error_setg(errp, "align=on and sleep=off are incompatible");
|
||||
return;
|
||||
}
|
||||
|
||||
if (strcmp(option, "auto") != 0) {
|
||||
if (qemu_strtol(option, NULL, 0, &time_shift) < 0
|
||||
|| time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
|
||||
error_setg(errp, "icount: Invalid shift value");
|
||||
return;
|
||||
}
|
||||
} else if (icount_align_option) {
|
||||
error_setg(errp, "shift=auto and align=on are incompatible");
|
||||
return;
|
||||
} else if (!icount_sleep) {
|
||||
error_setg(errp, "shift=auto and sleep=off are incompatible");
|
||||
return;
|
||||
}
|
||||
|
||||
icount_sleep = sleep;
|
||||
if (icount_sleep) {
|
||||
timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
|
||||
icount_timer_cb, NULL);
|
||||
}
|
||||
|
||||
icount_align_option = align;
|
||||
|
||||
if (time_shift >= 0) {
|
||||
timers_state.icount_time_shift = time_shift;
|
||||
use_icount = 1;
|
||||
return;
|
||||
}
|
||||
|
||||
use_icount = 2;
|
||||
|
||||
/* 125MIPS seems a reasonable initial guess at the guest speed.
|
||||
It will be corrected fairly quickly anyway. */
|
||||
timers_state.icount_time_shift = 3;
|
||||
|
||||
/* Have both realtime and virtual time triggers for speed adjustment.
|
||||
The realtime trigger catches emulated time passing too slowly,
|
||||
the virtual time trigger catches emulated time passing too fast.
|
||||
Realtime triggers occur even when idle, so use them less frequently
|
||||
than VM triggers. */
|
||||
timers_state.vm_clock_warp_start = -1;
|
||||
timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
|
||||
icount_adjust_rt, NULL);
|
||||
timer_mod(timers_state.icount_rt_timer,
|
||||
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
||||
timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
||||
icount_adjust_vm, NULL);
|
||||
timer_mod(timers_state.icount_vm_timer,
|
||||
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
||||
NANOSECONDS_PER_SECOND / 10);
|
||||
}
|
||||
|
||||
/***********************************************************/
|
||||
/* TCG vCPU kick timer
|
||||
*
|
||||
|
@ -854,35 +171,6 @@ static void qemu_cpu_kick_rr_cpus(void)
|
|||
};
|
||||
}
|
||||
|
||||
static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
|
||||
{
|
||||
}
|
||||
|
||||
void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
|
||||
{
|
||||
if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
|
||||
qemu_notify_event();
|
||||
return;
|
||||
}
|
||||
|
||||
if (qemu_in_vcpu_thread()) {
|
||||
/* A CPU is currently running; kick it back out to the
|
||||
* tcg_cpu_exec() loop so it will recalculate its
|
||||
* icount deadline immediately.
|
||||
*/
|
||||
qemu_cpu_kick(current_cpu);
|
||||
} else if (first_cpu) {
|
||||
/* qemu_cpu_kick is not enough to kick a halted CPU out of
|
||||
* qemu_tcg_wait_io_event. async_run_on_cpu, instead,
|
||||
* causes cpu_thread_is_idle to return false. This way,
|
||||
* handle_icount_deadline can run.
|
||||
* If we have no CPUs at all for some reason, we don't
|
||||
* need to do anything.
|
||||
*/
|
||||
async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
|
||||
}
|
||||
}
|
||||
|
||||
static void kick_tcg_thread(void *opaque)
|
||||
{
|
||||
timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
|
||||
|
@ -1288,7 +576,7 @@ static void notify_aio_contexts(void)
|
|||
static void handle_icount_deadline(void)
|
||||
{
|
||||
assert(qemu_in_vcpu_thread());
|
||||
if (use_icount) {
|
||||
if (icount_enabled()) {
|
||||
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
||||
QEMU_TIMER_ATTR_ALL);
|
||||
|
||||
|
@ -1300,7 +588,7 @@ static void handle_icount_deadline(void)
|
|||
|
||||
static void prepare_icount_for_run(CPUState *cpu)
|
||||
{
|
||||
if (use_icount) {
|
||||
if (icount_enabled()) {
|
||||
int insns_left;
|
||||
|
||||
/* These should always be cleared by process_icount_data after
|
||||
|
@ -1325,7 +613,7 @@ static void prepare_icount_for_run(CPUState *cpu)
|
|||
|
||||
static void process_icount_data(CPUState *cpu)
|
||||
{
|
||||
if (use_icount) {
|
||||
if (icount_enabled()) {
|
||||
/* Account for executed instructions */
|
||||
cpu_update_icount(cpu);
|
||||
|
||||
|
@ -1486,7 +774,7 @@ static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
|
|||
qatomic_mb_set(&cpu->exit_request, 0);
|
||||
}
|
||||
|
||||
if (use_icount && all_cpu_threads_idle()) {
|
||||
if (icount_enabled() && all_cpu_threads_idle()) {
|
||||
/*
|
||||
* When all cpus are sleeping (e.g in WFI), to avoid a deadlock
|
||||
* in the main_loop, wake it up in order to start the warp timer.
|
||||
|
@ -1639,7 +927,7 @@ static void *qemu_tcg_cpu_thread_fn(void *arg)
|
|||
CPUState *cpu = arg;
|
||||
|
||||
assert(tcg_enabled());
|
||||
g_assert(!use_icount);
|
||||
g_assert(!icount_enabled());
|
||||
|
||||
rcu_register_thread();
|
||||
tcg_register_thread();
|
||||
|
@ -2227,21 +1515,3 @@ void qmp_inject_nmi(Error **errp)
|
|||
nmi_monitor_handle(monitor_get_cpu_index(), errp);
|
||||
}
|
||||
|
||||
void dump_drift_info(void)
|
||||
{
|
||||
if (!use_icount) {
|
||||
return;
|
||||
}
|
||||
|
||||
qemu_printf("Host - Guest clock %"PRIi64" ms\n",
|
||||
(cpu_get_clock() - cpu_get_icount())/SCALE_MS);
|
||||
if (icount_align_option) {
|
||||
qemu_printf("Max guest delay %"PRIi64" ms\n",
|
||||
-max_delay / SCALE_MS);
|
||||
qemu_printf("Max guest advance %"PRIi64" ms\n",
|
||||
max_advance / SCALE_MS);
|
||||
} else {
|
||||
qemu_printf("Max guest delay NA\n");
|
||||
qemu_printf("Max guest advance NA\n");
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue