Merge commit 'df84f17' into HEAD

This merge fixes a semantic conflict with the trivial tree.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Paolo Bonzini 2019-10-26 15:36:22 +02:00
commit 673652a785
46 changed files with 2224 additions and 1034 deletions

View file

@ -92,6 +92,16 @@ config Q35
select SMBIOS
select FW_CFG_DMA
config MICROVM
bool
imply SERIAL_ISA
select ISA_BUS
select APIC
select IOAPIC
select I8259
select MC146818RTC
select VIRTIO_MMIO
config VTD
bool

View file

@ -1,8 +1,10 @@
obj-$(CONFIG_KVM) += kvm/
obj-y += e820_memory_layout.o multiboot.o
obj-y += x86.o
obj-y += pc.o
obj-$(CONFIG_I440FX) += pc_piix.o
obj-$(CONFIG_Q35) += pc_q35.o
obj-$(CONFIG_MICROVM) += microvm.o
obj-y += fw_cfg.o pc_sysfw.o
obj-y += x86-iommu.o
obj-$(CONFIG_VTD) += intel_iommu.o

View file

@ -361,6 +361,7 @@ static void
build_madt(GArray *table_data, BIOSLinker *linker, PCMachineState *pcms)
{
MachineClass *mc = MACHINE_GET_CLASS(pcms);
X86MachineState *x86ms = X86_MACHINE(pcms);
const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(MACHINE(pcms));
int madt_start = table_data->len;
AcpiDeviceIfClass *adevc = ACPI_DEVICE_IF_GET_CLASS(pcms->acpi_dev);
@ -390,7 +391,7 @@ build_madt(GArray *table_data, BIOSLinker *linker, PCMachineState *pcms)
io_apic->address = cpu_to_le32(IO_APIC_DEFAULT_ADDRESS);
io_apic->interrupt = cpu_to_le32(0);
if (pcms->apic_xrupt_override) {
if (x86ms->apic_xrupt_override) {
intsrcovr = acpi_data_push(table_data, sizeof *intsrcovr);
intsrcovr->type = ACPI_APIC_XRUPT_OVERRIDE;
intsrcovr->length = sizeof(*intsrcovr);
@ -1831,6 +1832,7 @@ build_dsdt(GArray *table_data, BIOSLinker *linker,
CrsRangeSet crs_range_set;
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
X86MachineState *x86ms = X86_MACHINE(machine);
AcpiMcfgInfo mcfg;
uint32_t nr_mem = machine->ram_slots;
int root_bus_limit = 0xFF;
@ -2103,7 +2105,7 @@ build_dsdt(GArray *table_data, BIOSLinker *linker,
* with half of the 16-bit control register. Hence, the total size
* of the i/o region used is FW_CFG_CTL_SIZE; when using DMA, the
* DMA control register is located at FW_CFG_DMA_IO_BASE + 4 */
uint8_t io_size = object_property_get_bool(OBJECT(pcms->fw_cfg),
uint8_t io_size = object_property_get_bool(OBJECT(x86ms->fw_cfg),
"dma_enabled", NULL) ?
ROUND_UP(FW_CFG_CTL_SIZE, 4) + sizeof(dma_addr_t) :
FW_CFG_CTL_SIZE;
@ -2336,6 +2338,7 @@ build_srat(GArray *table_data, BIOSLinker *linker, MachineState *machine)
int srat_start, numa_start, slots;
uint64_t mem_len, mem_base, next_base;
MachineClass *mc = MACHINE_GET_CLASS(machine);
X86MachineState *x86ms = X86_MACHINE(machine);
const CPUArchIdList *apic_ids = mc->possible_cpu_arch_ids(machine);
PCMachineState *pcms = PC_MACHINE(machine);
ram_addr_t hotplugabble_address_space_size =
@ -2406,16 +2409,16 @@ build_srat(GArray *table_data, BIOSLinker *linker, MachineState *machine)
}
/* Cut out the ACPI_PCI hole */
if (mem_base <= pcms->below_4g_mem_size &&
next_base > pcms->below_4g_mem_size) {
mem_len -= next_base - pcms->below_4g_mem_size;
if (mem_base <= x86ms->below_4g_mem_size &&
next_base > x86ms->below_4g_mem_size) {
mem_len -= next_base - x86ms->below_4g_mem_size;
if (mem_len > 0) {
numamem = acpi_data_push(table_data, sizeof *numamem);
build_srat_memory(numamem, mem_base, mem_len, i - 1,
MEM_AFFINITY_ENABLED);
}
mem_base = 1ULL << 32;
mem_len = next_base - pcms->below_4g_mem_size;
mem_len = next_base - x86ms->below_4g_mem_size;
next_base = mem_base + mem_len;
}
@ -2634,6 +2637,7 @@ void acpi_build(AcpiBuildTables *tables, MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
X86MachineState *x86ms = X86_MACHINE(machine);
GArray *table_offsets;
unsigned facs, dsdt, rsdt, fadt;
AcpiPmInfo pm;
@ -2795,7 +2799,7 @@ void acpi_build(AcpiBuildTables *tables, MachineState *machine)
*/
int legacy_aml_len =
pcmc->legacy_acpi_table_size +
ACPI_BUILD_LEGACY_CPU_AML_SIZE * pcms->apic_id_limit;
ACPI_BUILD_LEGACY_CPU_AML_SIZE * x86ms->apic_id_limit;
int legacy_table_size =
ROUND_UP(tables_blob->len - aml_len + legacy_aml_len,
ACPI_BUILD_ALIGN_SIZE);
@ -2885,13 +2889,14 @@ void acpi_setup(void)
{
PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
X86MachineState *x86ms = X86_MACHINE(pcms);
AcpiBuildTables tables;
AcpiBuildState *build_state;
Object *vmgenid_dev;
TPMIf *tpm;
static FwCfgTPMConfig tpm_config;
if (!pcms->fw_cfg) {
if (!x86ms->fw_cfg) {
ACPI_BUILD_DPRINTF("No fw cfg. Bailing out.\n");
return;
}
@ -2922,7 +2927,7 @@ void acpi_setup(void)
acpi_add_rom_blob(acpi_build_update, build_state,
tables.linker->cmd_blob, "etc/table-loader", 0);
fw_cfg_add_file(pcms->fw_cfg, ACPI_BUILD_TPMLOG_FILE,
fw_cfg_add_file(x86ms->fw_cfg, ACPI_BUILD_TPMLOG_FILE,
tables.tcpalog->data, acpi_data_len(tables.tcpalog));
tpm = tpm_find();
@ -2932,13 +2937,13 @@ void acpi_setup(void)
.tpm_version = tpm_get_version(tpm),
.tpmppi_version = TPM_PPI_VERSION_1_30
};
fw_cfg_add_file(pcms->fw_cfg, "etc/tpm/config",
fw_cfg_add_file(x86ms->fw_cfg, "etc/tpm/config",
&tpm_config, sizeof tpm_config);
}
vmgenid_dev = find_vmgenid_dev();
if (vmgenid_dev) {
vmgenid_add_fw_cfg(VMGENID(vmgenid_dev), pcms->fw_cfg,
vmgenid_add_fw_cfg(VMGENID(vmgenid_dev), x86ms->fw_cfg,
tables.vmgenid);
}
@ -2951,7 +2956,7 @@ void acpi_setup(void)
uint32_t rsdp_size = acpi_data_len(tables.rsdp);
build_state->rsdp = g_memdup(tables.rsdp->data, rsdp_size);
fw_cfg_add_file_callback(pcms->fw_cfg, ACPI_BUILD_RSDP_FILE,
fw_cfg_add_file_callback(x86ms->fw_cfg, ACPI_BUILD_RSDP_FILE,
acpi_build_update, NULL, build_state,
build_state->rsdp, rsdp_size, true);
build_state->rsdp_mr = NULL;

View file

@ -1540,6 +1540,7 @@ static void amdvi_realize(DeviceState *dev, Error **err)
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
MachineState *ms = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(ms);
X86MachineState *x86ms = X86_MACHINE(ms);
PCIBus *bus = pcms->bus;
s->iotlb = g_hash_table_new_full(amdvi_uint64_hash,
@ -1568,7 +1569,7 @@ static void amdvi_realize(DeviceState *dev, Error **err)
}
/* Pseudo address space under root PCI bus. */
pcms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
x86ms->ioapic_as = amdvi_host_dma_iommu(bus, s, AMDVI_IOAPIC_SB_DEVID);
/* set up MMIO */
memory_region_init_io(&s->mmio, OBJECT(s), &mmio_mem_ops, s, "amdvi-mmio",

View file

@ -3733,6 +3733,7 @@ static void vtd_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
PCMachineState *pcms = PC_MACHINE(ms);
X86MachineState *x86ms = X86_MACHINE(ms);
PCIBus *bus = pcms->bus;
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
X86IOMMUState *x86_iommu = X86_IOMMU_DEVICE(dev);
@ -3773,7 +3774,7 @@ static void vtd_realize(DeviceState *dev, Error **errp)
sysbus_mmio_map(SYS_BUS_DEVICE(s), 0, Q35_HOST_BRIDGE_IOMMU_ADDR);
pci_setup_iommu(bus, vtd_host_dma_iommu, dev);
/* Pseudo address space under root PCI bus. */
pcms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
x86ms->ioapic_as = vtd_host_dma_iommu(bus, s, Q35_PSEUDO_DEVFN_IOAPIC);
qemu_add_machine_init_done_notifier(&vtd_machine_done_notify);
}

572
hw/i386/microvm.c Normal file
View file

@ -0,0 +1,572 @@
/*
* Copyright (c) 2018 Intel Corporation
* Copyright (c) 2019 Red Hat, Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qapi/qapi-visit-common.h"
#include "sysemu/sysemu.h"
#include "sysemu/cpus.h"
#include "sysemu/numa.h"
#include "sysemu/reset.h"
#include "hw/loader.h"
#include "hw/irq.h"
#include "hw/kvm/clock.h"
#include "hw/i386/microvm.h"
#include "hw/i386/x86.h"
#include "hw/i386/pc.h"
#include "target/i386/cpu.h"
#include "hw/timer/i8254.h"
#include "hw/rtc/mc146818rtc.h"
#include "hw/char/serial.h"
#include "hw/i386/topology.h"
#include "hw/i386/e820_memory_layout.h"
#include "hw/i386/fw_cfg.h"
#include "hw/virtio/virtio-mmio.h"
#include "cpu.h"
#include "elf.h"
#include "kvm_i386.h"
#include "hw/xen/start_info.h"
#define MICROVM_BIOS_FILENAME "bios-microvm.bin"
static void microvm_set_rtc(MicrovmMachineState *mms, ISADevice *s)
{
X86MachineState *x86ms = X86_MACHINE(mms);
int val;
val = MIN(x86ms->below_4g_mem_size / KiB, 640);
rtc_set_memory(s, 0x15, val);
rtc_set_memory(s, 0x16, val >> 8);
/* extended memory (next 64MiB) */
if (x86ms->below_4g_mem_size > 1 * MiB) {
val = (x86ms->below_4g_mem_size - 1 * MiB) / KiB;
} else {
val = 0;
}
if (val > 65535) {
val = 65535;
}
rtc_set_memory(s, 0x17, val);
rtc_set_memory(s, 0x18, val >> 8);
rtc_set_memory(s, 0x30, val);
rtc_set_memory(s, 0x31, val >> 8);
/* memory between 16MiB and 4GiB */
if (x86ms->below_4g_mem_size > 16 * MiB) {
val = (x86ms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
} else {
val = 0;
}
if (val > 65535) {
val = 65535;
}
rtc_set_memory(s, 0x34, val);
rtc_set_memory(s, 0x35, val >> 8);
/* memory above 4GiB */
val = x86ms->above_4g_mem_size / 65536;
rtc_set_memory(s, 0x5b, val);
rtc_set_memory(s, 0x5c, val >> 8);
rtc_set_memory(s, 0x5d, val >> 16);
}
static void microvm_gsi_handler(void *opaque, int n, int level)
{
GSIState *s = opaque;
qemu_set_irq(s->ioapic_irq[n], level);
}
static void microvm_devices_init(MicrovmMachineState *mms)
{
X86MachineState *x86ms = X86_MACHINE(mms);
ISABus *isa_bus;
ISADevice *rtc_state;
GSIState *gsi_state;
int i;
/* Core components */
gsi_state = g_malloc0(sizeof(*gsi_state));
if (mms->pic == ON_OFF_AUTO_ON || mms->pic == ON_OFF_AUTO_AUTO) {
x86ms->gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
} else {
x86ms->gsi = qemu_allocate_irqs(microvm_gsi_handler,
gsi_state, GSI_NUM_PINS);
}
isa_bus = isa_bus_new(NULL, get_system_memory(), get_system_io(),
&error_abort);
isa_bus_irqs(isa_bus, x86ms->gsi);
ioapic_init_gsi(gsi_state, "machine");
kvmclock_create();
for (i = 0; i < VIRTIO_NUM_TRANSPORTS; i++) {
sysbus_create_simple("virtio-mmio",
VIRTIO_MMIO_BASE + i * 512,
x86ms->gsi[VIRTIO_IRQ_BASE + i]);
}
/* Optional and legacy devices */
if (mms->pic == ON_OFF_AUTO_ON || mms->pic == ON_OFF_AUTO_AUTO) {
qemu_irq *i8259;
i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq());
for (i = 0; i < ISA_NUM_IRQS; i++) {
gsi_state->i8259_irq[i] = i8259[i];
}
g_free(i8259);
}
if (mms->pit == ON_OFF_AUTO_ON || mms->pit == ON_OFF_AUTO_AUTO) {
if (kvm_pit_in_kernel()) {
kvm_pit_init(isa_bus, 0x40);
} else {
i8254_pit_init(isa_bus, 0x40, 0, NULL);
}
}
if (mms->rtc == ON_OFF_AUTO_ON ||
(mms->rtc == ON_OFF_AUTO_AUTO && !kvm_enabled())) {
rtc_state = mc146818_rtc_init(isa_bus, 2000, NULL);
microvm_set_rtc(mms, rtc_state);
}
if (mms->isa_serial) {
serial_hds_isa_init(isa_bus, 0, 1);
}
if (bios_name == NULL) {
bios_name = MICROVM_BIOS_FILENAME;
}
x86_bios_rom_init(get_system_memory(), true);
}
static void microvm_memory_init(MicrovmMachineState *mms)
{
MachineState *machine = MACHINE(mms);
X86MachineState *x86ms = X86_MACHINE(mms);
MemoryRegion *ram, *ram_below_4g, *ram_above_4g;
MemoryRegion *system_memory = get_system_memory();
FWCfgState *fw_cfg;
ram_addr_t lowmem;
int i;
/*
* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory
* and 256 Mbytes for PCI Express Enhanced Configuration Access Mapping
* also known as MMCFG).
* If it doesn't, we need to split it in chunks below and above 4G.
* In any case, try to make sure that guest addresses aligned at
* 1G boundaries get mapped to host addresses aligned at 1G boundaries.
*/
if (machine->ram_size >= 0xb0000000) {
lowmem = 0x80000000;
} else {
lowmem = 0xb0000000;
}
/*
* Handle the machine opt max-ram-below-4g. It is basically doing
* min(qemu limit, user limit).
*/
if (!x86ms->max_ram_below_4g) {
x86ms->max_ram_below_4g = 4 * GiB;
}
if (lowmem > x86ms->max_ram_below_4g) {
lowmem = x86ms->max_ram_below_4g;
if (machine->ram_size - lowmem > lowmem &&
lowmem & (1 * GiB - 1)) {
warn_report("There is possibly poor performance as the ram size "
" (0x%" PRIx64 ") is more then twice the size of"
" max-ram-below-4g (%"PRIu64") and"
" max-ram-below-4g is not a multiple of 1G.",
(uint64_t)machine->ram_size, x86ms->max_ram_below_4g);
}
}
if (machine->ram_size > lowmem) {
x86ms->above_4g_mem_size = machine->ram_size - lowmem;
x86ms->below_4g_mem_size = lowmem;
} else {
x86ms->above_4g_mem_size = 0;
x86ms->below_4g_mem_size = machine->ram_size;
}
ram = g_malloc(sizeof(*ram));
memory_region_allocate_system_memory(ram, NULL, "microvm.ram",
machine->ram_size);
ram_below_4g = g_malloc(sizeof(*ram_below_4g));
memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
0, x86ms->below_4g_mem_size);
memory_region_add_subregion(system_memory, 0, ram_below_4g);
e820_add_entry(0, x86ms->below_4g_mem_size, E820_RAM);
if (x86ms->above_4g_mem_size > 0) {
ram_above_4g = g_malloc(sizeof(*ram_above_4g));
memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
x86ms->below_4g_mem_size,
x86ms->above_4g_mem_size);
memory_region_add_subregion(system_memory, 0x100000000ULL,
ram_above_4g);
e820_add_entry(0x100000000ULL, x86ms->above_4g_mem_size, E820_RAM);
}
fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4,
&address_space_memory);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, machine->smp.cpus);
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, machine->smp.max_cpus);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)machine->ram_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
&e820_reserve, sizeof(e820_reserve));
fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
sizeof(struct e820_entry) * e820_get_num_entries());
rom_set_fw(fw_cfg);
if (machine->kernel_filename != NULL) {
x86_load_linux(x86ms, fw_cfg, 0, true, true);
}
if (mms->option_roms) {
for (i = 0; i < nb_option_roms; i++) {
rom_add_option(option_rom[i].name, option_rom[i].bootindex);
}
}
x86ms->fw_cfg = fw_cfg;
x86ms->ioapic_as = &address_space_memory;
}
static gchar *microvm_get_mmio_cmdline(gchar *name)
{
gchar *cmdline;
gchar *separator;
long int index;
int ret;
separator = g_strrstr(name, ".");
if (!separator) {
return NULL;
}
if (qemu_strtol(separator + 1, NULL, 10, &index) != 0) {
return NULL;
}
cmdline = g_malloc0(VIRTIO_CMDLINE_MAXLEN);
ret = g_snprintf(cmdline, VIRTIO_CMDLINE_MAXLEN,
" virtio_mmio.device=512@0x%lx:%ld",
VIRTIO_MMIO_BASE + index * 512,
VIRTIO_IRQ_BASE + index);
if (ret < 0 || ret >= VIRTIO_CMDLINE_MAXLEN) {
g_free(cmdline);
return NULL;
}
return cmdline;
}
static void microvm_fix_kernel_cmdline(MachineState *machine)
{
X86MachineState *x86ms = X86_MACHINE(machine);
BusState *bus;
BusChild *kid;
char *cmdline;
/*
* Find MMIO transports with attached devices, and add them to the kernel
* command line.
*
* Yes, this is a hack, but one that heavily improves the UX without
* introducing any significant issues.
*/
cmdline = g_strdup(machine->kernel_cmdline);
bus = sysbus_get_default();
QTAILQ_FOREACH(kid, &bus->children, sibling) {
DeviceState *dev = kid->child;
ObjectClass *class = object_get_class(OBJECT(dev));
if (class == object_class_by_name(TYPE_VIRTIO_MMIO)) {
VirtIOMMIOProxy *mmio = VIRTIO_MMIO(OBJECT(dev));
VirtioBusState *mmio_virtio_bus = &mmio->bus;
BusState *mmio_bus = &mmio_virtio_bus->parent_obj;
if (!QTAILQ_EMPTY(&mmio_bus->children)) {
gchar *mmio_cmdline = microvm_get_mmio_cmdline(mmio_bus->name);
if (mmio_cmdline) {
char *newcmd = g_strjoin(NULL, cmdline, mmio_cmdline, NULL);
g_free(mmio_cmdline);
g_free(cmdline);
cmdline = newcmd;
}
}
}
}
fw_cfg_modify_i32(x86ms->fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(cmdline) + 1);
fw_cfg_modify_string(x86ms->fw_cfg, FW_CFG_CMDLINE_DATA, cmdline);
}
static void microvm_machine_state_init(MachineState *machine)
{
MicrovmMachineState *mms = MICROVM_MACHINE(machine);
X86MachineState *x86ms = X86_MACHINE(machine);
Error *local_err = NULL;
microvm_memory_init(mms);
x86_cpus_init(x86ms, CPU_VERSION_LATEST);
if (local_err) {
error_report_err(local_err);
exit(1);
}
microvm_devices_init(mms);
}
static void microvm_machine_reset(MachineState *machine)
{
MicrovmMachineState *mms = MICROVM_MACHINE(machine);
CPUState *cs;
X86CPU *cpu;
if (machine->kernel_filename != NULL &&
mms->auto_kernel_cmdline && !mms->kernel_cmdline_fixed) {
microvm_fix_kernel_cmdline(machine);
mms->kernel_cmdline_fixed = true;
}
qemu_devices_reset();
CPU_FOREACH(cs) {
cpu = X86_CPU(cs);
if (cpu->apic_state) {
device_reset(cpu->apic_state);
}
}
}
static void microvm_machine_get_pic(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
OnOffAuto pic = mms->pic;
visit_type_OnOffAuto(v, name, &pic, errp);
}
static void microvm_machine_set_pic(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
visit_type_OnOffAuto(v, name, &mms->pic, errp);
}
static void microvm_machine_get_pit(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
OnOffAuto pit = mms->pit;
visit_type_OnOffAuto(v, name, &pit, errp);
}
static void microvm_machine_set_pit(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
visit_type_OnOffAuto(v, name, &mms->pit, errp);
}
static void microvm_machine_get_rtc(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
OnOffAuto rtc = mms->rtc;
visit_type_OnOffAuto(v, name, &rtc, errp);
}
static void microvm_machine_set_rtc(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
visit_type_OnOffAuto(v, name, &mms->rtc, errp);
}
static bool microvm_machine_get_isa_serial(Object *obj, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
return mms->isa_serial;
}
static void microvm_machine_set_isa_serial(Object *obj, bool value,
Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
mms->isa_serial = value;
}
static bool microvm_machine_get_option_roms(Object *obj, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
return mms->option_roms;
}
static void microvm_machine_set_option_roms(Object *obj, bool value,
Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
mms->option_roms = value;
}
static bool microvm_machine_get_auto_kernel_cmdline(Object *obj, Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
return mms->auto_kernel_cmdline;
}
static void microvm_machine_set_auto_kernel_cmdline(Object *obj, bool value,
Error **errp)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
mms->auto_kernel_cmdline = value;
}
static void microvm_machine_initfn(Object *obj)
{
MicrovmMachineState *mms = MICROVM_MACHINE(obj);
/* Configuration */
mms->pic = ON_OFF_AUTO_AUTO;
mms->pit = ON_OFF_AUTO_AUTO;
mms->rtc = ON_OFF_AUTO_AUTO;
mms->isa_serial = true;
mms->option_roms = true;
mms->auto_kernel_cmdline = true;
/* State */
mms->kernel_cmdline_fixed = false;
}
static void microvm_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->init = microvm_machine_state_init;
mc->family = "microvm_i386";
mc->desc = "microvm (i386)";
mc->units_per_default_bus = 1;
mc->no_floppy = 1;
mc->max_cpus = 288;
mc->has_hotpluggable_cpus = false;
mc->auto_enable_numa_with_memhp = false;
mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
mc->nvdimm_supported = false;
/* Avoid relying too much on kernel components */
mc->default_kernel_irqchip_split = true;
/* Machine class handlers */
mc->reset = microvm_machine_reset;
object_class_property_add(oc, MICROVM_MACHINE_PIC, "OnOffAuto",
microvm_machine_get_pic,
microvm_machine_set_pic,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, MICROVM_MACHINE_PIC,
"Enable i8259 PIC", &error_abort);
object_class_property_add(oc, MICROVM_MACHINE_PIT, "OnOffAuto",
microvm_machine_get_pit,
microvm_machine_set_pit,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, MICROVM_MACHINE_PIT,
"Enable i8254 PIT", &error_abort);
object_class_property_add(oc, MICROVM_MACHINE_RTC, "OnOffAuto",
microvm_machine_get_rtc,
microvm_machine_set_rtc,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, MICROVM_MACHINE_RTC,
"Enable MC146818 RTC", &error_abort);
object_class_property_add_bool(oc, MICROVM_MACHINE_ISA_SERIAL,
microvm_machine_get_isa_serial,
microvm_machine_set_isa_serial,
&error_abort);
object_class_property_set_description(oc, MICROVM_MACHINE_ISA_SERIAL,
"Set off to disable the instantiation an ISA serial port",
&error_abort);
object_class_property_add_bool(oc, MICROVM_MACHINE_OPTION_ROMS,
microvm_machine_get_option_roms,
microvm_machine_set_option_roms,
&error_abort);
object_class_property_set_description(oc, MICROVM_MACHINE_OPTION_ROMS,
"Set off to disable loading option ROMs", &error_abort);
object_class_property_add_bool(oc, MICROVM_MACHINE_AUTO_KERNEL_CMDLINE,
microvm_machine_get_auto_kernel_cmdline,
microvm_machine_set_auto_kernel_cmdline,
&error_abort);
object_class_property_set_description(oc,
MICROVM_MACHINE_AUTO_KERNEL_CMDLINE,
"Set off to disable adding virtio-mmio devices to the kernel cmdline",
&error_abort);
}
static const TypeInfo microvm_machine_info = {
.name = TYPE_MICROVM_MACHINE,
.parent = TYPE_X86_MACHINE,
.instance_size = sizeof(MicrovmMachineState),
.instance_init = microvm_machine_initfn,
.class_size = sizeof(MicrovmMachineClass),
.class_init = microvm_class_init,
.interfaces = (InterfaceInfo[]) {
{ }
},
};
static void microvm_machine_init(void)
{
type_register_static(&microvm_machine_info);
}
type_init(microvm_machine_init);

File diff suppressed because it is too large Load diff

View file

@ -27,6 +27,7 @@
#include "qemu/units.h"
#include "hw/loader.h"
#include "hw/i386/x86.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic.h"
#include "hw/display/ramfb.h"
@ -56,7 +57,6 @@
#endif
#include "migration/global_state.h"
#include "migration/misc.h"
#include "kvm_i386.h"
#include "sysemu/numa.h"
#define MAX_IDE_BUS 2
@ -73,6 +73,7 @@ static void pc_init1(MachineState *machine,
{
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
X86MachineState *x86ms = X86_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *system_io = get_system_io();
int i;
@ -80,7 +81,6 @@ static void pc_init1(MachineState *machine,
ISABus *isa_bus;
PCII440FXState *i440fx_state;
int piix3_devfn = -1;
qemu_irq *i8259;
qemu_irq smi_irq;
GSIState *gsi_state;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
@ -125,11 +125,11 @@ static void pc_init1(MachineState *machine,
if (xen_enabled()) {
xen_hvm_init(pcms, &ram_memory);
} else {
if (!pcms->max_ram_below_4g) {
pcms->max_ram_below_4g = 0xe0000000; /* default: 3.5G */
if (!x86ms->max_ram_below_4g) {
x86ms->max_ram_below_4g = 0xe0000000; /* default: 3.5G */
}
lowmem = pcms->max_ram_below_4g;
if (machine->ram_size >= pcms->max_ram_below_4g) {
lowmem = x86ms->max_ram_below_4g;
if (machine->ram_size >= x86ms->max_ram_below_4g) {
if (pcmc->gigabyte_align) {
if (lowmem > 0xc0000000) {
lowmem = 0xc0000000;
@ -138,21 +138,21 @@ static void pc_init1(MachineState *machine,
warn_report("Large machine and max_ram_below_4g "
"(%" PRIu64 ") not a multiple of 1G; "
"possible bad performance.",
pcms->max_ram_below_4g);
x86ms->max_ram_below_4g);
}
}
}
if (machine->ram_size >= lowmem) {
pcms->above_4g_mem_size = machine->ram_size - lowmem;
pcms->below_4g_mem_size = lowmem;
x86ms->above_4g_mem_size = machine->ram_size - lowmem;
x86ms->below_4g_mem_size = lowmem;
} else {
pcms->above_4g_mem_size = 0;
pcms->below_4g_mem_size = machine->ram_size;
x86ms->above_4g_mem_size = 0;
x86ms->below_4g_mem_size = machine->ram_size;
}
}
pc_cpus_init(pcms);
x86_cpus_init(x86ms, pcmc->default_cpu_version);
if (kvm_enabled() && pcmc->kvmclock_enabled) {
kvmclock_create();
@ -187,22 +187,15 @@ static void pc_init1(MachineState *machine,
xen_load_linux(pcms);
}
gsi_state = g_malloc0(sizeof(*gsi_state));
if (kvm_ioapic_in_kernel()) {
kvm_pc_setup_irq_routing(pcmc->pci_enabled);
pcms->gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state,
GSI_NUM_PINS);
} else {
pcms->gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
}
gsi_state = pc_gsi_create(&x86ms->gsi, pcmc->pci_enabled);
if (pcmc->pci_enabled) {
pci_bus = i440fx_init(host_type,
pci_type,
&i440fx_state, &piix3_devfn, &isa_bus, pcms->gsi,
&i440fx_state, &piix3_devfn, &isa_bus, x86ms->gsi,
system_memory, system_io, machine->ram_size,
pcms->below_4g_mem_size,
pcms->above_4g_mem_size,
x86ms->below_4g_mem_size,
x86ms->above_4g_mem_size,
pci_memory, ram_memory);
pcms->bus = pci_bus;
} else {
@ -212,25 +205,15 @@ static void pc_init1(MachineState *machine,
&error_abort);
no_hpet = 1;
}
isa_bus_irqs(isa_bus, pcms->gsi);
isa_bus_irqs(isa_bus, x86ms->gsi);
if (kvm_pic_in_kernel()) {
i8259 = kvm_i8259_init(isa_bus);
} else if (xen_enabled()) {
i8259 = xen_interrupt_controller_init();
} else {
i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq());
}
pc_i8259_create(isa_bus, gsi_state->i8259_irq);
for (i = 0; i < ISA_NUM_IRQS; i++) {
gsi_state->i8259_irq[i] = i8259[i];
}
g_free(i8259);
if (pcmc->pci_enabled) {
ioapic_init_gsi(gsi_state, "i440fx");
}
pc_register_ferr_irq(pcms->gsi[13]);
pc_register_ferr_irq(x86ms->gsi[13]);
pc_vga_init(isa_bus, pcmc->pci_enabled ? pci_bus : NULL);
@ -240,7 +223,7 @@ static void pc_init1(MachineState *machine,
}
/* init basic PC hardware */
pc_basic_device_init(isa_bus, pcms->gsi, &rtc_state, true,
pc_basic_device_init(isa_bus, x86ms->gsi, &rtc_state, true,
(pcms->vmport != ON_OFF_AUTO_ON), pcms->pit_enabled,
0x4);
@ -287,7 +270,7 @@ else {
smi_irq = qemu_allocate_irq(pc_acpi_smi_interrupt, first_cpu, 0);
/* TODO: Populate SPD eeprom data. */
pcms->smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
pcms->gsi[9], smi_irq,
x86ms->gsi[9], smi_irq,
pc_machine_is_smm_enabled(pcms),
&piix4_pm);
smbus_eeprom_init(pcms->smbus, 8, NULL, 0);
@ -303,7 +286,7 @@ else {
if (machine->nvdimms_state->is_enabled) {
nvdimm_init_acpi_state(machine->nvdimms_state, system_io,
pcms->fw_cfg, OBJECT(pcms));
x86ms->fw_cfg, OBJECT(pcms));
}
}
@ -728,7 +711,7 @@ DEFINE_I440FX_MACHINE(v1_4, "pc-i440fx-1.4", pc_compat_1_4_fn,
static void pc_i440fx_1_3_machine_options(MachineClass *m)
{
PCMachineClass *pcmc = PC_MACHINE_CLASS(m);
X86MachineClass *x86mc = X86_MACHINE_CLASS(m);
static GlobalProperty compat[] = {
PC_CPU_MODEL_IDS("1.3.0")
{ "usb-tablet", "usb_version", "1" },
@ -739,7 +722,7 @@ static void pc_i440fx_1_3_machine_options(MachineClass *m)
pc_i440fx_1_4_machine_options(m);
m->hw_version = "1.3.0";
pcmc->compat_apic_id_mode = true;
x86mc->compat_apic_id_mode = true;
compat_props_add(m->compat_props, compat, G_N_ELEMENTS(compat));
}

View file

@ -36,11 +36,11 @@
#include "hw/rtc/mc146818rtc.h"
#include "hw/xen/xen.h"
#include "sysemu/kvm.h"
#include "kvm_i386.h"
#include "hw/kvm/clock.h"
#include "hw/pci-host/q35.h"
#include "hw/qdev-properties.h"
#include "exec/address-spaces.h"
#include "hw/i386/x86.h"
#include "hw/i386/pc.h"
#include "hw/i386/ich9.h"
#include "hw/i386/amd_iommu.h"
@ -115,6 +115,7 @@ static void pc_q35_init(MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
X86MachineState *x86ms = X86_MACHINE(machine);
Q35PCIHost *q35_host;
PCIHostState *phb;
PCIBus *host_bus;
@ -128,7 +129,6 @@ static void pc_q35_init(MachineState *machine)
MemoryRegion *ram_memory;
GSIState *gsi_state;
ISABus *isa_bus;
qemu_irq *i8259;
int i;
ICH9LPCState *ich9_lpc;
PCIDevice *ahci;
@ -152,34 +152,34 @@ static void pc_q35_init(MachineState *machine)
/* Handle the machine opt max-ram-below-4g. It is basically doing
* min(qemu limit, user limit).
*/
if (!pcms->max_ram_below_4g) {
pcms->max_ram_below_4g = 1ULL << 32; /* default: 4G */;
if (!x86ms->max_ram_below_4g) {
x86ms->max_ram_below_4g = 4 * GiB;
}
if (lowmem > pcms->max_ram_below_4g) {
lowmem = pcms->max_ram_below_4g;
if (lowmem > x86ms->max_ram_below_4g) {
lowmem = x86ms->max_ram_below_4g;
if (machine->ram_size - lowmem > lowmem &&
lowmem & (1 * GiB - 1)) {
warn_report("There is possibly poor performance as the ram size "
" (0x%" PRIx64 ") is more then twice the size of"
" max-ram-below-4g (%"PRIu64") and"
" max-ram-below-4g is not a multiple of 1G.",
(uint64_t)machine->ram_size, pcms->max_ram_below_4g);
(uint64_t)machine->ram_size, x86ms->max_ram_below_4g);
}
}
if (machine->ram_size >= lowmem) {
pcms->above_4g_mem_size = machine->ram_size - lowmem;
pcms->below_4g_mem_size = lowmem;
x86ms->above_4g_mem_size = machine->ram_size - lowmem;
x86ms->below_4g_mem_size = lowmem;
} else {
pcms->above_4g_mem_size = 0;
pcms->below_4g_mem_size = machine->ram_size;
x86ms->above_4g_mem_size = 0;
x86ms->below_4g_mem_size = machine->ram_size;
}
if (xen_enabled()) {
xen_hvm_init(pcms, &ram_memory);
}
pc_cpus_init(pcms);
x86_cpus_init(x86ms, pcmc->default_cpu_version);
kvmclock_create();
@ -209,16 +209,6 @@ static void pc_q35_init(MachineState *machine)
rom_memory, &ram_memory);
}
/* irq lines */
gsi_state = g_malloc0(sizeof(*gsi_state));
if (kvm_ioapic_in_kernel()) {
kvm_pc_setup_irq_routing(pcmc->pci_enabled);
pcms->gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state,
GSI_NUM_PINS);
} else {
pcms->gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
}
/* create pci host bus */
q35_host = Q35_HOST_DEVICE(qdev_create(NULL, TYPE_Q35_HOST_DEVICE));
@ -231,9 +221,9 @@ static void pc_q35_init(MachineState *machine)
MCH_HOST_PROP_SYSTEM_MEM, NULL);
object_property_set_link(OBJECT(q35_host), OBJECT(system_io),
MCH_HOST_PROP_IO_MEM, NULL);
object_property_set_int(OBJECT(q35_host), pcms->below_4g_mem_size,
object_property_set_int(OBJECT(q35_host), x86ms->below_4g_mem_size,
PCI_HOST_BELOW_4G_MEM_SIZE, NULL);
object_property_set_int(OBJECT(q35_host), pcms->above_4g_mem_size,
object_property_set_int(OBJECT(q35_host), x86ms->above_4g_mem_size,
PCI_HOST_ABOVE_4G_MEM_SIZE, NULL);
/* pci */
qdev_init_nofail(DEVICE(q35_host));
@ -252,34 +242,26 @@ static void pc_q35_init(MachineState *machine)
object_property_set_link(OBJECT(machine), OBJECT(lpc),
PC_MACHINE_ACPI_DEVICE_PROP, &error_abort);
/* irq lines */
gsi_state = pc_gsi_create(&x86ms->gsi, pcmc->pci_enabled);
ich9_lpc = ICH9_LPC_DEVICE(lpc);
lpc_dev = DEVICE(lpc);
for (i = 0; i < GSI_NUM_PINS; i++) {
qdev_connect_gpio_out_named(lpc_dev, ICH9_GPIO_GSI, i, pcms->gsi[i]);
qdev_connect_gpio_out_named(lpc_dev, ICH9_GPIO_GSI, i, x86ms->gsi[i]);
}
pci_bus_irqs(host_bus, ich9_lpc_set_irq, ich9_lpc_map_irq, ich9_lpc,
ICH9_LPC_NB_PIRQS);
pci_bus_set_route_irq_fn(host_bus, ich9_route_intx_pin_to_irq);
isa_bus = ich9_lpc->isa_bus;
if (kvm_pic_in_kernel()) {
i8259 = kvm_i8259_init(isa_bus);
} else if (xen_enabled()) {
i8259 = xen_interrupt_controller_init();
} else {
i8259 = i8259_init(isa_bus, pc_allocate_cpu_irq());
}
for (i = 0; i < ISA_NUM_IRQS; i++) {
gsi_state->i8259_irq[i] = i8259[i];
}
g_free(i8259);
pc_i8259_create(isa_bus, gsi_state->i8259_irq);
if (pcmc->pci_enabled) {
ioapic_init_gsi(gsi_state, "q35");
}
pc_register_ferr_irq(pcms->gsi[13]);
pc_register_ferr_irq(x86ms->gsi[13]);
assert(pcms->vmport != ON_OFF_AUTO__MAX);
if (pcms->vmport == ON_OFF_AUTO_AUTO) {
@ -287,7 +269,7 @@ static void pc_q35_init(MachineState *machine)
}
/* init basic PC hardware */
pc_basic_device_init(isa_bus, pcms->gsi, &rtc_state, !mc->no_floppy,
pc_basic_device_init(isa_bus, x86ms->gsi, &rtc_state, !mc->no_floppy,
(pcms->vmport != ON_OFF_AUTO_ON), pcms->pit_enabled,
0xff0104);
@ -330,7 +312,7 @@ static void pc_q35_init(MachineState *machine)
if (machine->nvdimms_state->is_enabled) {
nvdimm_init_acpi_state(machine->nvdimms_state, system_io,
pcms->fw_cfg, OBJECT(pcms));
x86ms->fw_cfg, OBJECT(pcms));
}
}

View file

@ -31,6 +31,7 @@
#include "qemu/option.h"
#include "qemu/units.h"
#include "hw/sysbus.h"
#include "hw/i386/x86.h"
#include "hw/i386/pc.h"
#include "hw/loader.h"
#include "hw/qdev-properties.h"
@ -38,8 +39,6 @@
#include "hw/block/flash.h"
#include "sysemu/kvm.h"
#define BIOS_FILENAME "bios.bin"
/*
* We don't have a theoretically justifiable exact lower bound on the base
* address of any flash mapping. In practice, the IO-APIC MMIO range is
@ -211,59 +210,6 @@ static void pc_system_flash_map(PCMachineState *pcms,
}
}
static void old_pc_system_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
{
char *filename;
MemoryRegion *bios, *isa_bios;
int bios_size, isa_bios_size;
int ret;
/* BIOS load */
if (bios_name == NULL) {
bios_name = BIOS_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios = g_malloc(sizeof(*bios));
memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
if (!isapc_ram_fw) {
memory_region_set_readonly(bios, true);
}
ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
if (ret != 0) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
g_free(filename);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = MIN(bios_size, 128 * KiB);
isa_bios = g_malloc(sizeof(*isa_bios));
memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
bios_size - isa_bios_size, isa_bios_size);
memory_region_add_subregion_overlap(rom_memory,
0x100000 - isa_bios_size,
isa_bios,
1);
if (!isapc_ram_fw) {
memory_region_set_readonly(isa_bios, true);
}
/* map all the bios at the top of memory */
memory_region_add_subregion(rom_memory,
(uint32_t)(-bios_size),
bios);
}
void pc_system_firmware_init(PCMachineState *pcms,
MemoryRegion *rom_memory)
{
@ -272,7 +218,7 @@ void pc_system_firmware_init(PCMachineState *pcms,
BlockBackend *pflash_blk[ARRAY_SIZE(pcms->flash)];
if (!pcmc->pci_enabled) {
old_pc_system_rom_init(rom_memory, true);
x86_bios_rom_init(rom_memory, true);
return;
}
@ -293,7 +239,7 @@ void pc_system_firmware_init(PCMachineState *pcms,
if (!pflash_blk[0]) {
/* Machine property pflash0 not set, use ROM mode */
old_pc_system_rom_init(rom_memory, false);
x86_bios_rom_init(rom_memory, false);
} else {
if (kvm_enabled() && !kvm_readonly_mem_enabled()) {
/*

795
hw/i386/x86.c Normal file
View file

@ -0,0 +1,795 @@
/*
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2019 Red Hat, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/visitor.h"
#include "sysemu/qtest.h"
#include "sysemu/numa.h"
#include "sysemu/replay.h"
#include "sysemu/sysemu.h"
#include "hw/i386/x86.h"
#include "target/i386/cpu.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "hw/acpi/cpu_hotplug.h"
#include "hw/nmi.h"
#include "hw/loader.h"
#include "multiboot.h"
#include "elf.h"
#include "standard-headers/asm-x86/bootparam.h"
#define BIOS_FILENAME "bios.bin"
/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;
/*
* Calculates initial APIC ID for a specific CPU index
*
* Currently we need to be able to calculate the APIC ID from the CPU index
* alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
* no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
* all CPUs up to max_cpus.
*/
uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
unsigned int cpu_index)
{
MachineState *ms = MACHINE(x86ms);
X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
uint32_t correct_id;
static bool warned;
correct_id = x86_apicid_from_cpu_idx(x86ms->smp_dies, ms->smp.cores,
ms->smp.threads, cpu_index);
if (x86mc->compat_apic_id_mode) {
if (cpu_index != correct_id && !warned && !qtest_enabled()) {
error_report("APIC IDs set in compatibility mode, "
"CPU topology won't match the configuration");
warned = true;
}
return cpu_index;
} else {
return correct_id;
}
}
void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
{
Object *cpu = NULL;
Error *local_err = NULL;
CPUX86State *env = NULL;
cpu = object_new(MACHINE(x86ms)->cpu_type);
env = &X86_CPU(cpu)->env;
env->nr_dies = x86ms->smp_dies;
object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
object_property_set_bool(cpu, true, "realized", &local_err);
object_unref(cpu);
error_propagate(errp, local_err);
}
void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
{
int i;
const CPUArchIdList *possible_cpus;
MachineState *ms = MACHINE(x86ms);
MachineClass *mc = MACHINE_GET_CLASS(x86ms);
x86_cpu_set_default_version(default_cpu_version);
/*
* Calculates the limit to CPU APIC ID values
*
* Limit for the APIC ID value, so that all
* CPU APIC IDs are < x86ms->apic_id_limit.
*
* This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
*/
x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
ms->smp.max_cpus - 1) + 1;
possible_cpus = mc->possible_cpu_arch_ids(ms);
for (i = 0; i < ms->smp.cpus; i++) {
x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
}
}
CpuInstanceProperties
x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
{
X86CPUTopoInfo topo;
X86MachineState *x86ms = X86_MACHINE(ms);
assert(idx < ms->possible_cpus->len);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
x86ms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
return topo.pkg_id % ms->numa_state->num_nodes;
}
const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
{
X86MachineState *x86ms = X86_MACHINE(ms);
int i;
unsigned int max_cpus = ms->smp.max_cpus;
if (ms->possible_cpus) {
/*
* make sure that max_cpus hasn't changed since the first use, i.e.
* -smp hasn't been parsed after it
*/
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (i = 0; i < ms->possible_cpus->len; i++) {
X86CPUTopoInfo topo;
ms->possible_cpus->cpus[i].type = ms->cpu_type;
ms->possible_cpus->cpus[i].vcpus_count = 1;
ms->possible_cpus->cpus[i].arch_id =
x86_cpu_apic_id_from_index(x86ms, i);
x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
x86ms->smp_dies, ms->smp.cores,
ms->smp.threads, &topo);
ms->possible_cpus->cpus[i].props.has_socket_id = true;
ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
if (x86ms->smp_dies > 1) {
ms->possible_cpus->cpus[i].props.has_die_id = true;
ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
}
ms->possible_cpus->cpus[i].props.has_core_id = true;
ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
ms->possible_cpus->cpus[i].props.has_thread_id = true;
ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
}
return ms->possible_cpus;
}
static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
{
/* cpu index isn't used */
CPUState *cs;
CPU_FOREACH(cs) {
X86CPU *cpu = X86_CPU(cs);
if (!cpu->apic_state) {
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(cpu->apic_state);
}
}
}
static long get_file_size(FILE *f)
{
long where, size;
/* XXX: on Unix systems, using fstat() probably makes more sense */
where = ftell(f);
fseek(f, 0, SEEK_END);
size = ftell(f);
fseek(f, where, SEEK_SET);
return size;
}
struct setup_data {
uint64_t next;
uint32_t type;
uint32_t len;
uint8_t data[0];
} __attribute__((packed));
/*
* The entry point into the kernel for PVH boot is different from
* the native entry point. The PVH entry is defined by the x86/HVM
* direct boot ABI and is available in an ELFNOTE in the kernel binary.
*
* This function is passed to load_elf() when it is called from
* load_elfboot() which then additionally checks for an ELF Note of
* type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
* parse the PVH entry address from the ELF Note.
*
* Due to trickery in elf_opts.h, load_elf() is actually available as
* load_elf32() or load_elf64() and this routine needs to be able
* to deal with being called as 32 or 64 bit.
*
* The address of the PVH entry point is saved to the 'pvh_start_addr'
* global variable. (although the entry point is 32-bit, the kernel
* binary can be either 32-bit or 64-bit).
*/
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
size_t *elf_note_data_addr;
/* Check if ELF Note header passed in is valid */
if (arg1 == NULL) {
return 0;
}
if (is64) {
struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
uint64_t nhdr_size64 = sizeof(struct elf64_note);
uint64_t phdr_align = *(uint64_t *)arg2;
uint64_t nhdr_namesz = nhdr64->n_namesz;
elf_note_data_addr =
((void *)nhdr64) + nhdr_size64 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
} else {
struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
uint32_t nhdr_size32 = sizeof(struct elf32_note);
uint32_t phdr_align = *(uint32_t *)arg2;
uint32_t nhdr_namesz = nhdr32->n_namesz;
elf_note_data_addr =
((void *)nhdr32) + nhdr_size32 +
QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
}
pvh_start_addr = *elf_note_data_addr;
return pvh_start_addr;
}
static bool load_elfboot(const char *kernel_filename,
int kernel_file_size,
uint8_t *header,
size_t pvh_xen_start_addr,
FWCfgState *fw_cfg)
{
uint32_t flags = 0;
uint32_t mh_load_addr = 0;
uint32_t elf_kernel_size = 0;
uint64_t elf_entry;
uint64_t elf_low, elf_high;
int kernel_size;
if (ldl_p(header) != 0x464c457f) {
return false; /* no elfboot */
}
bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
flags = elf_is64 ?
((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
error_report("elfboot unsupported flags = %x", flags);
exit(1);
}
uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
NULL, &elf_note_type, &elf_entry,
&elf_low, &elf_high, 0, I386_ELF_MACHINE,
0, 0);
if (kernel_size < 0) {
error_report("Error while loading elf kernel");
exit(1);
}
mh_load_addr = elf_low;
elf_kernel_size = elf_high - elf_low;
if (pvh_start_addr == 0) {
error_report("Error loading uncompressed kernel without PVH ELF Note");
exit(1);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
return true;
}
void x86_load_linux(X86MachineState *x86ms,
FWCfgState *fw_cfg,
int acpi_data_size,
bool pvh_enabled,
bool linuxboot_dma_enabled)
{
uint16_t protocol;
int setup_size, kernel_size, cmdline_size;
int dtb_size, setup_data_offset;
uint32_t initrd_max;
uint8_t header[8192], *setup, *kernel;
hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
FILE *f;
char *vmode;
MachineState *machine = MACHINE(x86ms);
struct setup_data *setup_data;
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
const char *dtb_filename = machine->dtb;
const char *kernel_cmdline = machine->kernel_cmdline;
/* Align to 16 bytes as a paranoia measure */
cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;
/* load the kernel header */
f = fopen(kernel_filename, "rb");
if (!f) {
fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
kernel_size = get_file_size(f);
if (!kernel_size ||
fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
MIN(ARRAY_SIZE(header), kernel_size)) {
fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
kernel_filename, strerror(errno));
exit(1);
}
/* kernel protocol version */
if (ldl_p(header + 0x202) == 0x53726448) {
protocol = lduw_p(header + 0x206);
} else {
/*
* This could be a multiboot kernel. If it is, let's stop treating it
* like a Linux kernel.
* Note: some multiboot images could be in the ELF format (the same of
* PVH), so we try multiboot first since we check the multiboot magic
* header before to load it.
*/
if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
kernel_cmdline, kernel_size, header)) {
return;
}
/*
* Check if the file is an uncompressed kernel file (ELF) and load it,
* saving the PVH entry point used by the x86/HVM direct boot ABI.
* If load_elfboot() is successful, populate the fw_cfg info.
*/
if (pvh_enabled &&
load_elfboot(kernel_filename, kernel_size,
header, pvh_start_addr, fw_cfg)) {
fclose(f);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
header, sizeof(header));
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
x86ms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
initrd_size);
}
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "pvh.bin";
nb_option_roms++;
return;
}
protocol = 0;
}
if (protocol < 0x200 || !(header[0x211] & 0x01)) {
/* Low kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x10000;
} else if (protocol < 0x202) {
/* High but ancient kernel */
real_addr = 0x90000;
cmdline_addr = 0x9a000 - cmdline_size;
prot_addr = 0x100000;
} else {
/* High and recent kernel */
real_addr = 0x10000;
cmdline_addr = 0x20000;
prot_addr = 0x100000;
}
/* highest address for loading the initrd */
if (protocol >= 0x20c &&
lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
/*
* Linux has supported initrd up to 4 GB for a very long time (2007,
* long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
* though it only sets initrd_max to 2 GB to "work around bootloader
* bugs". Luckily, QEMU firmware(which does something like bootloader)
* has supported this.
*
* It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
* be loaded into any address.
*
* In addition, initrd_max is uint32_t simply because QEMU doesn't
* support the 64-bit boot protocol (specifically the ext_ramdisk_image
* field).
*
* Therefore here just limit initrd_max to UINT32_MAX simply as well.
*/
initrd_max = UINT32_MAX;
} else if (protocol >= 0x203) {
initrd_max = ldl_p(header + 0x22c);
} else {
initrd_max = 0x37ffffff;
}
if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
}
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
if (protocol >= 0x202) {
stl_p(header + 0x228, cmdline_addr);
} else {
stw_p(header + 0x20, 0xA33F);
stw_p(header + 0x22, cmdline_addr - real_addr);
}
/* handle vga= parameter */
vmode = strstr(kernel_cmdline, "vga=");
if (vmode) {
unsigned int video_mode;
int ret;
/* skip "vga=" */
vmode += 4;
if (!strncmp(vmode, "normal", 6)) {
video_mode = 0xffff;
} else if (!strncmp(vmode, "ext", 3)) {
video_mode = 0xfffe;
} else if (!strncmp(vmode, "ask", 3)) {
video_mode = 0xfffd;
} else {
ret = qemu_strtoui(vmode, NULL, 0, &video_mode);
if (ret != 0) {
fprintf(stderr, "qemu: can't parse 'vga' parameter: %s\n",
strerror(-ret));
exit(1);
}
}
stw_p(header + 0x1fa, video_mode);
}
/* loader type */
/*
* High nybble = B reserved for QEMU; low nybble is revision number.
* If this code is substantially changed, you may want to consider
* incrementing the revision.
*/
if (protocol >= 0x200) {
header[0x210] = 0xB0;
}
/* heap */
if (protocol >= 0x201) {
header[0x211] |= 0x80; /* CAN_USE_HEAP */
stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
}
/* load initrd */
if (initrd_filename) {
GMappedFile *mapped_file;
gsize initrd_size;
gchar *initrd_data;
GError *gerr = NULL;
if (protocol < 0x200) {
fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
exit(1);
}
mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
if (!mapped_file) {
fprintf(stderr, "qemu: error reading initrd %s: %s\n",
initrd_filename, gerr->message);
exit(1);
}
x86ms->initrd_mapped_file = mapped_file;
initrd_data = g_mapped_file_get_contents(mapped_file);
initrd_size = g_mapped_file_get_length(mapped_file);
if (initrd_size >= initrd_max) {
fprintf(stderr, "qemu: initrd is too large, cannot support."
"(max: %"PRIu32", need %"PRId64")\n",
initrd_max, (uint64_t)initrd_size);
exit(1);
}
initrd_addr = (initrd_max - initrd_size) & ~4095;
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
stl_p(header + 0x218, initrd_addr);
stl_p(header + 0x21c, initrd_size);
}
/* load kernel and setup */
setup_size = header[0x1f1];
if (setup_size == 0) {
setup_size = 4;
}
setup_size = (setup_size + 1) * 512;
if (setup_size > kernel_size) {
fprintf(stderr, "qemu: invalid kernel header\n");
exit(1);
}
kernel_size -= setup_size;
setup = g_malloc(setup_size);
kernel = g_malloc(kernel_size);
fseek(f, 0, SEEK_SET);
if (fread(setup, 1, setup_size, f) != setup_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
if (fread(kernel, 1, kernel_size, f) != kernel_size) {
fprintf(stderr, "fread() failed\n");
exit(1);
}
fclose(f);
/* append dtb to kernel */
if (dtb_filename) {
if (protocol < 0x209) {
fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
exit(1);
}
dtb_size = get_image_size(dtb_filename);
if (dtb_size <= 0) {
fprintf(stderr, "qemu: error reading dtb %s: %s\n",
dtb_filename, strerror(errno));
exit(1);
}
setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
kernel = g_realloc(kernel, kernel_size);
stq_p(header + 0x250, prot_addr + setup_data_offset);
setup_data = (struct setup_data *)(kernel + setup_data_offset);
setup_data->next = 0;
setup_data->type = cpu_to_le32(SETUP_DTB);
setup_data->len = cpu_to_le32(dtb_size);
load_image_size(dtb_filename, setup_data->data, dtb_size);
}
memcpy(setup, header, MIN(sizeof(header), setup_size));
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
option_rom[nb_option_roms].bootindex = 0;
option_rom[nb_option_roms].name = "linuxboot.bin";
if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
option_rom[nb_option_roms].name = "linuxboot_dma.bin";
}
nb_option_roms++;
}
void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
{
char *filename;
MemoryRegion *bios, *isa_bios;
int bios_size, isa_bios_size;
int ret;
/* BIOS load */
if (bios_name == NULL) {
bios_name = BIOS_FILENAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (filename) {
bios_size = get_image_size(filename);
} else {
bios_size = -1;
}
if (bios_size <= 0 ||
(bios_size % 65536) != 0) {
goto bios_error;
}
bios = g_malloc(sizeof(*bios));
memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
if (!isapc_ram_fw) {
memory_region_set_readonly(bios, true);
}
ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
if (ret != 0) {
bios_error:
fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
exit(1);
}
g_free(filename);
/* map the last 128KB of the BIOS in ISA space */
isa_bios_size = MIN(bios_size, 128 * KiB);
isa_bios = g_malloc(sizeof(*isa_bios));
memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
bios_size - isa_bios_size, isa_bios_size);
memory_region_add_subregion_overlap(rom_memory,
0x100000 - isa_bios_size,
isa_bios,
1);
if (!isapc_ram_fw) {
memory_region_set_readonly(isa_bios, true);
}
/* map all the bios at the top of memory */
memory_region_add_subregion(rom_memory,
(uint32_t)(-bios_size),
bios);
}
static void x86_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
uint64_t value = x86ms->max_ram_below_4g;
visit_type_size(v, name, &value, errp);
}
static void x86_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86MachineState *x86ms = X86_MACHINE(obj);
Error *error = NULL;
uint64_t value;
visit_type_size(v, name, &value, &error);
if (error) {
error_propagate(errp, error);
return;
}
if (value > 4 * GiB) {
error_setg(&error,
"Machine option 'max-ram-below-4g=%"PRIu64
"' expects size less than or equal to 4G", value);
error_propagate(errp, error);
return;
}
if (value < 1 * MiB) {
warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
"BIOS may not work with less than 1MiB", value);
}
x86ms->max_ram_below_4g = value;
}
static void x86_machine_initfn(Object *obj)
{
X86MachineState *x86ms = X86_MACHINE(obj);
x86ms->max_ram_below_4g = 0; /* use default */
x86ms->smp_dies = 1;
}
static void x86_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
x86mc->compat_apic_id_mode = false;
nc->nmi_monitor_handler = x86_nmi;
object_class_property_add(oc, X86_MACHINE_MAX_RAM_BELOW_4G, "size",
x86_machine_get_max_ram_below_4g, x86_machine_set_max_ram_below_4g,
NULL, NULL, &error_abort);
object_class_property_set_description(oc, X86_MACHINE_MAX_RAM_BELOW_4G,
"Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
}
static const TypeInfo x86_machine_info = {
.name = TYPE_X86_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(X86MachineState),
.instance_init = x86_machine_initfn,
.class_size = sizeof(X86MachineClass),
.class_init = x86_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_NMI },
{ }
},
};
static void x86_machine_register_types(void)
{
type_register_static(&x86_machine_info);
}
type_init(x86_machine_register_types)

View file

@ -197,11 +197,13 @@ qemu_irq *xen_interrupt_controller_init(void)
static void xen_ram_init(PCMachineState *pcms,
ram_addr_t ram_size, MemoryRegion **ram_memory_p)
{
X86MachineState *x86ms = X86_MACHINE(pcms);
MemoryRegion *sysmem = get_system_memory();
ram_addr_t block_len;
uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(),
PC_MACHINE_MAX_RAM_BELOW_4G,
&error_abort);
uint64_t user_lowmem =
object_property_get_uint(qdev_get_machine(),
X86_MACHINE_MAX_RAM_BELOW_4G,
&error_abort);
/* Handle the machine opt max-ram-below-4g. It is basically doing
* min(xen limit, user limit).
@ -214,20 +216,20 @@ static void xen_ram_init(PCMachineState *pcms,
}
if (ram_size >= user_lowmem) {
pcms->above_4g_mem_size = ram_size - user_lowmem;
pcms->below_4g_mem_size = user_lowmem;
x86ms->above_4g_mem_size = ram_size - user_lowmem;
x86ms->below_4g_mem_size = user_lowmem;
} else {
pcms->above_4g_mem_size = 0;
pcms->below_4g_mem_size = ram_size;
x86ms->above_4g_mem_size = 0;
x86ms->below_4g_mem_size = ram_size;
}
if (!pcms->above_4g_mem_size) {
if (!x86ms->above_4g_mem_size) {
block_len = ram_size;
} else {
/*
* Xen does not allocate the memory continuously, it keeps a
* hole of the size computed above or passed in.
*/
block_len = (1ULL << 32) + pcms->above_4g_mem_size;
block_len = (1ULL << 32) + x86ms->above_4g_mem_size;
}
memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
&error_fatal);
@ -244,12 +246,12 @@ static void xen_ram_init(PCMachineState *pcms,
*/
memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
&ram_memory, 0xc0000,
pcms->below_4g_mem_size - 0xc0000);
x86ms->below_4g_mem_size - 0xc0000);
memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
if (pcms->above_4g_mem_size > 0) {
if (x86ms->above_4g_mem_size > 0) {
memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
&ram_memory, 0x100000000ULL,
pcms->above_4g_mem_size);
x86ms->above_4g_mem_size);
memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
}
}
@ -265,7 +267,7 @@ void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr,
/* RAM already populated in Xen */
fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
" bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
__func__, size, ram_addr);
__func__, size, ram_addr);
return;
}