tests/tcg/i386: Introduce and use reg_t consistently

Define reg_t based on the actual register width.
Define the inlines using that type.  This will allow
input registers to 32-bit insns to be set to 64-bit
values on x86-64, which allows testing various edge cases.

Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230114230542.3116013-2-richard.henderson@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
Richard Henderson 2023-01-14 13:05:41 -10:00 committed by Paolo Bonzini
parent 78901b5047
commit 5d62d6649c

View file

@ -3,34 +3,40 @@
#include <stdint.h> #include <stdint.h>
#include <stdio.h> #include <stdio.h>
#ifdef __x86_64
typedef uint64_t reg_t;
#else
typedef uint32_t reg_t;
#endif
#define insn1q(name, arg0) \ #define insn1q(name, arg0) \
static inline uint64_t name##q(uint64_t arg0) \ static inline reg_t name##q(reg_t arg0) \
{ \ { \
uint64_t result64; \ reg_t result64; \
asm volatile (#name "q %1, %0" : "=r"(result64) : "rm"(arg0)); \ asm volatile (#name "q %1, %0" : "=r"(result64) : "rm"(arg0)); \
return result64; \ return result64; \
} }
#define insn1l(name, arg0) \ #define insn1l(name, arg0) \
static inline uint32_t name##l(uint32_t arg0) \ static inline reg_t name##l(reg_t arg0) \
{ \ { \
uint32_t result32; \ reg_t result32; \
asm volatile (#name "l %k1, %k0" : "=r"(result32) : "rm"(arg0)); \ asm volatile (#name "l %k1, %k0" : "=r"(result32) : "rm"(arg0)); \
return result32; \ return result32; \
} }
#define insn2q(name, arg0, c0, arg1, c1) \ #define insn2q(name, arg0, c0, arg1, c1) \
static inline uint64_t name##q(uint64_t arg0, uint64_t arg1) \ static inline reg_t name##q(reg_t arg0, reg_t arg1) \
{ \ { \
uint64_t result64; \ reg_t result64; \
asm volatile (#name "q %2, %1, %0" : "=r"(result64) : c0(arg0), c1(arg1)); \ asm volatile (#name "q %2, %1, %0" : "=r"(result64) : c0(arg0), c1(arg1)); \
return result64; \ return result64; \
} }
#define insn2l(name, arg0, c0, arg1, c1) \ #define insn2l(name, arg0, c0, arg1, c1) \
static inline uint32_t name##l(uint32_t arg0, uint32_t arg1) \ static inline reg_t name##l(reg_t arg0, reg_t arg1) \
{ \ { \
uint32_t result32; \ reg_t result32; \
asm volatile (#name "l %k2, %k1, %k0" : "=r"(result32) : c0(arg0), c1(arg1)); \ asm volatile (#name "l %k2, %k1, %k0" : "=r"(result32) : c0(arg0), c1(arg1)); \
return result32; \ return result32; \
} }
@ -65,130 +71,128 @@ insn1l(blsr, src)
int main(int argc, char *argv[]) { int main(int argc, char *argv[]) {
uint64_t ehlo = 0x202020204f4c4845ull; uint64_t ehlo = 0x202020204f4c4845ull;
uint64_t mask = 0xa080800302020001ull; uint64_t mask = 0xa080800302020001ull;
uint32_t result32; reg_t result;
#ifdef __x86_64 #ifdef __x86_64
uint64_t result64;
/* 64 bits */ /* 64 bits */
result64 = andnq(mask, ehlo); result = andnq(mask, ehlo);
assert(result64 == 0x002020204d4c4844); assert(result == 0x002020204d4c4844);
result64 = pextq(ehlo, mask); result = pextq(ehlo, mask);
assert(result64 == 133); assert(result == 133);
result64 = pdepq(result64, mask); result = pdepq(result, mask);
assert(result64 == (ehlo & mask)); assert(result == (ehlo & mask));
result64 = pextq(-1ull, mask); result = pextq(-1ull, mask);
assert(result64 == 511); /* mask has 9 bits set */ assert(result == 511); /* mask has 9 bits set */
result64 = pdepq(-1ull, mask); result = pdepq(-1ull, mask);
assert(result64 == mask); assert(result == mask);
result64 = bextrq(mask, 0x3f00); result = bextrq(mask, 0x3f00);
assert(result64 == (mask & ~INT64_MIN)); assert(result == (mask & ~INT64_MIN));
result64 = bextrq(mask, 0x1038); result = bextrq(mask, 0x1038);
assert(result64 == 0xa0); assert(result == 0xa0);
result64 = bextrq(mask, 0x10f8); result = bextrq(mask, 0x10f8);
assert(result64 == 0); assert(result == 0);
result64 = blsiq(0x30); result = blsiq(0x30);
assert(result64 == 0x10); assert(result == 0x10);
result64 = blsiq(0x30ull << 32); result = blsiq(0x30ull << 32);
assert(result64 == 0x10ull << 32); assert(result == 0x10ull << 32);
result64 = blsmskq(0x30); result = blsmskq(0x30);
assert(result64 == 0x1f); assert(result == 0x1f);
result64 = blsrq(0x30); result = blsrq(0x30);
assert(result64 == 0x20); assert(result == 0x20);
result64 = blsrq(0x30ull << 32); result = blsrq(0x30ull << 32);
assert(result64 == 0x20ull << 32); assert(result == 0x20ull << 32);
result64 = bzhiq(mask, 0x3f); result = bzhiq(mask, 0x3f);
assert(result64 == (mask & ~INT64_MIN)); assert(result == (mask & ~INT64_MIN));
result64 = bzhiq(mask, 0x1f); result = bzhiq(mask, 0x1f);
assert(result64 == (mask & ~(-1 << 30))); assert(result == (mask & ~(-1 << 30)));
result64 = rorxq(0x2132435465768798, 8); result = rorxq(0x2132435465768798, 8);
assert(result64 == 0x9821324354657687); assert(result == 0x9821324354657687);
result64 = sarxq(0xffeeddccbbaa9988, 8); result = sarxq(0xffeeddccbbaa9988, 8);
assert(result64 == 0xffffeeddccbbaa99); assert(result == 0xffffeeddccbbaa99);
result64 = sarxq(0x77eeddccbbaa9988, 8 | 64); result = sarxq(0x77eeddccbbaa9988, 8 | 64);
assert(result64 == 0x0077eeddccbbaa99); assert(result == 0x0077eeddccbbaa99);
result64 = shrxq(0xffeeddccbbaa9988, 8); result = shrxq(0xffeeddccbbaa9988, 8);
assert(result64 == 0x00ffeeddccbbaa99); assert(result == 0x00ffeeddccbbaa99);
result64 = shrxq(0x77eeddccbbaa9988, 8 | 192); result = shrxq(0x77eeddccbbaa9988, 8 | 192);
assert(result64 == 0x0077eeddccbbaa99); assert(result == 0x0077eeddccbbaa99);
result64 = shlxq(0xffeeddccbbaa9988, 8); result = shlxq(0xffeeddccbbaa9988, 8);
assert(result64 == 0xeeddccbbaa998800); assert(result == 0xeeddccbbaa998800);
#endif #endif
/* 32 bits */ /* 32 bits */
result32 = andnl(mask, ehlo); result = andnl(mask, ehlo);
assert(result32 == 0x04d4c4844); assert(result == 0x04d4c4844);
result32 = pextl((uint32_t) ehlo, mask); result = pextl((uint32_t) ehlo, mask);
assert(result32 == 5); assert(result == 5);
result32 = pdepl(result32, mask); result = pdepl(result, mask);
assert(result32 == (uint32_t)(ehlo & mask)); assert(result == (uint32_t)(ehlo & mask));
result32 = pextl(-1u, mask); result = pextl(-1u, mask);
assert(result32 == 7); /* mask has 3 bits set */ assert(result == 7); /* mask has 3 bits set */
result32 = pdepl(-1u, mask); result = pdepl(-1u, mask);
assert(result32 == (uint32_t)mask); assert(result == (uint32_t)mask);
result32 = bextrl(mask, 0x1f00); result = bextrl(mask, 0x1f00);
assert(result32 == (mask & ~INT32_MIN)); assert(result == (mask & ~INT32_MIN));
result32 = bextrl(ehlo, 0x1018); result = bextrl(ehlo, 0x1018);
assert(result32 == 0x4f); assert(result == 0x4f);
result32 = bextrl(mask, 0x1038); result = bextrl(mask, 0x1038);
assert(result32 == 0); assert(result == 0);
result32 = blsil(0xffff); result = blsil(0xffff);
assert(result32 == 1); assert(result == 1);
result32 = blsmskl(0x300); result = blsmskl(0x300);
assert(result32 == 0x1ff); assert(result == 0x1ff);
result32 = blsrl(0xffc); result = blsrl(0xffc);
assert(result32 == 0xff8); assert(result == 0xff8);
result32 = bzhil(mask, 0xf); result = bzhil(mask, 0xf);
assert(result32 == 1); assert(result == 1);
result32 = rorxl(0x65768798, 8); result = rorxl(0x65768798, 8);
assert(result32 == 0x98657687); assert(result == 0x98657687);
result32 = sarxl(0xffeeddcc, 8); result = sarxl(0xffeeddcc, 8);
assert(result32 == 0xffffeedd); assert(result == 0xffffeedd);
result32 = sarxl(0x77eeddcc, 8 | 32); result = sarxl(0x77eeddcc, 8 | 32);
assert(result32 == 0x0077eedd); assert(result == 0x0077eedd);
result32 = shrxl(0xffeeddcc, 8); result = shrxl(0xffeeddcc, 8);
assert(result32 == 0x00ffeedd); assert(result == 0x00ffeedd);
result32 = shrxl(0x77eeddcc, 8 | 128); result = shrxl(0x77eeddcc, 8 | 128);
assert(result32 == 0x0077eedd); assert(result == 0x0077eedd);
result32 = shlxl(0xffeeddcc, 8); result = shlxl(0xffeeddcc, 8);
assert(result32 == 0xeeddcc00); assert(result == 0xeeddcc00);
return 0; return 0;
} }