mirror of
https://github.com/Motorhead1991/qemu.git
synced 2025-08-02 07:13:54 -06:00
memory: RCU ram_list.dirty_memory[] for safe RAM hotplug
Although accesses to ram_list.dirty_memory[] use atomics so multiple threads can safely dirty the bitmap, the data structure is not fully thread-safe yet. This patch handles the RAM hotplug case where ram_list.dirty_memory[] is grown. ram_list.dirty_memory[] is change from a regular bitmap to an RCU array of pointers to fixed-size bitmap blocks. Threads can continue accessing bitmap blocks while the array is being extended. See the comments in the code for an in-depth explanation of struct DirtyMemoryBlocks. I have tested that live migration with virtio-blk dataplane works. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Message-Id: <1453728801-5398-2-git-send-email-stefanha@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This commit is contained in:
parent
8bafcb2164
commit
5b82b703b6
3 changed files with 225 additions and 43 deletions
|
@ -49,13 +49,43 @@ static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
|
|||
return (char *)block->host + offset;
|
||||
}
|
||||
|
||||
/* The dirty memory bitmap is split into fixed-size blocks to allow growth
|
||||
* under RCU. The bitmap for a block can be accessed as follows:
|
||||
*
|
||||
* rcu_read_lock();
|
||||
*
|
||||
* DirtyMemoryBlocks *blocks =
|
||||
* atomic_rcu_read(&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]);
|
||||
*
|
||||
* ram_addr_t idx = (addr >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
* unsigned long *block = blocks.blocks[idx];
|
||||
* ...access block bitmap...
|
||||
*
|
||||
* rcu_read_unlock();
|
||||
*
|
||||
* Remember to check for the end of the block when accessing a range of
|
||||
* addresses. Move on to the next block if you reach the end.
|
||||
*
|
||||
* Organization into blocks allows dirty memory to grow (but not shrink) under
|
||||
* RCU. When adding new RAMBlocks requires the dirty memory to grow, a new
|
||||
* DirtyMemoryBlocks array is allocated with pointers to existing blocks kept
|
||||
* the same. Other threads can safely access existing blocks while dirty
|
||||
* memory is being grown. When no threads are using the old DirtyMemoryBlocks
|
||||
* anymore it is freed by RCU (but the underlying blocks stay because they are
|
||||
* pointed to from the new DirtyMemoryBlocks).
|
||||
*/
|
||||
#define DIRTY_MEMORY_BLOCK_SIZE ((ram_addr_t)256 * 1024 * 8)
|
||||
typedef struct {
|
||||
struct rcu_head rcu;
|
||||
unsigned long *blocks[];
|
||||
} DirtyMemoryBlocks;
|
||||
|
||||
typedef struct RAMList {
|
||||
QemuMutex mutex;
|
||||
/* Protected by the iothread lock. */
|
||||
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
|
||||
RAMBlock *mru_block;
|
||||
/* RCU-enabled, writes protected by the ramlist lock. */
|
||||
QLIST_HEAD(, RAMBlock) blocks;
|
||||
DirtyMemoryBlocks *dirty_memory[DIRTY_MEMORY_NUM];
|
||||
uint32_t version;
|
||||
} RAMList;
|
||||
extern RAMList ram_list;
|
||||
|
@ -89,30 +119,70 @@ static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
|
|||
ram_addr_t length,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long end, page, next;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
unsigned long end, page;
|
||||
bool dirty = false;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
next = find_next_bit(ram_list.dirty_memory[client], end, page);
|
||||
|
||||
return next < end;
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (find_next_bit(blocks->blocks[idx], offset, num) < num) {
|
||||
dirty = true;
|
||||
break;
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
return dirty;
|
||||
}
|
||||
|
||||
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
|
||||
ram_addr_t length,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long end, page, next;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
unsigned long end, page;
|
||||
bool dirty = true;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
|
||||
|
||||
return next >= end;
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (find_next_zero_bit(blocks->blocks[idx], offset, num) < num) {
|
||||
dirty = false;
|
||||
break;
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
return dirty;
|
||||
}
|
||||
|
||||
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
|
||||
|
@ -154,16 +224,31 @@ static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
|
|||
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
|
||||
unsigned client)
|
||||
{
|
||||
unsigned long page, idx, offset;
|
||||
DirtyMemoryBlocks *blocks;
|
||||
|
||||
assert(client < DIRTY_MEMORY_NUM);
|
||||
set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
|
||||
|
||||
page = addr >> TARGET_PAGE_BITS;
|
||||
idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
|
||||
|
||||
set_bit_atomic(offset, blocks->blocks[idx]);
|
||||
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
||||
ram_addr_t length,
|
||||
uint8_t mask)
|
||||
{
|
||||
DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
|
||||
unsigned long end, page;
|
||||
unsigned long **d = ram_list.dirty_memory;
|
||||
int i;
|
||||
|
||||
if (!mask && !xen_enabled()) {
|
||||
return;
|
||||
|
@ -171,15 +256,36 @@ static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
|||
|
||||
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
||||
page = start >> TARGET_PAGE_BITS;
|
||||
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
||||
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
|
||||
|
||||
while (page < end) {
|
||||
unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
|
||||
|
||||
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
||||
bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
|
||||
offset, num);
|
||||
}
|
||||
|
||||
page += num;
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
xen_modified_memory(start, length);
|
||||
}
|
||||
|
||||
|
@ -199,21 +305,41 @@ static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
|
|||
/* start address is aligned at the start of a word? */
|
||||
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
||||
(hpratio == 1)) {
|
||||
unsigned long **blocks[DIRTY_MEMORY_NUM];
|
||||
unsigned long idx;
|
||||
unsigned long offset;
|
||||
long k;
|
||||
long nr = BITS_TO_LONGS(pages);
|
||||
|
||||
idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
|
||||
DIRTY_MEMORY_BLOCK_SIZE);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
|
||||
blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
|
||||
}
|
||||
|
||||
for (k = 0; k < nr; k++) {
|
||||
if (bitmap[k]) {
|
||||
unsigned long temp = leul_to_cpu(bitmap[k]);
|
||||
unsigned long **d = ram_list.dirty_memory;
|
||||
|
||||
atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
|
||||
atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
|
||||
if (tcg_enabled()) {
|
||||
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
|
||||
atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
|
||||
}
|
||||
}
|
||||
|
||||
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
||||
offset = 0;
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
|
||||
} else {
|
||||
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
||||
|
@ -265,18 +391,33 @@ uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
|
|||
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
|
||||
int k;
|
||||
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
|
||||
unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
|
||||
unsigned long * const *src;
|
||||
unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
|
||||
unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
|
||||
DIRTY_MEMORY_BLOCK_SIZE);
|
||||
|
||||
rcu_read_lock();
|
||||
|
||||
src = atomic_rcu_read(
|
||||
&ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
|
||||
|
||||
for (k = page; k < page + nr; k++) {
|
||||
if (src[k]) {
|
||||
unsigned long bits = atomic_xchg(&src[k], 0);
|
||||
if (src[idx][offset]) {
|
||||
unsigned long bits = atomic_xchg(&src[idx][offset], 0);
|
||||
unsigned long new_dirty;
|
||||
new_dirty = ~dest[k];
|
||||
dest[k] |= bits;
|
||||
new_dirty &= bits;
|
||||
num_dirty += ctpopl(new_dirty);
|
||||
}
|
||||
|
||||
if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
|
||||
offset = 0;
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
} else {
|
||||
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
|
||||
if (cpu_physical_memory_test_and_clear_dirty(
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue